.||I

IBM Software Group
Sessions LU29 / LU30

DB2 Performance Toolbox:

Ten Sample Tools for Faster Systems
Parts 1 & 2

Steve Rees

srees@ca.ibm.com
[:L:7Y information Management Software

ON DEMAND BUSINESS

‘ IBM Software Group | Information Management Software

Agenda

= Motivation, goals & framework)

= The tools
» Configuration analysis >~ Part 1
» Handy utilities
: J
» Snapshot analysis S
» Plan analysis
> Part 2

» Event monitor analysis

= Wrap up

‘ IBM Software Group | Information Management Software

Goals for the presentation

= Present & explain ten sample performance diagnostic
tools
» What each tool does, and why that's good

» Where the tool gets its data

» The principles & techniques involved in turning raw data into crisply
identified issues

» How to use the tool
» Sample output

4 The fine print (prerequisites, assumptions, dependencies, side-effects, limitations, etc...)
» How it could be extended to be even better

= Some familiarity with DB2 performance diagnostics is
useful here

|) o0
0- 100" =

‘ IBM Software Group | Information Management Software

What do these tools do?

= Build on DB2’s performance diagnostic interfaces
= Encapsulate technigques to extract, process, analyze &
present performance data

¥4
¥
/]
¥4
¥

Capture best practices from the lab & the field
Easy to use

Portable

Repeatable

Extendible

= Simplify the process of identifying problems
= Source for all tools will be available at

ftp://ftp.software.ibm.com/ps/products/db2/tools/

s 00 .

‘ IBM Software Group | Information Management Software

o D
|

» Configuration analysis >~ Part 1

>

J

4)

>

> > Part 2
|

‘ IBM Software Group | Information Management Software

#1: db2perf sanity

db2perf_sanity

» Sanity checks configuration parameters for basic causes of
performance problems, and makes recommendations

» Warnings issued if

1.

A

Transaction log buffer < 128 pages

Transaction log located under the db directory

Too few page cleaners and prefetchers defined

BUFFPAGE defaulted and all bufferpools are not explicitly sized
Mincommit > 1

Num_poolagents < current number of connections

Implementation
C program using CLI & DB2 APIs

s 00 .

‘ IBM Software Group | Information Management Software

#1: db2perf sanity

Why use i1?
» Helps the DBA quickly zero-in on “no-brainer” problems

» Everything db2perf_sanity currently catches would be have
been fixed by db2 autoconfigure anyway, but ...

* Small databases built with the default parameters and tuned
only sporadically can grow organically into systems people
depend on

— Problems may take a while to develop
— Poor configuration settings may take even longer to be found

» Except in rare cases (e.g. when MINCOMMIT really does
help) following the recommendations will be at worst neutral
to system performance.

‘ IBM Software Group | Information Management Software

#1: db2perf sanity

How it works

» Configuration data gathered from APIs, table functions and
catalogs

For each parameter we're interested in

1. Extract parameter value from API / table function
2. Compare with recommend value
3. Print warning / success messages for each test

‘ IBM Software Group | Information Management Software

#1: db2perf sanity

HOW to use it We borrow error handling code, etc., from the
_ samples that come with DB2
Preparation

1. Copy utility files & build script from $DB2PATH/samples/cli to
the current directory

cp $DB2PATH/samples/cli/utilcli.*
cp $DB2PATH/samples/cli/bldapp .

2. Build the program

For Windows, use

bldapp db2perf sanity - COPY
- $DB2PATHS%
USG - bldapp.bat
1. Run the program eic

db2perf sanity <dbname>
2. Update configuration based on results, if necessary

[Guiee

‘ IBM Software Group | Information Management Software

#1: db2perf sanity
Sample output

Output from running the tool
against the sample database

Running sanity tests on configuration for database SAMPLE
LOGBUF'SZ:
Warning:
The log buffer size (logbufsz) is currently 8.
Recommendation:
The generally recommended size is 128 or greater.
Log path:
Warning:
The transaction log is currently located in '/home/srees/srees/NODE0000/SQL00003/SQLOGDIR/"',
which seems to be under the database path '/home/srees'.
Recommendation:
In general, the transaction log should be located on its own device(s) if possible.
NUM_IOCLEANERS:
Passed
NUM_IOSERVERS:
Passed
BUFFPAGE & NPAGES:
Warning:
BUFFPAGE seems to be left at the default value of 1000, but the following
bufferpools still have NPAGES set to either -1 or to 1000, so they still have the default
size
IBMDEFAULTBP
Recommendation:
Use ALTER BUFFERPOOL to set NPAGES to the desired value for all bufferpools.
MINCOMMIT :
Passed
NUM_POOLAGENTS:
Passed

Vo L
Pl oo

‘ IBM Software Group | Information Management Software

#1: db2perf sanity

Some notes

» Based on rules-of-thumb
* Generally very reliable, but not flawless
» Path analysis is ‘quick & dirty’ - may not be 100% accurate

* More likely to miss a cases of unintentional disk sharing than to
claim overlap when there is none

» Uses C because of need to get to configuration APIs
» Tool depends on DB2 v8.2.2 for table functions

» Future versions could ...

* Be converted to SQL/PL once database configuration table
functions are available

* Check for other conflicts of LOGPATH, e.g. tablespace containers

[P iee .

‘ IBM Software Group | Information Management Software

-)
o
> > Part 1
» Handy utilities
s 3
>
) > Part 2

‘ IBM Software Group | Information Management Software

#2: db2perf utils

db2perf_utils

» Provides a variety of ‘helper functions’ that make life a little
easier for us

1. Translation from codes used in table functions to
human-readable form

— Statement Operations
— Statement types

— Lock types

— Etc.

2. ‘Quiet’ SQL DRoOP function

— Suppresses ‘not found’ errors but lets other types of
errors return to the caller

Implementation
SQL/PL Routines, UDFs

|) o0
0- 100" =

‘ IBM Software Group | Information Management Software

#2: db2perf utils

Why use it?

Translation UDFs make the output of the snapshot table
functions and statement event monitors more usable & more
similar to the text output from GET SNAPSHOT

» db2perf_ quiet_drop is useful in CLP scripts when doing
proactive cleanup of objects than might not yet exist

—— We’ll either get an error on the DROP if we

—— haven’t run the script before, or on the CREATE if
—— we have. :—(

DROP TABLE FOO;

CREATE TABLE FOO (cl int);

—— Unless there’s a *real* problem (e.g. authorization),
—— both the DROP and CREATE will succeed :-)

CALL db2perf quiet_drop(‘TABLE BAR’');

CREATE TABLE BAR (cl int);

Ouiee

‘ IBM Software Group | Information Management Software

How to use it

Preparation

1. Connect to the desired database
db2 connect to <dbname>

2. Create the stored procedures
db2 -td@ -f db2perf utils.db2

#2: db2perf utils

‘ IBM Software Group | Information Management Software

#2: db2perf utils

How to use it, cont'd

Use

1. Simply call translation UDFs in SQL to translate fields returned
from snapshot table functions & event monitors

db2 “select db2perf <UDF >2str (<element value>) from ..”

Table function(s) Element(s) Translation UDF
LOCK_OBJECT TYPE db2perf_Ikobj2str
SNAPSHOT LOCK LOCK_MODE
SNAPSHOT LOCKWAIT LOCK_MODE REQUESTED | do2perf_lkmode2str
LOCK_STATUS db2perf_lkstat2str
SNAPSHOT TABLE TABLE_TYPE db2perf_tabtyp2str
SNAPSHOT APPL_INFO APPL STATUS db2perf_apstat2str
TABLESPACE_TYPE db2perf_tbstyp2str
SNAPSHOT TBS CFG
TBS CONTENTS TYPE db2perf_tbscon2str
, STMT_OPERATION db2perf_op2str
Statement Event monitor
STMT_TYPE db2perf_type2str

Puiee-

‘ IBM Software Group | Information Management Software

#2: db2perf utils

How to use it, cont'd

2. ‘Quiet drop’ function

db2 “call db2perf quiet_drop (<suffix of DROP statement>)"

for example

db2 “call db2perf quiet_drop (‘procedure db2perf crmsg’)”

‘ IBM Software Group | Information Management Software

#2: db2perf utils

How it works

CREATE FUNCTION db2perf tbstyp2str (tablespace_type bigint)

BEGIN ATOMIC
DECLARE retstr CHAR(3);

SET retstr = CASE tablespace_type Values & s’rr'mgs
WHEN O THEN 'DMS' extracted from
WHEN 1 THEN 'SMS' sqlmon.h
ELSE NULL
END;
RETURN retstr;
ENDQ

CREATE PROCEDURE db2perf quiet_drop(IN statement VARCHAR(1000))
LANGUAGE SQL
BEGIN

DECLARE SQLSTATE CHAR(5);

DECLARE NotThere CONDITION FOR SQLSTATE '42704';

Catch & overwrite
DECLARE EXIT HANDLER FOR NotThere 'not found'

SET SQLSTATE = ' 5 SQLSTATE

SET statement = 'DROP ' || statement;
EXECUTE IMMEDIATE statement;
ENDQ

V o0
P oo

‘ IBM Software Group | Information Management Software

#2: db2perf utils

Sample output

2

ablespace name, 1,20) as ‘Name’

tbs_contents;type, db2perf tbscon2str (tbs_ contents _type)
from table (snapshot_tbs_cfg(cast (null as wvarchar(256)),-1)) as t”

Name TABLESPACE_TYPE 3 TBS_CONTENTS_TYPE 5

SYSCATSPACE 1 SMS 0 Any
SYSTOOLSPACE 1 SMS 0 Any

USERSPACE1 1 SMS 0 Any

TBS_ALL 0 DMS 0 Any

TEMPSPACE 1 SMS 2 System temporary

5 record(s) selected.

Translated values

Untranslated values
provided by table function

provided by the UDF

$ db2 “drop table blork”
SQL0204N "SREES.BLORK" is an undefined name. SQLSTATE=42704
$ db2 "call db2perf quiet_drop('table blork')"

Return Status = 0 Table does not exist
but quiet_drop

$ db2 “create table blork ..”
suppresses the error

‘ IBM Software Group | Information Management Software

-)
|

) > Part 1

>

. J

» Snapshot analysis D

>

) > Part 2
|

‘ IBM Software Group | Information Management Software

#3: db2perf bufferpool

db2perf_bufferpool

» ldentifies & quantifies bufferpool-related performance issues
» Reports at overall level and by bufferpool

» Issues warnings if
1. Bufferpool data or index hit ratios are below threshold
Data or index prefetch ratio below threshold
Page clean ratio below threshold
Number of dirty steals above threshold
Number of files closed above threshold

2.
3.
4.
5.

Implementation
SQL/PL stored procedures

‘ IBM Software Group | Information Management Software

#3: db2perf bufferpool

Why use i1?
» Checks snapshot data for common bufferpool performance
Issues

* Both OLTP and complex query flavors
* Encapsulates well-established calculations

» Provides severity ratings to issues detected

* From ‘hardly worth worrying about’ to ‘ fix this soon!’

» Saves timestamped assessments in the database for
ongoing monitoring

‘ IBM Software Group | Information Management Software

#3: db2perf bufferpool

How to use it

Preparation
1. Connect to the desired database
db2 connect to <dbname>

2. Create stored procedures

db2 -td@ -f db2perf utils.db2
db2 -tdQ@ -f db2perf bp.db2

3. Turn on bufferpool monitoring by default with
DFT_MON_BUFPOOL dbm config switch

Use
1. Connect to the desired database
db2 connect to <dbname>

2. Call stored procedure & examine results
db2 “call db2perf bufferpool()”

3. Update configuration based on results, if necessary

/2. 00 <

‘ IBM Software Group | Information Management Software

#3: db2perf bufferpool

How it works

» Snapshot data gathered from snapshot_database and
snapshot_bufferpool table functions

» Warnings with severity levels 1-5 inserted into db2perf msg
table

Metric

Formula

Activity
Threshold

STAYT14Y

3

5 (worst)

Data Hit Ratio (LR-PR)/LR > 1000 LReads < 60% < 75% < 90%

Index Hit Ratio (LR-PR)/LR > 1000 LReads < 75% < 85% < 95%

Cleaning Async Writes / Total > 1000 page < 40% < 65% < 90%
Writes writes

Prefetch Async data reads / > 1000 async data < 50% <70% < 90%
Data phys reads reads

Dirty page steals | Dirty Steals /10,000 Tx > 100 transactions > 100 > 30 > 1

File Closes Files Closed / 10,000 Tx > 100 transactions > 1000 > 100 >10

| / [X
0- .."" =3

Sample output

‘ IBM Software Group | Information Management Software

#3: db2perf bufferpool

$ db2 "call db2perf bufferpool ()"

Result set 1

Dirty Page Steals / 10k Tx
Overall BP page clean ratio
IBMDEFAULTBP data hit ratio
Overall BP data hit ratio
Overall BP index hit ratio
Files closed / 10k Tx
IBMDEFAULTBP idx hit ratio
Overall BP data prefetch ratio
Overall BP index prefetch ratio
IBMDEFAULTBP data pftch ratio
IBMDEFAULTBP index pftch ratio

11 record(s) selected.

VALUE

(oo T ol ol (o) |

O O O O

COMMENTS

Lots of dirty page steals -
look at bufferpool size if

possible, and/or page
cleaning parameters

No
No
No
No

data prefetching activity
index prefetching activity
data prefetching activity
index prefetching activity

1A, 00
L g OLTIE

‘ IBM Software Group | Information Management Software

#3: db2perf bufferpool

Some notes

» Thresholds & severity levels are easily tuned to support different
environments

» Depends on DB2 v8.2.2 for table functions

» Creates SQL/PL stored procedure and db2perf msg message
table in default schema

* Returns a result set with the most recent rows added to the
message table

* Leaves the message table in place after execution

* Messages remain in message table by default
— Use orDER BY ts DEsc on SELECT to see most recent
messages first

‘ IBM Software Group | Information Management Software

#4: db2perf dynsql

db2perf_dynsql
» ldentifies & quantifies dynamic SQL-related performance issues
» Calls out groups of ‘top 10’ statements by:

1.

AR o

Total elapsed time
Total CPU usage
Most physical reads
Most rows read
Sorts

Sort overflows

» ldentifies statements that might benefit from parameter markers
instead of literals

Implementation
CLP scripts + UDF in C

‘ IBM Software Group | Information Management Software

#4: db2perf dynsqgl

Why use i1?

» Drilling down into most bottlenecks — CPU, I/O, etc. -
eventually requires that culprit statements be identified

* This tool speeds analysis of dynamic SQL snapshot data
» Automatically ranks statements by several important types

of resources Hint - statements which consume high
° By individual metrics amounts of CPU and IO are a good
* By combined metrics place to start looking for problems

» High-traffic statements using literals can combine to
consume significant CPU

* Candidate statements for parameter markers aren’t always
easy to recognize from snapshots
— Low per-statement resource consumption excludes them
from most normal queries

* Tool helps do ‘what if’ analysis on current statements
— How many distinct statements could be replaced by one with
parameter markers?

l " [1

‘ IBM Software Group | Information Management Software

#4: db2perf dynsql

How to use it

Preparation

1. Create the db2perf_quiet_drop utility stored procedure
db2 -td@ —-f db2perf utils.db2

2. Build & define the C user-defined function

cp S$DB2PATH/samples/c/bldrtn . # use bldrtn script from
DB2 samples

bldrtn db2perf udf # compile & copy UDF under
sqllib

db2 connect to <dbname>
db2 -tvf db2perf setupudf.db2 # CREATE FUNCTION for UDF

Use

1. Connect to the desired database
db2 connect to <dbname>

2. Run the CLP script, sending the output to a file
db2 -tf db2perf dynsqgl.db2 -r db2perf_ dynsqgl.out

| 00 NS

‘ IBM Software Group | Information Management Software

#4: db2perf dynsql

How it works

1. Grabs snapshot data from snapshot_dynsqgl table function into
a scratch table db2perf dynsql

2. Adds columns to db2perf_dynsql to store rank within each
metric

CREATE VIEW db2perf dynsqgl_view AS
SELECT * FROM table (snap_get_dyn_sql (CAST (NULL as varchar(256)),-1)) as t;
CREATE TABLE db2perf dynsqgl LIKE db2perf dynsql_view;

INSERT INTO db2perf_ dynsqgl
SELECT * FROM table (snap_get_dyn_sqgl (CAST (NULL as varchar(256)),-1)) as t;

ALTER TABLE db2perf dynsql
ADD COLUMN toplO_elapsed CHAR(2)
ADD COLUMN toplO_CPU CHAR(2)

ADD COLUMN toplO_phys_read CHAR(2

..................... i ..iZ} 1_1.0_10 r,anking of .rhis

New column to contain

=4 S - rea«

ADD COLUMN toplO_s 'CHAR(2) statement by Rows Read
ADD COLUMN toplO_spilled CHAR(2)

‘ IBM Software Group | Information Management Software

#4: db2perf dynsql

How it works, cont'd

3. Queries snapshot table with ORDER BY & FETCH FIRST to find top
S’S)Efgze; 10 statements in each metric

PrINTS OUT ([WSiziAxiedy
the substr (char (row_num),1,2) as "#", "Executions", "Rows read", "% of Total",
metrics "r/r / 100", "Statement"
Clnd The FROM OLD TABLE

. (UPDATE
ranking (SELECT
CAST (num_executions as INTEGER) as "Executions",
2) Row number-() from CAST (rows_read as INTEGER) as "Rows read",
inner SELECT CAST (pct_of_total_rows_read as SMALLINT) as "% of Total",

100 * CAST (round (CAST (rows_read as FLOAT) /
(num_executions+l),0) as INTEGER) as "r/r / 100",

gives us the rank of
each statement
within the result set... ‘row_numbe - (ORD! (rows_
which is then substr(stmt_text, 1 80) as "Statement"

UPDATEd back into RO Gl PRk GRRRGEL .
the ranking column in WHERE rows_read > 0 1) Finds top 10 statements

the base table, so we “ in descending order by this

can use it later - . metric

4. Pulls out all statements from our work table which are “Top 10” for
any metric — chances are that some of them are Top 10 for more than
one metric.

[Puiee

‘ IBM Software Group | Information Management Software

#4: db2perf dynsql

How it works, cont'd
5. For all statements that don’t contain a parameter marker (‘?’),
calls the UDF db2perf RmLiterals to replace numeric and
character literals with parameter markers.

* Counts how many duplicates this makes —i.e., how many
statements with literals could be replaced with a single
statement using parameters markers instead.

db2perf_RmlLiterals()
Trace data before Trace data after

SELECT C3 FROM T WHERE Cl1 = 1 AND C2 = ‘a’ SELECT C3 FROM T WHERE Cl1l = ? AND C2 = ?
SELECT C3 FROM T WHERE Cl = 2 AND C2 = ‘b’ SELECT C3 FROM T WHERE Cl1 = ? AND C2 = ?
SELECT C3 FROM T WHERE Cl1 = 3 AND C2 = ‘c’ SELECT C3 FROM T WHERE Cl1 = ? AND C2 = ?
SELECT C3 FROM T WHERE Cl1 = 4 AND C2 = ‘d’ SELECT C3 FROM T WHERE Cl1 = ? AND C2 = ?
SELECT C3 FROM T WHERE Cl1l = 5 AND C2 = ‘e’ SELECT C3 FROM T WHERE Cl1 = ? AND C2 = ?
SELECT C3 FROM T WHERE C1l = 26 AND C2 = ‘z’ SELECT C3 FROM T WHERE Cl1 = ? AND C2 = ?

(‘[GROUP BY new text, HAVING count > 10]4/

Count Statement

‘ IBM Software Group | Information Management Software

Sample output

#4: db2perf dynsql

Top 10 dynamic SQL statement%WWu

Executions Exec Time % of Total sec / 100 Statement

3|3|l

1 11712
2 117041
9 10800
10 11311

478.286 20
328.792 13
36.042 1
35.859 1

4.083 Select D _NEXT O ID, D _TAX from DIST ..

0.280 Insert into ORDER_LINE values (?, ? .. Hequ

i |
0.333 Select MIN(NO_O_ID) from NEW_ORDER .. thTer.
0.317 Select C_LAST, C_CREDIT, C_DISCOUNT .. #1 n G” 3

of CPU use,

Combined ranking of top dynamic SQL statements

Rank elapsed Rank CPU Rank phys rd Rank R/R Rank sorts Rank sort ovf Statement

physical
reads &
rows read

0

7 2

10 1
6 5

2
2

4 6
GEREREEERERERREEREEE S

Select C ~* C_CREDIT,
Selec

Select Count (Distinct S_I_ID) ..
Update STOCK set S_QUANTITY = °?, ..

Count Statement without literals

iffer only by literal values

We can possibly replace 693 SQL
statements (and PREPAREs !) with
just one statement that uses
parameter markers

LECT C_ID, C_FIRST FROM CUSTOMER WHERE (C_ W ID = ? AND C D ID = ? AND C_LAST = ?) ..

» o0
P oo

‘ IBM Software Group | Information Management Software

#4: db2perf dynsql

Some notes:
» New ‘Top 10’ summaries are easily added
» ‘Top 10’'s are easily changed to ‘Top 20’s, etc.

» UDF in C to remove literals far more natural than doing it
in SQL!

» SELECT from UPDATE & UPDATE through SELECT
made storing & merging the various Top 10 rankings very
simple

» Script drops work table db2perf dynsql at end
» Depends on DB2 v8.2 FP9 for table functions

‘ IBM Software Group | Information Management Software

#5: db2perf locktree

db2perf_locktree:

» Provides a (crude) graphical tree view of in-flight lock wait
relationships between DB2 connections, based on the
snapshot_lockwait table function

» Helps visualize the locking dependencies between
applications

Implementation:
Recursive SQL/PL stored procedure

‘ IBM Software Group | Information Management Software

#5: db2perf locktree

Why use i1?

» A tree is the natural representation of lock waits in a busy
system

» The tool provides easy visualization of lock wait
relationships

* Includes information joined from other snapshots, e.g.
application name

» Much quicker than pen-and-paper translation of lock
snapshot data into a diagram

* Repeated calls to show evolving lock wait states are trivial to
obtain!

‘ IBM Software Group | Information Management Software

#5: db2perf locktree

How to use it:

Preparation
1. GConnect to the desired database

db2 connect to <dbname>

2. Create the stored procedures
db2 -td@ -f db2perf utils.db2

db2 -td@ -f db2perf_ locktree.db2
Use
1. Connect to the desired database

db2 connect to <dbname>

2. Call the stored procedure to capture the state of lock wait
relationships at that moment
$ db2 “call db2perf locktree()”

3. Examine the lock relationships in the result set returned from
db2perf locktree

/2. 00 <

‘ IBM Software Group | Information Management Software

#5: db2perf locktree

How it works:

1. Grabs lock wait snapshot data from snapshot_lockwait table
function into a scratch table db2perf lockwait

2. Finds lock waits at the ‘root’ — where the lock holder is not waiting
on another lock. Starts with these as the ‘roots’ of our trees

3. Recursively processes each instance of lock wait as follows
a) Draws a line to it from its ‘parent’ lock wait, if one exists (ie, if the
owner of the lock we want is waiting on someone else...)

b) Writes detalls about this lock to our ‘report’ table db2perf_locktree

* holder / waiter application ids
* lock type
* lock wait time, etc.

c) Recursively calls db2perf 1locktree for each of the applications
waiting on the ‘parent’

4. Opens a cursor to return a result set with the lock tree

Sample output

IBM Software Group

| Information Management Software

Lock object type:
Lock mode
Lock wait time (ms):
Lock escallation:

Waiter appl handle:
| Holder appl handle:

Table name:

Waiter appl handle:

547 (getlock)
584 (getlock)
Row
. Intention Exclusive Lock
231451
N
SREES.T
540 (getlock)
Holder appl handle: 547 (getlock)
Row

Lock object type:
Lock mode
Lock wait time (ms):
Lock escallation:

Table name:

: Intention Exclusive Lock

229446

N

SREES.U

Waiter appl handle: 552 (getlock)

Holder appl handle: 540 (getlock)
Lock object type: Row
Lock mode requested: Intention Exclusive Lock
Lock wait time (ms): 215371

Lock escallation:

Table

name:

N
SREES.V

——————— Waiter appl handle:

Holder
Lock ol

appl handle:
bject type:

Lock mode requested:

Lock w:
Lock e
Table

ait time (ms):
scallation:
name:

——————— Waiter appl handle:

Holder
Lock ol

appl handle:
bject type:

Lock mode requested:

Lock w:
Lock e
Table

ait time (ms):
scallation:
name:

——————— Waiter appl handle:

Holder
Lock ol

appl handle:
bject type:

Lock mode requested:

Lock w:
Lock e
Table

ait time (ms):
scallation:
name:

——————— Waiter appl handle:

Holder
Lock ol

appl handle:
bject type:

Lock mode requested:

Lock w:
Lock e
Table

--——---Waiter appl handle:
Holder appl handle:
Lock object type:

Lock mode requested:

|
|
|
|
|
|
+

ait time (ms):
scallation:
name:

604 (getlock)
552 (getlock)
Row

Intention Exclusive Lock
44941

N

SREES.W

606 (getlock)
552 (getlock)

Row

Intention Exclusive Lock
46951

N

SREES.W

556
552
Row
Intention Exclusive Lock
157304

N

SREES.W

(getlock)
(getlock)

562
552
Row
Intention Exclusive Lock

(getlock)
(getlock)

209336
N
SREES.W

566 (get
562 (get
Row

Intention Exclus

Lock wait time (ms): 143217
Lock escallation: N
Table name: SREES.X
~-—----Waiter appl handle: 598
| Holder appl handle: 566
Lock object type: Row
Lock mode requested: Intentios
Lock wait time (ms): 141204
Lock escallation: N
Table name: SREES.Y

N
SREES .U

Lock escalation:

Table name: AppliCClTIOI‘I name

552
540

Row

Intention Exclusive Lock
215371

N

SREES .V

handle:

Holder appl handle:
Lock object type:
Lock mode requested:
Lock wait time (ms):
Lock escalation:
Table name:

Waiter appl
I
I
I
I
|
I
I

604
552

Row

Intention Exclu...
44941

N

SREES . W

| Waiter appl handle:

(getlock)

Holder appl handle: (getlock)
Lock object type:
Lock mode requested:
Lock wait time (ms):
Lock escalation:

Table name:

lock)
lock)

ive Lock

(getlock)
(getlock)

n Exclusive Lock

BT Ty | | ————— Waiter appl handle: 606 (getlock)
Lock object type: Row
Lock mode requested: Intention Exclusive Lock
ook asceitation B Holder appl handle: 55 2 (getlock)
Table name: SREES. Z

g€ 39

‘ IBM Software Group | Information Management Software

#5: db2perf locktree

Some notes:
» Recursive SQL/PL calls are an ideal choice here
* Maximum SQL/PL nesting depth caps length of lockwait
chains we can display at 16
» Like lock snapshot, captures instantaneous picture when it's run,
not cumulative

» Creates tables in the current schema

* scratch tables db2perf 1ockwait, db2perf appl_info
* report table db2perf_locktree

» Note - use ‘order by line’if selecting from
db2perf locktree

» Report is overwritten by each run
» Content of scratch tables are deleted at end of run

Coming up in Part 2

‘ IBM Software Group | Information Management Software

End of Part 1

Ten First 5 sample tools to simplify performance work on DB2!
db2perf_sanity

Configuration sanity check

db2perf_utils

Translate numeric monitor elements to strings

db2perf_bufferpool

Bufferpool snapshot analysis

db2perf_dynsql

Dynamic SQL snhapshot analysis

db2perf_locktree

“Graphical” lockwait display

db2perf_snapdiff

Collect / compare snapshots

db2perf_plandiff

Highlight differences in plans

db2perf _plans

Explain table analysis

db2perf_procevmon

Translate db2evmon output for analysis in DB2

db2perf_evmon

Statement event monitor analysis

Puee

..|IH

IBM Software Group
Session LU30

DB2 Performance Toolbox:

Ten Tools for Faster Systems
Part 2

Steve Rees

srees@ca.ibm.com
[:L:7Y information Management Software

ON DEMAND BUSINESS

‘ IBM Software Group | Information Management Software

Quick Recap of Part 1

Ten First 5 sample tools to simplify performance work on DB2!
db2perf_sanity

Configuration sanity check

db2perf_utils

Translate numeric monitor elements to strings

db2perf_bufferpool

Bufferpool snapshot analysis

db2perf_dynsql

Dynamic SQL snhapshot analysis

db2perf_locktree

“Graphical” lockwait display

‘ IBM Software Group | Information Management Software

-)
|

) > Part 1

>

. J

» Snapshot analysis D

>

) > Part 2
|

‘ IBM Software Group | Information Management Software

#6: db2perf snapdiff

db2perf_snapdiff:

Collects snapshot data into DB2 tables

Compares data from ‘before’ & ‘after’ intervals

One ‘interval’ = the change between two snapshots
Produces a report in table db2perf_snapdiff report
Supports:

Normalization of results to overall system activity
Thresholds (i.e., only report differences over X%)

Currently handles the following snapshot types

>
>

1.

ok

Database Manager)
Database
Tablespace

Tables
Bufferpool

Implementation:

SQL/PL stored procedures

l " [1

Very easy to
extend to other
snapshot types!

‘ IBM Software Group | Information Management Software

#6: db2perf snapdiff

Why use i1?
» Simplifies the process of collecting and tracking snapshot
data over time

* Keeps data organized inside DB2, instead of in ordinary text
files from GET SNAPSHOT
* Exploits DB2’s capabilities for analyzing data
* Automatically identifies snapshot elements which have
changed significantly
» Improves usability of snapshot table functions

* Determines ‘baseline’ values without requiring that counters
be reset to zero

» Implementation is extremely flexible and extendible

* To other snapshot data types
* To other types of time-based data

‘ IBM Software Group | Information Management Software

#6: db2perf snapdiff

How to use it:

Preparation
1. Connect to the desired database
db2 connect to <dbname>
2. Create stored procedures and snapshot storage tables

db2 -td@ -f db2perf utils.db2
db2 -tdQ@ -f db2perf snapdiff.db2

3. Turn on monitoring by default with DFT_MON_xxx database
manager configuration switches

‘ IBM Software Group | Information Management Software

#6: db2perf snapdiff

First, two ways to use snapshots

BP logical reads

1) Alternate RESET
MONITOR and GET
SNAPSHOT to get

the monitor values
for the interval
directly

A

Example: Bufferpool logical read activity

Interval 1

BP logical reads
3\

Interval 2

—A

GET

Reset SNAPSHOT Reset SNAPSHOT
' monitor gives activity
at start of || for just the

monitor gives activity

at start of [l for just the
15t interval 1st interval ‘s 2" interval f#\ 2nd interval

GET

BP logical reads

2) Repeat GET SNAPSHOT
calls, and subtract to find

activity during the interval Interval 2

(db2perf_snapdiff works
this way)

A
Interval 1

Time

SNAPSHOT SNAPSHOT

GET again and GET again and

SNAPSHOT calculate SNAPSHOT calculate
at start of differences at start of differences
1st interval) \since last s/s) | 2" interval) \since last s/s

‘ IBM Software Group | Information Management Software

#6: db2perf snapdiff

How to use db2perf_snapdiff - the basics:

Use
1. Connect to the desired database

db2 connect to <dbname>

2. Call stored procedure — the easy way, with one parameter
db2 “call db2perf snapdiff (<operation>)"”

‘start’ - collect ‘start of interval’ snapshot from table function
Prints usage and store it in one of our tables
syntax if no . , ‘ _ ,
operation is stop - collect ‘end of interval’ snapshot and store
passed in it in snapshot storage table
‘diff’ - compare two rows in the snapshot tables and report
what'’s different
‘list’ - show what snapshot interval data has been
collected

‘delete’ - delete all snapshot interval data from storage tables

| J : . . S
;. " =l

‘ IBM Software Group | Information Management Software

#6: db2perf snapdiff

How to use it - more basics:
Typical sequence of operations:

1. Get the first interval of data

db2 “call db2perf snapdiff(‘start’)”
sleep (30)
db2 “call db2perf snapdiff (‘stop’)”

2. Sometime later, get another interval of data

db2 “call db2perf snapdiff(‘start’)”
sleep (30)
db2 “call db2perf snapdiff (‘stop’)”

3. List the intervals we’ve got
db2 “call db2perf_ snapdiff(‘list’)”
4. Compare the latest 2 intervals
db2 “call db2perf_ snapdiff (‘compare’)”

P00 D

‘ IBM Software Group | Information Management Software

#6: db2perf snapdiff

How to use it - more advanced...
db2 “call db2perf_ snapdiff (

<operation> , <Snap_table _name> ,
<'before’ interval #> , <‘after’ interval #> ,
<normalize to Tx> , <threshold pct>)"

<snap_table_name>
- chooses one snapshot storage table to act on (defaults to all)
< ‘before’ interval>, < ‘after’ interval>
- number of ‘before’ & ‘after’ snapshot intervals to compare
(default to the two most recent intervals)
<normalize>
- Y, “T°, ‘1" means to normalize all data by the number
of transactions executed during the snapshot period (defaults to Y’)
<threshold_pct>

- ‘clip level’ below which we don’t report differences (defaults to 5%)

db2 “call db2perf_ snapdiff (‘compare’, Normalize results to
NULL, 11, 10, 'Y’,5)” number of transactions, and
don't show any differences
NULL or “‘ here smaller than 5%

means compare all Compare data from intervals 10 & 11
snapshot tables

| - o0
= | i ee-

| IBM Software Group | Information Management Software

#6: db2perf snapdiff

How it works - collecting data:

» Our tables contain rows saved from snapshot table functions
when ‘start’ & ‘stop’ are called

db2perf_snapdiff toc

The 'TOC' (table of contents)

) INTERVAL START STOP DBM DB TBS TB BP
fable maps interval numbers 2006-02-27-00.18.04.259134 2006-02-27-00.18.15.695562 Y ¥ ¥ ¥ Y
to start/stop timestamps /zooe ~03-02-22. 02. 49__‘__‘{?95% 2006-03-02-22.02.50.158643 Y Y Y Y Y
We create our first interval by SNAPSHOT TIMESTAMP SORT_HEAP_ALLOCATED
i . 2006-02-27-00.18.04.259134 1000 ...
getting two SnapShOt.S' 2006-02-27-00.18.15.695562 1000 ...
¢ 2 2006-03-02-22.02.19.480432 1000 ...
call db2perf_snapd|ff(Start) % 2006-03-02-22.02.50.158643 1000 ...
. wait a while ..)
Ca” db2perf Snapdlff(StOp) 5/: SNAPSHOT_TIMESTAMP ROWS_READ
~ 2006-02-27-00.18.04.259134 504265 ...
. 2006-02-27-00.18.15.695562 836199 ...
The sometime later, when we i 2006-03-02-22.02.19.480432 4253835 ...
. {77 .w| 2006-03-02-22.02.50.158643 4627251 ...
want to compare DB2 activity
with the first interval, we create Vi
our second interval by gettlng SNAPSHOT TIMESTAMP ROWS_WRITTEN ... TABLE_NAME ...
two more snapshots: 2006-02-27-00.18.04.259134 12460 ... DISTRICT
e/ , é 2006-02-27-00.18.04.259134 124600 ... STOCK
call db2perf_snapdiff(‘start’) 2006-02-27-00.18.15.695562 20574 ... DISTRICT
. : 2006-02-27-00.18.15.695562 205900 ... STOCK
. wait a while ... 2006-03-02-22.02.19.480432 104881 ... DISTRICT
e/ , 2006-03-02-22.02.19.480432 1048906 ... STOCK
call db2perf_snapdiff(StOp) 7 2006-03-02-22.02.50.158643 114106 ... DISTRICT

— B A = 2006-03-02-22.02.50.158643 1140702 ... STOCK

‘ IBM Software Group | Information Management Software

#6: db2perf snapdiff

How it works - comparing:

1. Finds the start/stop times for the intervals to be compared
from the TOC

2. For each snapshot table to be compared

a) Finds the pairs of snapshot rows from this table which have:
— Timestamps matching the ‘before’ & ‘after’ interval times
— Matching ‘key column’ values (if applicable)

For example, rows with the same table name, the same
bufferpool name, etc.

b) For each numeric column in the rows
I. Finds the normalized activity in intervals 1 & 2

(Interval1 'stop') - (Interval 1 ' start') (Interval 2 'stop') - (Interval 2 ' start")

(# transactionsinInterval1 /1000) (# transactionsiniInterval 2 / 1000)

Ii. Calculates the difference between the normalized values for
interval 1 & 2 for this column

. If the change between intervals is greater than the threshold
Write the column name, interval values & difference to the report

Too confusing, you say? Ok, in pictures

‘ IBM Software Group | Information Management Software

db2 call db2perf snapdiff (‘diff’)

db2perf_snapdiff toc

INTERVAL START STOP DBM DB TBS TB BP
1 2006-02-27-00.18.04.259134 2006-02-27-00.18.15.695562 Y Y Y Y Y
2 2006-03-02-22.02.19.480432 2006-03-02-22.02.50.158643 Y Y Y Y Y

2006...259134
2006...695562
2006...480432
2006...158643

db2perf_ snapdbm

All these changes
happen to be below

the default
threshold of 5%

SNAPSHOT TIMESTAMP

POST_THRESHOLD_SORTS ..

2006-02-27-00.18.04.259134
2006-02-27-00.18.15.695562
2006-03-02-22.02.19.480432
2006-03-02-22.02.50.158643

}.
}_

(oo NNl

0-0
(45,654 - 27,657) / 1000

=0

(Interval 1 post thersh sorts / 1k Tx |
\

0-0=
0 change

/i

_————.> 0-0 =0
(253,236 - 232,945) / 1000

Interval 2 post thresh sorts / 1k T}\/'

between
Intervals 1 & 2

db2perf_snapdb

Interval 1 rows read / 1k Tx

(836,199 - 504,265)

=18 443]\

(18,403 — 18,443 =

SNAPSHOT TIMESTAMP ROWS_READ COMMITS . -
—] (45 654 - 27,657) / 1ooo dtoc:ggirggt% ;'rf Tx
2006-02-27-00.18.04.259134 504265 }/2'765'7 - Infervals 1 & 2
2006-02-27-00.18.15.695562 836199 45654 .. Interval 2 rows read / 1k Tx mervais
2006-03-02-22.02.19.480432 42538351 232945 . (4,627,251 - 4,253,835) =18, 403 \(-0-2 %)
2006-03-02-22.02.50.158643 4627251 253236 . (253,236 - 232,945) / 1000 p ~
DISTRICT:
Int. 1 DISTRICT rows written / 1k Tx "
db2perf_snaptb (20,574 — 12,460) - 451 o en
SNAPSHOT TIMESTAMP ROWS_WRITTEN TABLE NAME .. (45,654 - 27,657) / 1000 \ per 1k Tx
2006-02-27-00.18.04.259134 12460 DISTRICT Int. 1 STOCK rows written / 1k Tx increase between
2006-02-27-00.18.04.259134 124600 STOCK (205,900 — 124,600) = 4,517 mteivals 142
2006-02-27-00.18.15.695562 20574 DISTRIST// (45,654 - 27.657) / 1000 \ (0-8%) Y,
2006-02-27-00.18.15.695562 205900 STOCK
2006-03-02-22.02.19.480432 104881 DISTRICT)
2006-03-02-22.02.19.480432 1048906 STOCK §< Int. 1213|1S;)rglc1-ro:1°5‘3’\z’381 wr|tten£515k Tx 4815-(2)4?54 517 =
2006-03-02-22.02.50.158643 114106 DISTRICT — .. (-) = , D=
2006-03-02-22.02.50.158643 1140702 STOCK — .. (253,236 — 232,945) / 1000 ;;?:vl(s%(rltten

Int. 2 STOCK rows written / 1k Tx
= 4,524

(1,140,702 — 1,048,906)
(253,236 — 232,945) / 1000

increase between
intervals 1 & 2
(0.1%)

‘ IBM Software Group | Information Management Software

#6: db2perf snapdiff

Sample output

Here we happen to be
comparing intervals before &
after an index was dropped ...

$ db2 "call db2perf snapdiff ('diff')"

Result set 1

MESSAGE .. many fewer transactions

.. many, many more rows read,
logical data reads, physical
data reads

.. many fewer index reads
etc., efc., etfc.

db2perf snapdiff called at 2006-03-04-22.47.50.316251

Database Snapshot (db2perf snapdb)

*** for > 100% difference
** for > 33%,
* for > 10%

Normalizing to 1K Tx per Interval 40.9 0.1 Eogmmy
**% ROWS_READ 18228.0 412066692.7 9 %
%% POOL_DATA_ L READS 27898.6 10196246.9 4 %
EIEI POOL_DATA_P_READS 1652.4 15433.7 833.9 %
* % POOL_DATA_WRITES 1665.8 0.0 -100.0 %
* POOL_INDEX L_READS 108994.1 73801.2 i 5
2 POOL_INDEX P_READS 96.9 114.4 18.0 %
* % POOL_INDEX WRITES 262.7 0.0 -100.0 %
* %k POOL_READ_TIME 3025.5 4753.0 57.0 %
By POOL_WRITE_TIME 14882.7 0.0 -100.0 %

‘ IBM Software Group | Information Management Software

#6: db2perf snapdiff

Sample output cont'd

Table Snapshot (db2perf snaptb)

Table DISTRICT

Normalizing to 1K Tx per Interval
X ROWS_READ

Table HISTORY

Normalizing to 1K Tx per Interval
&3 ROWS_WRITTEN

Buffer Pool Snapshot (db2perf snapbp)
Bufferpool IBMDEFAULTBP

Normalizing to K Tx per Interval
X POOL_DATA I._READS
X POOL_DATA P_READS
XX POOL_DATA WRITES

. SRR

03/02/2006 03/02/2006
22:42:07 22:50:49
to to
03/02/2006 03/02/2006
22:43:08 22:51:35
40.9 0.1 -99.5 %
1370.9 1180.7 -13.8 %
03/02/2006 03/02/2006
22:42:07 22:50:49
to to
03/02/2006 03/02/2006
22:43:08 22:51:35
40.9 0.1 -99.5 %
428.8 295.1 -31.1 %
03/02/2006 03/02/2006
22:42:07 22:50:49
to to
03/02/2006 03/02/2006
22:43:08 22:51:35
40.9 0.1 -99.5 %
27893.9 10196289.1 36453.8 %
1651.9 15433.7 834.2 %
1663.9 0.0 -100.0 %

‘ IBM Software Group | Information Management Software

#6: db2perf snapdiff

Some notes:

» Easily extended to compare numeric values in other snapshot
tables

...or pretty well any table with a timestamp column!
* Table definitions are derived ‘on the fly’, not built in

» Some snapshot fields don’t make sense to compare,
e.g. instantaneous values like ‘lock list used’, etc.

* Snapdiff supports (hard-coded) ‘ignore lists’ to overlook
columns we’re not interested in

» Depends on DB2 v8.2.2 for snapshot table functions

‘ IBM Software Group | Information Management Software

. 2
|
> > Part 1
>
y
4 ~\

» Plan analysis

) > Part 2

‘ IBM Software Group | Information Management Software

#/7. db2perf plandiff

db2perf_plandiff:

» Examines the contents of the explain tables to identify plan
changes

» Saves time in combing through db2exfmt output, looking for
non-trivial changes

» Useful for ‘bulk comparing’ plans across migrations, system
changes, efc.

Implementation:
Nested SQL/PL stored procedures

‘ IBM Software Group | Information Management Software

#/7. db2perf plandiff

Why use i1?
» Plan changes can have a dramatic change in performance

and they aren’t always easy to predict

* Caused by changes in configuration
* ... by changes in data volume

° ... by changes in DB2 code level

* ... by many other things too

» Comparing plans of individual statements isn't hard, but
searching large sets of plans for changes is tedious &
error-prone

* Costs, filter factors, rows returned, etc. can (and do often)
change even when the plan stays the same
* Straight text comparison of db2expln / db2exfmt output
typically yields many ‘false positives’
» db2perf_plandiff saves time by giving a quick “changed /
didn’t change” indication
* Lets you choose which plans to dig into in more detail

[uiee- .

‘ IBM Software Group | Information Management Software

#/7. db2perf plandiff

How to use it:
Preparation

1.

2.

3.

Connect to the desired database
db2 connect to <dbname>

Create the stored procedures

db2 -td@ -f db2perf utils.db2
db2 -td@ -f db2perf plandiff.db2

Ensure the explain tables exist and are populated

Use

1.

2.

Connect to the desired database
db2 connect to <dbname>

Call the stored procedure to compare all plans with matching
SQL & matching patterns of requester, schema, source name &
section

db2 “call db2perf plandiff (
<requester>, <schema>, <source name>, <section>)"

‘ IBM Software Group | Information Management Software

#/7. db2perf plandiff

How to use it, cont'd:

For example
db2 “call db2perf plandiff (‘SREES’,’'SREES’,’'F00%’,0)"”

compares all pairs of plans in the explain tables where

* Original statement texts match

* Requester and schema are ‘SREES’

* Source name (i.e. package name) starts with ‘FOO’

* Section number is anything (0 is wildcard, as in db2exfmt)

and displays the results

3. If differences are reported, use the contents of
db2perf_plandiff report to determine which statements

to examine with db2exfmt

). 4 OLT IR

‘ IBM Software Group | Information Management Software

#/7. db2perf plandiff

The explain tables

“select w_city from warehouse, district
where w id = d w id and d _id = 5"

explain_instance db2exfmt
Explain

all ...

explain_statement

f

—

Access Plan:

Total Cost:
Query Degree:

451.239
1

Rows
RETURN
(1)

Cost

I/0

|

50
HSJOIN

(2)

451.239
32.7915
/=== D \

explain_operator [
explain_stream %,

explain_object

%)
£
%)
IS
.S
—
&
N
Q
X
<
S
s
S

explain_argument

explain_predicate

FETCH IXSCAN
(3) (5)
431.949 18.5443
31.7915 1
e .

50 50 500
IXSC TABLE: SREES INDEX: SREES
4) WAREHOUSE DIST IDX1
5.04032

0

N 50
INDEX: SREES
WARE_IDX1

| IBM Software Group | Information Management Software

#/. db2perf_ plandiff

db2exfmt wversion

Access Plan:

How it works:
1. Opens a cursor C1 on EXPLAIN_STATEMENT {0 | rotal cost: 25.7601
find rows matching the patterns provided Query Begrest L
Rows
2. Opens another cursor C2 on —
EXPLAIN STATEMENT to find all other rows that Cost
I/0
I

1

a) Match the patterns, and
b) Match the statement text found in C1 : cRPBY
3. For each pair of matching statements SR
a) Generates a ‘signature string’ for each from the " L6970
operators & operands in the explain tables for w 900.254
that statement)
n
n 69.031
- 5.268
: 45(!)127

INDEX: SREES
: NU_ORD_IDX1

db2perf plandiff version
$ db2 “call db2perf_planstring('SREES','2006—02—12—15.46.03.296586','SREgg’,'DELS',l,")”

Value of output parameters TS
Parameter Name : PLAN_STRING
Parameter Value : RETURN(1l)<-Op(2) GRPBY (2)<-Op(3) IXSCAN(3)<-Object (NU_ORD_IDX1) e 64

‘ IBM Software Group | Information Management

How it works, cont'd:

b) Compares the signature strings

Software

#/7. db2perf plandiff

of the two plans

c) Writes the comparison result to db2perf plandiff along

with
— SQL statement text

— Schema name ™
— Package name

— Section number

— Timestamp

for both statements
~ being compared

— Estimated cost in timerons —

4. Opens & return a result set cursor with the plan comparison
results

‘ IBM Software Group | Information Management Software

#/7. db2perf plandiff

Sample output

 Looking for plan changes before & after a slowdown in our system

Plan Package Name Section
Change?
Yes | SREES.DELS 1

| SREES.DELS 1

Timestamp

Cost of SELECT & DELETE on

NEW_ORDER has skyrocketed - check out
plans for these statements in db2exfmt

Cost

(timerons)

2006-...296586
2006-...132561

Yes | SREES.DELS 2
| SREES.DELS 2
|
|
|

No | SREES.DELS 3

SREES .DELS

No apparent change in plan
for UPDATE on ORDERS

2006-

...296586
...132561

...296586
...132561

Report run at 2006-02-12-16.46.20.984718

Compared 90 plan pairs (4 look different,

to length or complexity.

38
28251

51
51

86 look unchanged). Unable to compare 0 plan(s) due

Statement Text

SELECT MIN(no_o_id) INTO :H00009 :HO00010
FROM new order WHERE
no_w_id =:H00001 AND no_d id =
:H00008 WITH RR USE AND KEEP EX
CLUSIVE LOCKS

DELETE FROM new order WHERE no w _id = :HO
0001 AND no d id = :H00008 AN
D no_o_id = :H00009

UPDATE orders SET o _carrier_id = :H00002

WHERE o_id = :H00009 AN
D o w id = :H00001 AND o_d_id = :H00008

« Based on this data, it's worthwhile digging into db2exfmt output,
especially for the DELETE & SELECT statements

' . .‘.l

‘ IBM Software Group | Information Management Software

#/7. db2perf plandiff

Some notes:

» Assumes explain tables exist in current default schema and are
already populated

» Compares statements up to 30,000 characters in length

* Warns when statements are found that are too long / complex to
be compared

» Currently reports all plan comparison results — match or non-
match

» Tip - use more restrictive patterns to reduce scope & improve
runtime

* E.g. ‘PROD%’ instead of just ‘%’

* Highly populated explain tables (especially with many versions of
the same statements) could cause long runtimes for this tool

‘ IBM Software Group | Information Management Software

#8: db2perf_plans

db2perf_plans:

» Mines the explain tables for useful information about SQL
execution plans

* Most expensive statements

— By total cost
— By I/O cost

* Unreferenced indexes

Implementation:
SQL/PL stored procedure

‘ IBM Software Group | Information Management Software

#8: db2perf_plans

Why use i1?

» Explain plans complement runtime information from
snapshots, etc., in search for expensive statements

* Expensive statements identified here are prime
candidates for investigation with db2exfmt
* Are you getting the plan you think you should get?
» Indexes can tend to accumulate over time
* Superfluous indexes still consume storage and have to
be maintained even when they provide no value

* Eliminating unneeded indexes on highly updated
tables can reduce statement cost

* db2perf_plans can provide useful clues as to which
indexes aren’t being used

w00 XY

‘ IBM Software Group | Information Management Software

#8: db2perf_plans

How to use it:
Preparation
1. Connect to the desired database

db2 connect to <dbname>

2. Create the stored procedures

db2 -td@ -f db2perf utils.db2
db2 -td@ -f db2perf plans.db2

3. Ensure the explain tables exist and are populated
Use

1. Connect to the desired database
db2 connect to <dbname>

2. (Call the stored procedure
db2 “call db2perf plans()”

|) o0
0- 100" =

‘ IBM Software Group | Information Management Software

#8: db2perf_plans

How it works:

RETURN is
the
topmost
operator in
the plan;
its IO cost
represents
the whole
plan

1.

Selects the 10 statements from EXPLAIN STATEMENT with the
greatest values for TOTAL_COST

* Write cost & SQL statement to db2perf_plans_report

._Selects the 10 RETURN operators from EXPLAIN OPERATOR

with the greatest 10_cosT

* Join these with EXPLAIN STATEMENT to get the SQL text
* Write cost & SQL statement to db2perf_plans_report

For each table referenced in EXPLAIN OBJECT

* Find all indexes on that table from syscaT. INDEXES

— If anindex is not found in EXPLAIN_ OBJECT, write a message to
db2perf_plans_report

l " [1

‘ IBM Software Group | Information Management Software

#8: db2perf_plans

Sample output

$ db2 "call db2perf plans()"

Result set 1

T ost expensive statements a st
Rank Cost Source Section
1 30035 smeEs.News 6
SELECT i_price, i_name, i_data INTO :H00056 , :HO00055 , :H00043
FROM item WHERE i_id = :H00049
2 7644 SREES . STKS 2

SELECT count (distinct S_I_ID) INTO :H00006 FROM ORDER_LINE, STOCK
WHERE OL_W_ID = :HO00001 AND OL_D_ID = :H00002 AND OL_O_1ID <

Top 10 most expensive statements - I/O cost

Rank Cost Source Section

1 2322 SREES .NEWS 6
SELECT i_price, i_name, i_data INTO :H00056 , :HO00055 , :H00043
FROM item WHERE i_id = :H00049

I 00 3
Plee-

‘ IBM Software Group | Information Management Software

#8: db2perf_plans

Sample output, cont'd

Total I/O
Cost Cost
Rank Rank

1 1
2 2
3 3
4 7
5 6
6 5
7 4
8 8
9
10

9

Comparative ranking by total cost & I/O cost

Statement

SELECT i_price, i_name, i_data INTO :H00056, :H00055, :H00043

SELECT count (distinct S_I_ID) INTO :H00006 FROM ORDER_LINE, STOCK
UPDATE ORDER_LINE SET ol_delivery_d = :H00012 WHERE ol_w_id = :H00001
DECLARE READ_ORDERLINE_CUR CURSOR FOR SELECT ol_i_id, ol_supply w id,

UPDATE stock SET s_quantity = :H00052, s_order_cnt = :HO
UPDATE customer SET c_balance = :H00015, c_delivery cnt =

UPDATE orders SET o_carrier_id = :H00002 WHERE o_id = :H00009 AND
UPDATE customer SET c_datal = :H00039, c_data2 = :H00040

SELECT SUM(ol _amount) INTO :H0001ll FROM order line WHERE ol _w_id =
SELECT s_quantity, s_dist_01, s_dist_02, s_dist_03, s_dist_04, s_dis
DELETE FROM new order WHERE no w _id = :H00001] AND no d id = :H00008

Tables with unreferenced indexes

Table: SREES.HISTORY
HIST 1

Table: SREES.ITEM
ITEM IDX1
ITEM 1

[Guiee- .

‘ IBM Software Group | Information Management Software

#8: db2perf_plans

Some notes:

» db2perf_ plans doesn’t currently ignore duplicate SQL
statements

° It might be reasonable for it to go for the most recent
version of the plan

» There is a huge amount of information about SQL plans in the
explain tables that could be mined!
* Types of joins / scans / etc. used
* Missing statistics

» The fact that indexes are unreferenced in these plans doesn’t
mean that they can necessarily be dropped

* Extra digging will usually be required

‘ IBM Software Group | Information Management Software

- N
[|

> > Part 1

)

J

4 ~\

)

» Event monitor analysis - Part 2
[|

‘ IBM Software Group | Information Management Software

#9: db2perf procevmon

db2perf_procevmon:

» Translates statement event monitor output produced by
‘WRITE TO FILE option and db2evmon into .DEL files to

IMPORT / LOAD back into DB2

* Powerful tools in DB2 to mine this data!

» Creates a table with the same columns / layout as produced
by ‘WRITE TO TABLE Option of CREATE EVENT MONITOR

* Queries built with WRITE TO TABLE event monitor

data in mind will work with tables built by
db2perf_ procevmon

Implementation:
C program

‘ IBM Software Group | Information Management Software

#9: db2perf procevmon

Why use it?

Event monitor data is difficult and cumbersome to analyze one
event at a time
* DB2 is well suited to this task!
— Aggregation
— Filtering
— Time-series analysis
— efc.

but we have to find a way to get the data inside
» The WRITE TO TABLE oOption is the best way, but ...

« WRITE TO FILE is somewhat faster

* Text format is sometimes quite useful
— Initial hands-on review of the data
— Remote data collection

» db2perf_procevmon makes event monitor data collected as
text just as useful as that initially written into a DB2 table

Ouiee

‘ IBM Software Group | Information Management Software

#9: db2perf procevmon

How to use it:

Preparation
1. Compile db2perf_procevmon
UNIX: cc -o db2perf procevmon \
db2perf procevmon.c \

—I S$DB2PATH/include -L $DB2PATH/lib -1 db2
Windows: ¢l db2perf procevmon.c
rem $INCLUDES%, etc., must point to DB2 path

2. Capture statement event monitor output

db2 “create event monitor e for statements
write to file ‘/tmp’”
db2 set event monitor e state=l

execute your workload ...

db2 set event monitor e state=0
db2evmon -path /tmp > db2evmon.out

| 900 N
ﬁhﬂu..w{

‘ IBM Software Group | Information Management Software

#9: db2perf procevmon

How to use it, cont'd:
Use

1. Run db2perf procevmon

db2perf_procevmon <output file from db2evmon>
<DEL file for statements> [<DEL file for subsections> 1

for example

db2perf procevmon db2evmon.out stmt_evt.del

2. Create the tables to hold the statement / subsection data

db2 connect to <dbname>
db2 -tvf db2perf procevmon.db2

3. LOAD /IMPORT the event monitor data into DB2 from the
DEL file(s).

db2 load from <DEL file for statements> of DEL replace into
db2perf_ evmon

db2 load from <DEL file for subsections> of DEL replace into
db2perf_ evmon_subsect

' !) (Y)
Pl oo

‘ IBM Software Group | Information Management Software

How it works:

1. Reads lines from the input file

2. When the beginning of a
statement event is seen

a) Collect values from the
following lines and save them
in an internal structure

It would have been simpler to write things

out as we find them, but we need to change
the order of some fields to match the
WRITE TO TABLE format

b) When a line is seen that is
not expected, dump what we
have to the .DEL output file,
and resume looking for the
next line

3. Similar processing happens
when a subsection event is

seen

1A, 00
4 OLTI

#9: db2perf procevmon

23) Statement Event ...

Appl Handle: 13
Appl Id: *LOCAL.DB2.060226054531
Appl Seq number: 0020

Record is the result of a flush: FALSE

Type : Dynamic

Operation: Open

Section : 214

Creator : NULLID

Package : SQLC2EO06

Consistency Token : AAAAACEU
Package Version ID

Cursor : CLP_CURSOR_4

Cursor was blocking: TRUE

Text : SELECT PARM MODE FROM ...

Start Time: 02/26/2006 00:55:06.286922
Stop Time: 02/26/2006 00:55:06.286962
Exec Time: 0.000040 seconds

Number of Agents created: 1

User CPU: 0.000000 seconds

System CPU: 0.000000 seconds

‘ IBM Software Group | Information Management Software

#9: db2perf_ procevmon

Some notes:

» db2evmon output generally changes a bit from release to
release

* Compatible with v7.x, v8.2, Viper

‘ IBM Software Group | Information Management Software

#10: db2perf_evmon

db2perf_evmon:
» Mines statement event monitor data to identify ‘heavy hitters’

* Top 10 SQL statements (either static or dynamic)
— Execution time
— Physical reads
— Rows read
— Sorts

* COMMIT / ROLLBACK frequencies / times

Implementation:
SQL/PL stored procedure

‘ IBM Software Group | Information Management Software

#10: db2perf_evmon

Why use it?

Statement event monitors provide detailed data that snapshots
only summarize

° Per-execution resource consumptions
Static SQL execution information
COMMIT and ROLLBACK occurrences
Inter- and intra-statement timings

* Trends in execution behavior

» Statement event monitor data is difficult to consume
‘by inspection’
* Proper tooling provides insight into system execution that is very
unlikely to be obtained manually, for example
— Filtering by statement content
— Aggregation of time spent ‘above’ DB2 in the client
— Detection of variance in exectuion times

Ouiee

‘ IBM Software Group | Information Management Software

#10: db2perf_evmon

How to use it:

Preparation

1. Create the stored procedures

db2 -td@ -f db2perf utils.db2
db2 -td@ -f db2perf evmon.db2

Use
1. Connect to the desired database

db2 connect to <dbname>

2. Collect statement event monitor data in DB2

° Either using ‘WRITE TO TABLE’ option, Report the
or WRITE TO FILE' followed by “Top 20
db2perf_procevmon and LOAD statements in
3. Call db2perf_evmon(<tabname> [, <top N>) Aieitel

db2 “call db2perf evmon(‘evmon_tbl’,b 20)"”

‘ IBM Software Group | Information Management Software

#10: db2perf_evmon

How it works:

1. Builds dynamic SQL ‘count (*)’ statements to summarize
overall event monitor data

* # of events
* # of transactions
* COMMIT time

2. For each of our “Top N categories (elapsed time, rows read,
etc.)

a) Builds dynamic SQL SELECT to aggregate the metrics
J . we're after, across all events with matching
ses our utility :
UDFs from SQL text / package / section
db2perf_utilities: — Fetches only the first N aggregations (default to 10)

dbZperf_op2str, — Translates statement type codes, operation codes, etc., to words

db2per'fTr’rypeZSTI‘, €.J. WHERE db2perf op2str (stmt_operation) IN ('PREPARE', 'EXECUTE...
etc.

b) For each aggregate row fetched

If the statement is static, retrieves the SQL text from
SYSCAT .STATEMENTS

| / [X
0- .."" =3

‘ IBM Software Group | Information Management Software

Sample output

#10: db2perf_evmon

$ db2 "call db2perf evmon(‘e_stmt_static’,5)"

Statistics on event monitor table e stmt view

Number of events:............ 189798

Number of connections:....... 21

Number of transactions:...... 5580

Number of rollbacks:......... 0

Start / stop timestamps:..... 2006...-15.06.23.9

Top 5 statements by elapsed time

Elapsed Package Section # Events CPU
15.7 PAYS 2 2717
5.7 SYSSN400 58 8856

Top 5 statements by total physical reads

Physical
Reads Package Section # Events Type
5028 NEWS 7 14442 STATIC
954 SYSSN400 58 8856 DYNAMIC

Top 5 statements by rows read / written

Top 5 statements by sort time

75777 to .—15.16.20.279026 (956.3 seconds)
Time Type Statement
0.000 STATIC DECLARE Cl CURSOR FOR SELECT

0.000 DYNAMIC Select S_QUANTITY, S_DIST 01,

Statement
SELECT s_quantity, s_dist_01, s_dist_02,
Select S_QUANTITY, S DIST 01, S_DIST 02,

‘ IBM Software Group | Information Management Software

#10: db2perf_evmon

Some notes:

» Aggregated CPU times are often zero on some platforms due to
minimum 10ms resolution supplied by the operating system

» Opportunity to extend this to exploit time series relationships

* Time spent in the client
* Synchronization / ordering of SQL statements
* ‘Pauses’ in execution

‘ IBM Software Group | Information Management Software

Summary

Ten sample tools to simplify performance work on DB2!
db2perf_sanity

Configuration sanity check

db2perf_utils

Translate numeric monitor elements to strings

db2perf_bufferpool

Bufferpool snapshot analysis

db2perf_dynsql

Dynamic SQL snhapshot analysis

db2perf_locktree

“Graphical” lockwait display

db2perf_snapdiff

Collect / compare snapshots

db2perf_plandiff

Highlight differences in plans

db2perf plans

Explain table analysis

db2perf_procevmon

Translate db2evmon output for import into DB2

db2perf_evmon

Statement event monitor analysis

Puee-

‘ IBM Software Group | Information Management Software

Summary

= Source-based & easily extendible

= Many best practices built in, e.g.
» Basic configuration guidelines in db2perf_sanity

» Bufferpool hotspots in db2perf bufferpool
» Places to use parameter markers in db2perf_dynsq|
» Finding unused indexes in db2perf_plans

= Many tasks made easier, e.g.
» Understanding lock wait dependencies in db2perf_lockiree
» Finding plan differences in db2perf_plandiff
» Finding changes in snapshot data in db2perf_snapdiff
» Simulating ‘static SQL snapshot’ in db2perf _evmon

= Many great technologies demonstrated, e.qg.
» SQL/PL programming, nested & recursive calls, result sets

» Advanced SQL — SELECT from INSERT, etc.
» Information in the explain tables

‘ IBM Software Group | Information Management Software

| like these — where do | get support?

= There is none — these are unsupported, as-is samples
...to show you what monitoring data DB2 can produce

...to show you how this data can be a great benefit to your system
...to show you how to use DB2 monitoring interfaces

...to show you how to use various DB2 technologies, such as SQL/PL stored
procedures, and INSERT over SELECT, etc.

= You are welcome to use these, to study them, to modify them, etc.
(subject to the usual legal terms in license.txt)

= For comprehensive, robust, fully-supported, enterprise-level
performance monitoring, there are many tools on the market, such as
DB2 Performance Expert, that work extremely well with DB2, and
which implement many of the features shown in these samples.

‘ IBM Software Group | Information Management Software

DB2 Performance Toolbox: Ten Sample Tools for Faster Systems

Steve Rees
IBM Canada Laboratory
srees@ca.ibm.com

