

. ’ PRELIMINARY
intal.

Intel486™ DX
MICROPROCESSOR

m Binary Compatible with Large m 168-Pin Grid Array Package
Software Base m High Performance Design
— MS-DOS*, 08/2*, Windows —RISC Integer Core with Frequent
— UNIX*** System V/386 Instructions Executing in One Clock
—IiRMX®, iRMK™ Kernels — 25 MHz, 33 MHz, and 50 MHz Clock
m High Integration Enables On-Chip — 80, 106, 160 Mbyte/sec Burst Bus
— 8 Kbyte Code and Data Cache — CHMOS IV and CHMOS V Process
— Floating Point Unit Technology
— Paged, Virtual Memory Management — Dynamic Bus Sizing for 8-, 16-, and
m Easy To Use 32-Bit Busses
— Built-In Self Test m Complete 32-Bit Architecture
— Hardware Debugging Support - Address and Data Busses
— Intel Software Support — Registers
— Extensive Third Party Software — 8-, 16- and 32-Bit Data Types
Support m Multiprocessor Support
® |EEE 1149.1 Boundary Scan — Multiprocessor Instructions
Compatibility — Cache Consistency Protocols
— Available on 50 MHz Version Only — Support for Second Level Cache
H Upgradable to Intel OverDrive™
Processor

The Intel486 CPU offers the highest performance for DOS, OS/2, Windows, and UNIX System V/386 applica-
tions. It is 100% binary compatible with the Intel386™ CPU. Over one million transistors integrate the RISC
integer core, 8 Kbyte cache memory, floating point hardware, and memory management on-chip while retain-
.ing binary compatibility with previous members of the Intel386/Intel486 architectural family. The RISC integer
core executes frequently-used instructions in one cycle, providing leadership performance levels. An 8 Kbyte
unified code and data cache allow the high performance levels to be sustained. A 160 MByte/sec burst bus at
50 MHz ensures high system throughput even with inexpensive DRAMs.

Intel486™ Microprocessor Pipelined 32-Bit Microarchitecture

64 Bit Interunit Transfer Bus

32-bit Data Bus 7
] 32
32-blt Data Bus /
/32
Uineor Address Bus
+
Z 32 4t Bus Interface ;é)—:s e
Segmentation Pagin, PCD, PWT -
garrel stifer | Sase/ i g i—— cache unit ¢ = M Address Drivers |qemmemm—p
Bus - : R
4 . Write Buffe
Regintr Flle [/ N Registers i 8K Byte = Tt
ysical Cache
Limit and Translation Address D0-D31
ALY Attribute Lookaside Data Bus .
PLA Buffer - ADS# W/R# D/C#
= 52 M/10# PCD,PWT
+* ueﬁ RDY# LOCK# PLOCK#
A Bus Control BOFF# A20M# BREQ
— £ Request Sequencer nﬁ'}n,‘u,:]m RESET
Displacement Bus [_ Prefetcher FERR# IGNNE#
Ditpcoment B2
micro-Instruction 32
v y L 4 sf:’;m 32 %{}:uf”‘ Burst Bus Control | BROY# BLAST#
Floating Control and [L 2x 168, —>
N
:? Polnt on Test 724 x 16 Byte: Bus Size Control BS16# BSB#
Unit Unit N Decode f—
Decoded KEN# FLUSH#
Instruction Cache Control AHOLD, EADS#
F.P. Register Control Path ol f——
File Ry |Pth —— — leccccacaanaa POHKE
Parity Generation DPO-DP3
and Control —b
oK
Boundary Scan
Control — ThS
(50 MHz only) LS
240440-1

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. October 1992
© INTEL CORPORATION, 1992 Order Number: 240440-005

intgl. Intel486™ DX MICROPROCESSOR PRELIMINARY

New features enhance multiprocessing systems; new instructions speed manipulation of memory-based sem-
aphores; and on-chip hardware ensures cache consistency and provides hooks for multilevel caches.

The built-in self-test extensively tests on-chip logic, cache memory, and the on-chip paging translation cache.
Debug features include breakpoint traps on code execution and data accesses.

The Intel OverDrive Processor provides optional overall performance upgrade capability for users who want to
increase their system performance up to 70% on DOS, Windows, OS/2 and Unix applications.

iRMX, iRMK, Intel386, Intel387, Intel486, i486, OverDrive, and OverDrive Ready are trademarks of Intel Corporation.
*MS-DOS® and Windows are registered trademarks of Microsoft Corporation.
**0S/2™ is a trademark of International Business Machines Corporation.
***UNIX™ is a trademark of UNIX Systems Laboratories.

2

Intel486™ MICROPROCESSOR

CONTENTS PAGE
1.0 TABLE OF CONTENTS 3
Pinout ... 7
Quick Pin Reference 12
Component and RevisionID 17
2.0 ARCHITECTURAL OVERVIEW 18
21 RegisterSetoiiill 18
2.1.1 Base Architecture
Registerscooiiiil 19
2.1.2 System Level Registers 23
2.1.3 Floating Point Registers 27
2.1.4 Debug and Test Registers 34
2.1.5 Register Accessibility 34
2.1.6 Compatibility 35
2.2InstructionSet 36
2.3 Memory Organization 36
2.3.1 Address Spaces 36
2.3.2 Segment Register Usage 37
241/08pacecooviiiiiiiii i 37
2.5 AddressingModes 38
2.5.1 Addressing Modes
Overviewcovvveninenn.n. 38
2.5.2 Register and Immediate
Modescovvvenviniiiiinnnn.. 38
2.5.3 32-Bit Memory Addressing
Modesoovviiiiiiiiiiin 38
2.5.4 Differences between 16- and
32-Bit Addresses 40
26DataFormats 40
26.1DataTypes0 40
2.6.2 Little Endian vs Big Endian
DataFormats 44
27Interrupts ...l 44
2.7.1 Interrupts and Exceptions 44
2.7.2 Interrupt Processing 44
2.7.3 Maskable Interrupt 45
2.7.4 Non-Maskable Interrupt 46
2.7.5 Software Interrupts 46
2.7.6 Interrupt and Exception
Priorities ...t 46
2.7.7 Instruction Restart 47

CONTENTS PAGE
2.78DoubleFault................... 47
2.7.9 Floating Point Interrupt

Vectorscoevivivininiinn, 47

3.0 REAL MODE ARCHITECTURE 49

3.1 Real Mode Introduction 49
3.2 Memory Addressing 49
3.3 Reserved Locations 50
34 Interrupts PUUTTR 50
3.5ShutdownandHalt 50
4.0 PROTECTED MODE
ARCHITECTURE 51
4.1 Introductionooll 51
4.2 Addressing Mechanism 51
4.3 SegmentationL 52
4.3.1 Segmentation Introduction 52
43.2Terminology 52
4.3.3 Descriptor Tables 52
4.3.4Descriptorsocieiiin 54
4.4 Protection ...l 62
4.4.1 Protection Concepts 62
4.4.2 Rules of Privilege 63
4.4.3 Privilege Levels 63
4.4.4 Privilege Level Transfers 64
445CallGatescooiunn 67
4.4.6 Task Switching 67
4.4.7 Initialization and Transition to
ProtectedMode 68
4.4.8 Tools for Building Protected
Systems ..ot 69
45Pagingiiiiiiiiiiiiiaaa 69
4.5.1 Paging Concepts 69
4.5.2 Paging Organization 70
4.5.3 Page Level Protection
(R/W,U/SBIitS)ccovvnenn.n. 71
4.5.4 Page Cacheability
(PWT,PCDBItS)c.ennt.. 72
4.5.5 Translation Lookaside
Buffer ..., 72
4.5.6 Paging Operation 73
4.5.7 Operating System

Responsibilities 74

CONTENTS PAGE
4.6 Virtual 8086 Environment 74
4.6.1 Executing 8086 Programs 74
4.6.2 Virtual 8086 Addressing
Mechanism 74
4.6.3 Paging in Virtual Mode 74
4.6.4 Protection and Virtual 8086
Mode to I/0 Permission
Bitmapcoiiiiiiiiiin... 75
4.6.5 Interrupt Handling 76
4.6.6 Entering and Leaving Virtual
8086Modeoiinnn.n. 77
5.0 ON-CHIPCACHE 80
5.1 Cache Organization 80
5.2CacheControl 81
5.3 CachelLineFills 81
5.4 Cache Line Invalidations 82
5.5 Cache Replacement 82
5.6 Page Cacheability 83
5.7 CacheFlushing 84
5.8 Caching Translation Lookaside
BufferEntriesooou.l 84
6.0 HARDWARE INTERFACE 85
6.1 Introduction 85
6.2 Signal Descriptions 86
6.2.1 Clock (CLK)cceentn.. 86
6.2.2 Address Bus
(A31-A2, BEO#-BE3#) 86
6.2.3 Data Lines (D31-D0) 87
6.24 Parityocoiiiiin, 87
Data Parity Input/Outputs
(DPO-DP3)cvvviiinennnnn. 87
Parity Status Output
(PCHK#) v 87
6.2.5 Bus Cycle Definition 87
M/10#,D/C#,W/R#
Outputsccoeviiiiiinen... 87
Bus Lock Output
(LOCK#) ..ot 87
Pseudo-Lock Output
(PLOCK#) vivviiiiiiiiiiaenennn, 88

CONTENTS

PAGE
6.2.6 BusControl 88
Address Status Output
(ADS#) v 88
Non-Burst Ready Input
(RDY#) oveieii i 88
6.2.7 BurstControl 88
Burst Ready Input
(BRDY#) ©vvvriiiiiiiiaeannnn, 88
Burst Last Output
(BLAST#) ..ooviiiiiiiiineenne 89
6.2.8 Interrupt Signals 89
Reset Input (RESET) 89
Maskable Interrupt Request
Input INTR)ooiiiat.. 89
Non-Maskable Interrupt
Request Input (NMI) 89
6.2.9 Bus Arbitration Signals 89
Bus Request Output
(BREQ)covvvviiiiiiniennnn, 89
Bus Hold Request Input
(HOLD) ..oovviiiieiiiiieeanns 89
Bus Hold Acknowledge
Output (HLDA) ..ot 90
Backoff Input (BOFF#) 90
6.2.10 Cache Invalidation 90
Address Hold Request Input
(AHOLD) ..covviiiiiiiiieeeens 90
External Address Valid Input
(EADS#) ..o 90
6.2.11 Cache Control 91
Cache Enable Input
(KEN#) oo 91
Cache Flush Input
(FLUSH#)coiviiiiaaan... 91
6.2.12 Page Cacheability Outputs
(PWT,PCD)ovvviiininnen. 91
6.2.13 Numeric Error Reporting 91
Floating Point Error Output
(FERR#) ..cviiiiiiiininan.. 91
Ignore Numeric Error Input
(IGNNE#) ...c.covivviiiiinnnn... 92
6.2.14 Bus Size Control
(BS16#,BS8#)euvennn.. 92

CONTENTS PAGE
6.2.15 Address Bit 20 Mask
(A20M#) ... 92
6.2.16 Boundary Scan Test
Signals e, 92
Test Clock (TCK) 92
Test Mode Select (TMS) 92
Test Data Input (TDI) 93
Test Data Output (TDO) 93
6.3 Write Buffers 93
6.3.1 Write Buffers and I/0
Cyclesovviviiiiiiiiii 94
6.3.2 Write Buffers Implications on
Locked BusCycles 94
6.4 Interrupt and Non-Maskable
Interrupt Interface 94
6.4.1 Interrupt Logic 94
6.42NMILogicvvvviiiinnnn 95
6.5 Reset and Initialization 95
6.5.1 Pin State during Reset 96
7.0 BUS OPERATION 98
7.1 Data Transfer Mechanism 98
7.1.1 Memory and 1/0 Spaces 98
7.1.2 Memory and 1/0 Space
Organization 99
7.1.3 Dynamic Data Bus Sizing 100
7.1.4 Interfacing with 8-, 16- and
32-bit Memories 101
7.1.5 Dynamic Bus Sizing during
Cache LineFills.................. 103
7.1.6 Operand Alignment 103
7.2 Bus Functional Description 104
7.2.1 Non-Cacheable Non-Burst
SingleCycleoco..... 104
7.2.2 Multiple and Burst Cycle Bus
Transferscoovieiininnn, 105
7.2.3 Cacheable Cycles 109
7.2.4 Burst Mode Details 112
7.25 8-and 16-BitCycles 116
7.2.6 LockedCycles 118
7.2.7 Pseudo-Locked Cycles 119
7.2.8 Invalidate Cycles 119
729 BusHold 123
7.2.10 Interrupt Acknowledge 123

CONTENTS PAGE
7.2.11 Special Bus Cycles 125
7.212Bus Cycle Restart 126
7.213BusStates 127
7.2.14 Floating Point Error

Handlingc.cooviennae. 128
7.2.15 Floating Point Error Handling
in AT Compatible Systems 128
8.0 TESTABILITYcooeiaan. 130
8.1 Built-In Self Test (BIST) 130
8.2 On-Chip Cache Testing 130
8.2.1 Cache Testing Registers TR3,
TR4andTR5 131
Cache Data Test Register:
TR i 131
Cache Status Test Register:
TR4 .. 131
Cache Control Test Register:
TR5 e 131
8.2.2 Cache Testability Write 131
8.2.3 Cache Testability Read 133
8.24FlushCache 133
8.3 Translation Lookaside Buffer (TLB)
Testingcooovvviiiiiin, 133
8.3.1 Translation Lookaside Buffer
Organization 133
8.3.2 TLB Test Registers: TR6 and
T e 134
Command Test Register: TR6 ... 135
Data Test Register: TR7 135
8.3.3TLBWriteTest 136
8.3.4TLB Lookup Test 136
8.4 Tristate Output TestMode 136
8.5 Intel486™ Microprocessor
Boundary Scan (JTAG) 136
8.5.1 Boundary Scan
Architecture 137
8.5.2 Data Registers 137
8.5.3 Instruction Register 138
8.5.4 Test Access Port (TAP)
Controllerc.ooevene... 140
8.5.5 Boundary Scan Register
Cell o 142

8.5.6 TAP Controller Initialization ... 143

8.5.7 Boundary Scan Description
Language (BSDL) 143

CONTENTS PAGE
9.0 DEBUGGING SUPPORT 144
9.1 Breakpoint Instructions 144
9.2 Single Step Instructions 144
9.3 Debug Registers 144
9.3.1 Linear Address Breakpoint
Registersconll 144
9.3.2 Debug Control Register 144
9.3.3 Debug Status Register 147
9.3.4 Use of Resume Flag (RF) in
FlagRegister 147
10.0 INSTRUCTION SET SUMMARY 148
10.1 Intel486™ Microprocessor
Instruction Encoding and Clock
CountSummary 148
10.2 Instruction Encoding 167
10.2.10verviewcoovene 167
10.2.2 32-Bit Extensions of the
InstructionSet 168
10.2.3 Encoding of Integer
Instruction Fields 168
10.2.4 Encoding of Floating Point
Instruction Fields 174
11.0 DIFFERENCES WITH THE 386™™
MICROPROCESSOR 175
12.0 OVERDRIVE PROCESSOR
SOCKEToiiiiiiiiiiiiinennes 176
12.1 OverDrive Processor Overview ... 176
12.1.1 Hardware Interface 176
12.1.2 Testability 177
12.1.3 Instruction Set Summary 177
12.2 Intel OverDrive Processor Circuit
Designccocviiviiiiiiiinnn, 179
12.2.1 Upgrade Circuit for PGA
Intel486 DX Based Systems 179
12.3 Socket Layout 179
12.3.1 Physical Dimensions 179
12.3.2 “End User Easy”
Upgradability 184
12.3.3 ZIF and LIF Socket
Vendorsc.coviiiiinnnt. 185

CONTENTS PAGE
12.4 Thermal Management 184
12.4.1 Thermal Calculations for
Hypothetical System 184
12.4.2 OverDrive Heat Sinks 185
12.5 BIOS and Software 185
12.5.1 Intel OverDrive Processor
Detection 185
12.5.2 Timing Dependent Loops 186
12.6 OverDrive Processor Socket
Pinoutiiiill 187
12.7 D.C./A.C. Specifications 190
13.0 ELECTRICAL DATA 191
13.1 Power and Grounding 191
13.2 Maximum Ratings 191
13.3 D.C. Specifications 192
13.4 A.C. Specifications 193
13.5 Designing for ICD-486 203
14.0 MECHANICALDATA 207
14.1 Package Thermal
Specifications 208
15.0 LOW POWER INTEL486™ DX
MICROPROCESSOR 210
15.1 Introduction 210
16.2Pinout ...l 212
15.3 Pin Cross Reference
(Intel486™ DX CPU) 214
15.4 Pin Description 214
15.5 Signal Description 215
15.6 Architecture Overview 218
15.7 Variable CPU Frequency 218
15.8 D.C./A.C. Specifications 220
15.8.1 D.C. Specifications 220
15.8.2 Power Supply Current vs
Frequencycooent 221
15.8.3 A.C. Specifications 221
16.0 SUGGESTED SOURCES FOR
Intel486™ ACCESSORIES 224
17.0 REVISION HISTORY 225
APPENDIX Aoiiiiiiiiiinnt A-1

E

Intel486™ DX MICROPROCESSOR PRELIMINARY

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

»> ™ O U M M @ I « X rmr X Z TUW O 3/ W

A27 A26 A23 NC A14 VSS A12 VSS VSS VSS VSS VSS A10 VSS A6 A4 ADS#

o o o) o o [e] [e] [0} o (o] o o o (e] o o o S
A28 A25 VCC VSS A18 VCC A15 VCC VCC VCC VCC A1l A8 VCC A3 BLAST# NC

o o) o o o o [¢] o (o] o o o o o (o} o R
A31 VSS A17 A19 A21 A24 A22 A20 A16 A13 A9 A5 A7 A2 BREQ PLOCK# PCHK#

(@] [e] [e) o o (¢] (o) (o) [e] o [e) [¢] (o] [e] (o] (o] o Q
DO A29 A30 HLDA VCC Vss

o o o o o (e] P
D2 D1 DPO LOCK# M/10# W/Re

[e] [e] o [e) [e] o N
vss vec D4 D/C# VCC VSS

o [e] o o o (¢] M
vss D6 D7 PWT vCC VSS

o} [¢] o o o (o] L
VSS VeC D14 BEO# VCC VSS

o o o Intel486™ MICROPROCESSOR o o o K
vee b5 ois 25 MHz AND 33 MHz VERSIONS BE2# BET® - PCD J
o [e] [¢) (e] o o

vss' D3 DP2 PIN SIDE VIEW BROY# VCC VSS

o (e] [e) [e] (o) o H
vss vce D12 NC VCC Vss

(o] (@] [e] o o o G
OP1 D8 D15 KEN# RDY# BE3#

o [e] o o o (e] F
VSS veC DIO HOLD VvCC VSS

o [e] o (o] [e] o E
D9 D13 D17 A20M# BSB# BOFF#

o [¢] [¢] o (o] (¢] D
Di1 D18 CLK VCC VCC D27 D26 D28 D30 NC NC NC NC FERR® FLUSH# RESET BS16#

) o o o o] [e] o o o o (o] o o [e] (¢] [e] (o] ¢
D19 D21 VSS VSS VSS D25 VCC D31 VCC NC VCC NC NC NC NMI NC EADS#

(o} (e] o o] o O (o) O [¢) [0} [e] (o] o (e} (e] [e] o B
D20 D22 NC D23 DP3 D24 VSS D29 VSS NC VSS NC NC NC IGNNE# INTR AHOLD A

\ooooooooooooooooo

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
240440-2

Figure 1.1

intgl. Intel486™ DX MICROPROCESSOR PRELIMINARY

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

S ADS# A4 A6 VA A10 VSS vss VA VvssS VA Al12 VSss At4 NC A23 A26 A27 S
(o] (e} (o] (o] (o] e}] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o]

R NC BLAST# A3 vce A8 A1l vce vcc vce vce A15 vce A18 VvSsS vee A25 A28 R
o o] (o] (o] (o] (o] (o] (o] (o] (o) o] (o] (o] [} (o] o (o]

Q PCHK# PLOCK# BREQ A2 A7 AS A9 A13 A16 A20 A22 A24 A21 A19 A17 VA A31 Q
(o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] o] (o] (o] (o] o (o]

P VSS VCC HLDA A30 A29 Do P
(o] (o] (o] (o] (o] (o]

N W/R# M/I0# LOCK# DPO DI D2 N
(o] (o] (o] o] (o] (o]
VA vee D/ C# D4 vcc VSss

M o] (o] o] (o] (o] (o] M

L VA vce PWT D7 D6 VSS L
(o] (o] (o} (o] (o] (o]
VSsS vce BEO# D14 vce VSsS

K o o o Intel486™ MICROPROCESSOR o o o K

J PCD BE1# BE2# 25 MHz AND 33 MHz VERSIONS p16 D5 Ve J
o] (o] (o] O (o] o]

H VSs VCC BRDY# TOP SIDE VIEW DP2 D3 VvSssS H
(0] [e) (o] o (o] o)
VvSs vcc NC D12 vcc VSS

G (o] o] (o] (o] (o] o] G

F BE3# RDY# KEN# D15 D8 DP1 F
' (o] o] (o] (o] o (o]

E Vss VCC HOLD Dio vcc VSssS E
(@] (@] [e] 0] (o] o

D BOFF# BS8# A20M# D17 D13 D9 D
(o] (o] o [e] (o] (o]

C BS16# RESET FLUSH# FERR# NC NC NC NC D30 D28 D26 D27 vce vce CLK D18 D11 C
(e} o] (o] [e] (e} (o] (o] (o] (o] (o] o o [e] (o] (o] (o] o]

B EADS# NC NMI NC NC NC vce NC vce D31 vce D25 VSsS VSsS VsS D21 D19 B
(] (o] (o] (e} (e} (o] (o] (o] (o] (o] (o] (e} (o] (o] (o] (@] [e]

A AHOLD INTR IGNNE# NC NC NC VSS NC VSS D29 VSsS D24 DP3 D23 NC D22 D20 A

o o o o o o 0o o o o o o o o o o c/
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
240440-3

Figure 1.2

Iintel486™ DX MICROPROCESSOR

PRELIMINARY

O O 00 N o Uu ~ NN

—_ N — — - —_ - -
~N (o2} (3] o~ (&) N —_

A B €C D E F 6 H J K L M N P Q R S
/ D20 D19 D11 D9 VSs DP1 Vvss VSS vce VSsS VvSsS VSss D2 DO A3l A28 A27 1
O O 0O O OOOO OO OO O 0O O O ©o
D22 D21 D18 D13 vCcC]} vce D3 D5 vce D6 vce D1 A29 VSS A25 A26 2
O O O O OOOO O OO OO O O o0 o
TCK VSs CLK D17 D10 D15 D12 DP2 D16 D14 D7 D4 DPO A30 A17 vCC A23 3
O O 0O O O OOO OO OO O O O O ©o
D23 VSssS vce A19 VSS NC 4
O O O O O O
DP3 VSsS vce A21 A18 A14 5
O O O O O O©
D24 D25 D27 A24 VCC VSS 6
O O O O O O
VSsS vce D26 A22 A1S A12 7
O O O O O ©
D29 D31 D28 A20 VCcC VSS 8
O O o ™ O O O
vss v b30 Intel486'™ MICROPROCESSOR s vee vss | g
O O O 50 MHz VERSION o O O
NC NC NC A3 vee vss |10
5 6 & PIN SIDE VIEW S 6 o
VSS vcC NC A9 vee vss |11
O O O O O O
NC NC NC A5 A11 vss | 12
O O O O O O
NC NC NC A7 A8 A10 |13
O 0 O© O O o
TDI TMS FERR# A2 vec vss | 14
O O O O O O
IGNNE# NMI FLUSH# A20M# HOLD KEN# NC BRDY# BE2# BEO# PWT D/C# LOCK# HLDA BREQ A3 A6 1 5
O 0O 0O O OO OOO OO O O O O O ©
INTR TDO RESET BS8# VCC RDY# VCC VCC BE1# VCC vcc vce M/ |10# VCC PLOCK# BLAST# A4 1 6
O 0O OO OOOO OO O O O O O O o
AHOLD EADS# BS16# BOFF# VSS BE3# VSS VSS PCD VSsS VSsS VSS W/R# VSS PCHK# NC ADS# 17
O 0O O OOOOOO O O O 0O O O O o
A B €C D E F 6 H J K L M N P Q R S
240440-85

Figure 1.3

PRELIMINARY

Intel486™ DX MICROPROCESSOR

Figure 1.4

10

o -~ N mn (7e] ~
- N mn ~ [+ o] 2} ~— -— - ~— ~— -~ g
2 e 2
Ao g0 2 20 %0 %0 20 %0 20 o0 £o g0 <
- [\]
20 50 8 80 20 80 20 80 20 50 80 %0 |m
® - *
z0 z0 g 80 80 80 20 20 g0 mo 20 70 |o
3 id W ” *
20 20 50 §o o |e
go go 30 0 g0 |w
30 20 z g0 30 fo |w
2o 8o a 20 80 g0 |o
838 = .
¢o z0 € 5 50 80 80 |=x
c x> @
8o 20 S > 8 %0 o 80 |-
=N®
0 Q z ® 8 7]
20 ¢O = =9 20 80 80 |x
o 3 F
%0 20 3 £0 80 %0 |~
[
go go £ %0 go go |=
o £, 84 2
30 50 £0 go o g0 |=
g0 %0 30 30 80 %o
3 *
20 80 S0 20 30 30 Y0 §0 20 20 20 20 £0 80 30
n - *
§0 %80 80 %0 20 80 20 80 80 80 g0 =O 20 §0 20
50 §0 %0 20 0 %0 %0 %0 %0 %0 %0 %0 20 30 %O

intal.

- &N M ¢ 1N O N 0 o o v
-

—~—

12
13
14
15
16
17

inUo Intel486™ DX MICROPROCESSOR PRELIMINARY

Pin Cross Reference by Pin Name

Test
Address Data Control (50 MHz Only) N/C Vce Vss
A2 Q14 Do P1 A20M # D15 TCK A3 A3(1) B7 A7
As R15 D4 N2 ADS# = S17 TDI Al4 A10 B9 A9
A4 S16 Do N1 AHOLD A7 TDO B16 A2 B11 A1
As Qi12 D3 H2 BEO# K15 T™MS B14 A13 C4 B3
Ag S15 D4 M3 BE1# J16 A14(1) C5 B4
Az Q13 Ds J2 BE2# J15 B10 E2 B5
Ag R13 Dg L2 BE3# F17 B12 E16 E1
Ag Qi D7 L3 BLAST # R16 B13 G2 E17
A1o $13 Dg F2 BOFF # D17 B14(1) G16 G1
Aqq R12 Dg D1 BRDY # H15 B16(1) H16 G17
Aq2 S7 D1o E3 BREQ Q15 c10 J1 H1
Aq3 Q10 D14 C1 BS8 # D16 Ci1 K2 H17
Aqg S5 D2 G3 BS16+# Cc17 C12 K16 K1
A5 R7 D3 D2 CLK Cc3 C13 L16 K17
A1g Q9 Di4 K3 D/C# M15 G15 M2 L1
A7 Q3 Dis F3 DPO N3 R17 M16 L17
Ag R5 D1s J3 DP1 F1 S4 P16 M1
Aqg Q4 Dy7 D3 DP2 H3 R3 M17
Ao Q8 Dig c2 DP3 A5 Ré P17
Aoq Q5 D9 B1 EADS# B17 R8 Q2
Ao Q7 D2o Al FERR# C14 R9 R4
Aos S3 Do B2 FLUSH # C15 R10 S6
Aoy Q6 Dao A2 HLDA P15 R11 S8
Aos R2 Dog A4 HOLD E15 R14 S9
Ags S2 Dog A6 IGNNE # A15 S$10
Aoy S1 Dos B6 INTR A16 S11
Agg R1 Da2g C7 KEN # F15 S12
Agg P2 Do7 Cé6 LOCK # N15 S14
Azo P3 Dog c8 M/10# N16
Agzq Qi Dag A8 NMI B15
D3o C9 PCD J17
D34 B8 PCHK# Q17
PWT L15
PLOCK# Q16
RDY # F16
RESET Ci16
W/R# N17
NOTE:

1. These pins are no longer No-Connects on the 50 MHz version.

11

intel.

Intel486™ DX MICROPROCESSOR PRELIMINARY

QUICK PIN REFERENCE

What follows is a brief pin description. For detailed signal descriptions refer to Section 6.

Symbol

Type

Name and Function

CLK

Clock provides the fundamental timing and the internal operating frequency for the
Intel486 Microprocessor. All external timing parameters are specified with respect to
the rising edge of CLK.

ADDRESS

BUS

A31-A4
A2-A3

170

A31-A2 are the address lines of the microprocessor. A31-A2, together with the byte
enables BEO # —-BE3 #, define the physical area of memory or input/output space
accessed. Address lines A31-A4 are used to drive addresses into the microprocessor
to perform cache line invalidations. Input signals must meet setup and hold times too
and tp3. A31-A2 are not driven during bus or address hold.

BEO-3#

The byte enable signals indicate active bytes during read and write cycles. During the
first cycle of a cache fill, the external system should assume that all byte enables are
active. BE3 # applies to D24-D31, BE2# applies to D16-D23, BE1 # applies to D8—
D16 and BEO# applies to DO-D7. BEO # —-BE3 # are active LOW and are not driven
during bus hold.

DATA BUS

D31-D0

170

These are the data lines for the Intel486 Microprocessor. Lines D0-D7 define the least
significant byte of the data bus while lines D24-D31 define the most significant byte of
the data bus. These signals must meet setup and hold times to2 and tp3 for proper
operation on reads. These pins are driven during the second and subsequent clocks of
write cycles.

DATA PAR

ITY

DPO-DP3

1710

There is one data parity pin for each byte of the data bus. Data parity is generated on all
write data cycles with the same timing as the data driven by the Intel486
Microprocessor. Even parity information must be driven back into the microprocessor
on the data parity pins with the same timing as read information to insure that the
correct parity check status is indicated by the Intel486 microprocessor. The signals
read on these pins do not affect program execution.

Input signals must meet setup and hold times t25 and ta3. DPO-DP3 should be
connected to Vg through a pullup resistor in systems which do not use parity.
DP0-DP3 are active HIGH and are driven during the second and subsequent clocks of
write cycles.

PCHK #

Parity Status is driven on the PCHK # pin the clock after ready for read operations. The
parity status is for data sampled at the end of the previous clock. A parity error is
indicated by PCHK# being LOW. Parity status is only checked for enabled bytes as
indicated by the byte enable and bus size signals. PCHK # is valid only in the clock
immediately after read data is returned to the microprocessor. At all other times
PCHK# is inactive (HIGH). PCHK # is never floated.

12

ini‘el,, Intel486™ DX MICROPROCESSOR PRELIMINARY

QUICK PIN REFERENCE (Continued)

Symbol | Type | Name and Function
BUS CYCLE DEFINITION
M/10# (0] The memory/input-output, data/control and write/read lines are the primary bus
D/C# 0 definition signals. These signals are driven valid as the ADS # signal is asserted.
W/R# O |M/0# D/C# W/R# Bus Cycle Initiated

0 0 0 Interrupt Acknowledge

0 0 1 Halt/Special Cycle

0 1 0 1/0 Read

0 1 1 170 Write

1 0 0 Code Read

1 0 1 Reserved

1 1 0 Memory Read

1 1 1 Memory Write

The bus definition signals are not driven during bus hold and follow the timing of the
address bus. Refer to Section 7.2.11 for a description of the special bus cycles.

LOCK # O | The bus lock pin indicates that the current bus cycle is locked. The Intel486
Microprocessor will not allow a bus hold when LOCK # is asserted (but address holds
are allowed). LOCK# goes active in the first clock of the first locked bus cycle and goes
inactive after the last clock of the last locked bus cycle. The last locked cycle ends
when ready is returned. LOCK # is active LOW and is not driven during bus hold. Locked
read cycles will not be transformed into cache fill cycles if KEN # is returned active.

PLOCK# O | The pseudo-lock pin indicates that the current bus transaction requires more than one
bus cycle to complete. Examples of such operations are floating point long reads and
writes (64 bits), segment table descriptor reads (64 bits), in addition to cache line fills
(128 bits). The Intel486 Microprocessor will drive PLOCK # active until the addresses for
the last bus cycle of the transaction have been driven regardless of whether RDY # or
BRDY # have been returned.

Normally PLOCK # and BLAST # are inverse of each other. However during the first bus
cycle of a 64-bit floating point write, both PLOCK# and BLAST # will be asserted.
PLOCK # is a function of the BS8#, BS16# and KEN# inputs. PLOCK# should be
sampled only in the clock ready is returned. PLOCK # is active LOW and is not driven

during bus hold.

BUS CONTROL.

ADS # O | The address status output indicates that a valid bus cycle definition and address are
available on the cycle definition lines and address bus. ADS # is driven active in the
same clock as the addresses are driven. ADS # is active LOW and is not driven during
bus hold.

RDY # | The non-burst ready input indicates that the current bus cycle is complete. RDY #

indicates that the external system has presented valid data on the data pins in response
to a read or that the external system has accepted data from the Intel486
Microprocessor in response to a write. RDY # is ignored when the bus is idle and at the
end of the first clock of the bus cycle.

RDY # is active during address hold. Data can be returned to the processor while
AHOLD is active.

RDY # is active LOW, and is not provided with an internal pullup resistor. RDY # must
satisfy setup and hold times t1g and t17 for proper chip operation.

13

intel.

Intel486™ DX MICROPROCESSOR PRELIMINARY

QUICK PIN REFERENCE (Continued)

Symbol [Type |

Name and Function

BURST CONTROL

BRDY #

The burst ready input performs the same function during a burst cycle that RDY #
performs during a non-burst cycle. BRDY # indicates that the external system has
presented valid data in response to a read or that the external system has accepted data
in response to a write. BRDY # is ignored when the bus is idle and at the end of the first
clock in a bus cycle.

BRDY # is sampled in the second and subsequent clocks of a burst cycle. The data
presented on the data bus will be strobed into the microprocessor when BRDY # is
sampled active. If RDY # is returned simultaneously with BRDY #, BRDY # is ignored
and the burst cycle is prematurely aborted.

BRDY # is active LOW and is provided with a small pullup resistor. BRDY # must satisfy
the setup and hold times t{g and t17.

BLAST #

The burst last signal indicates that the next time BRDY # is returned the burst bus cycle
is complete. BLAST # is active for both burst and non-burst bus cycles. BLAST # is
active LOW and is not driven during bus hold.

INTERRUPTS

RESET

The reset input forces the Intel486 Microprocessor to begin execution at a known state.
The microprocessor cannot begin execution of instructions until at least 1 ms after Voo
and CLK have reached their proper DC and AC specifications. The RESET pin should
remain active during this time to insure proper microprocessor operation. RESET is
active HIGH. RESET is asynchronous but must meet setup and hold times tog and to1 for
recognition in any specific clock.

INTR

The maskable interrupt indicates that an external interrupt has been generated. If the
internal interrupt flag is set in EFLAGS, active interrupt processing will be initiated. The
Intel486 Microprocessor will generate two locked interrupt acknowledge bus cycles in
response to the INTR pin going active. INTR must remain active until the interrupt
acknowledges have been performed to assure that the interrupt is recognized.

INTR is active HIGH and is not provided with an internal pulldown resistor. INTR is
asynchronous, but must meet setup and hold times tog and to4 for recognition in any
specific clock.

NMI

The non-maskable interrupt request signal indicates that an external non-maskable
interrupt has been generated. NMl is rising edge sensitive. NMI must be held LOW for at
least four CLK periods before this rising edge. NMI is not provided with an internal
pulldown resistor. NMI is asynchronous, but must meet setup and hold times tog and to4
for recognition in any specific clock.

BUS ARBITRATION

BREQ

(0]

The internal cycle pending signal indicates that the Intel486 Microprocessor has
internally generated a bus request. BREQ is generated whether or not the Intel486
Microprocessor is driving the bus. BREQ is active HIGH and is never floated.

HOLD

The bus hold request allows another bus master complete control of the Intel486
Microprocessor bus. In response to HOLD going active the Intel486 Microprocessor will
float most of its output and input/output pins. HLDA will be asserted after completing the
current bus cycle, burst cycle or sequence of locked cycles. The Intel486
Microprocessor will remain in this state until HOLD is deasserted. HOLD is active high
and is not provided with an internal pulldown resistor. HOLD must satisfy setup and hold
times t1g and t1g for proper operation.

HLDA

Hold acknowledge goes active in response to a hold request presented on the HOLD
pin. HLDA indicates that the Intel486 microprocessor has given the bus to another local
bus master. HLDA is driven active in the same clock that the Intel486 Microprocessor
floats its bus. HLDA is driven inactive when leaving bus hold. HLDA is active HIGH and
remains driven during bus hold.

14

intgl.

Intel486™ DX MICROPROCESSOR PRELIMINARY

QUICK PIN REFERENCE (Continued)

Symbol] Type | Name and Function

BUS ARBITRATION (Continued)

BOFF #

The backoffinput forces the Intel486 Microprocessor to float its bus in the next clock.
The microprocessor will float all pins normally floated during bus hold but HLDA will not
be asserted in response to BOFF #. BOFF # has higher priority than RDY # or BRDY #;
if both are returned in the same clock, BOFF # takes effect. The microprocessor
remains in bus hold until BOFF # is negated. If a bus cycle was in progress when
BOFF # was asserted the cycle will be restarted. BOFF # is active LOW and must meet
setup and hold times t1g and tyg for proper operation.

CACHE INVALIDATION

AHOLD

The address hold request allows another bus master access to the Intel486
Microprocessor's address bus for a cache invalidation cycle. The Intel486
Microprocessor will stop driving its address bus in the clock following AHOLD going
active. Only the address bus will be floated during address hold, the remainder of the
bus will remain active. AHOLD is active HIGH and is provided with a small internal
pulldown resistor. For proper operation AHOLD must meet setup and hold times t4g and

t19.

EADS #

This signal indicates that a valid external address has been driven onto the Intel486
Microprocessor address pins. This address will be used to perform an internal cache
invalidation cycle. EADS # is active LOW and is provided with an internal pullup resistor.
EADS # must satisfy setup and hold times t1» and t13 for proper operation.

CACHE CONTRO

L

KEN#

The cache enable pin is used to determine whether the current cycle is cacheable.
When the Intel486 microprocessor generates a cycle that can be cached and KEN# is
active one clock before RDY # or BRDY # during the first transfer of the cycle, the cycle
will become a cache line fill cycle. Returning KEN# active one clock before RDY #
during the last read in the cache line fill will cause the line to be placed in the on-chip
cache. KEN# is active LOW and is provided with a small internal pullup resistor. KEN #
must satisfy setup and hold times t14 and t15 for proper operation.

FLUSH#

The cache flush input forces the Intel486 Microprocessor to flush its entire internal
cache. FLUSH # is active low and need only be asserted for one clock. FLUSH # is
asynchronous but setup and hold times tag and t21 must be met for recognition in any
specific clock. FLUSH # being sampled low in the clock before the falling edge of
RESET causes the Intel486 Microprocessor to enter the tri-state test mode.

PAGE CACHEABILITY

PWT
PCD

o
0o

The page write-through and page cache disable pins reflect the state of the page
attribute bits, PWT and PCD, in the page table entry or page directory entry. If paging is
disabled or for cycles that are not paged, PWT and PCD reflect the state of the PWT and
PCD bits in control register 3. PWT and PCD have the same timing as the cycle definition
pins (M/I0#, D/C# and W/R#). PWT and PCD are active HIGH and are not driven
during bus hold. PCD is masked by the cache disable bit (CD) in Control Register 0.

NUMERIC ERROR REPORTING

FERR#

0]

The floating point error pin is driven active when a floating point error occurs. FERR # is
similar to the ERROR # pin on the 387T™ math coprocessor. FERR # is included for
compatibility with systems using DOS type floating point error reporting. FERR # will not
go active if FP errors are masked in FPU register. FERR # is active LOW, and is not
floated during bus hold.

15

intel.

Intel486™ DX MICROPROCESSOR PRELIMINARY

QUICK PIN REFERENCE (Continued)

Symbol] Type |

Name and Function

NUMERIC ERROR REPORTING (Continued)

IGNNE #

When the ignore numeric error pin is asserted the Intel486 Microprocessor will ignore a
numeric error and continue executing non-control floating point instructions, but FERR #
will still be activated by the Intel486. When IGNNE # is deasserted the Intel486
microprocessor will freeze on a non-control floating point instruction, if a previous
floating point instruction caused an error. IGNNE # has no effect when the NE bit in
control register 0 is set. IGNNE # is active LOW and is provided with a small internal
pullup resistor. IGNNE # is asynchronous but setup and hold times tpg and tp1 must be

BUS SIZE

CONTROL

met to insure recognition on any specific clock.

BS16#
BS8#

The bus size 16 and bus size 8 pins (bus sizing pins) cause the Intel486 Microprocessor
to run multiple bus cycles to complete a request from devices that cannot provide or
accept 32 bits of data in a single cycle. The bus sizing pins are sampled every clock. The
state of these pins in the clock before ready is used by the Intel486 microprocessor to
determine the bus size. These signals are active LOW and are provided with internal
pullup resistors. These inputs must satisfy setup and hold times t14 and t15 for proper
operation.

ADDRESS MASK

A20M #

When the address bit 20 mask pin is asserted, the Intel486 Microprocessor masks
physical address bit 20 (A20) before performing a lookup to the internal cache or driving
a memory cycle on the bus. A20M# emulates the address wraparound at one Mbyte
which occurs on the 8086. A20M # is active LOW and should be asserted only when the
processor is in real mode. This pin is asynchronous but should meet setup and hold
times tog and to4 for recognition in any specific clock. For proper operation, A20M #
should be sampled high at the falling edge of RESET.

TEST ACCESS PORT (50 MHz Version Only)

TCK

Test Clock is an input to the Intel486 CPU and provides the clocking function required by
the JTAG boundary scan feature. TCK is used to clock state information and data into
and out of the component. State select information and data are clocked into the
component on the rising edge of TCK on TMS and TDI, respectively. Data is clocked out
of the part on the falling edge of TCK on TDO.

TDI

Test Data Input is the serial input used to shift JTAG instructions and data into the
component. TDI is sampled on the rising edge of TCK, during the SHIFT-IR and the
SHIFT-DR TAP controller states. During all other tap controller states, TDl is a “‘don’t
care”.

TDO

Test Data Output is the serial output used to shift JTAG instructions and data out of the
component. TDO is driven on the falling edge of TCK during the SHIFT-IR and
SHIFT-DR TAP controller states. At all other times TDO is driven to the high impedance
state.

T™MS

Test Mode Select is decoded by the JTAG TAP (Tap Access Port) to select the
operation of the test logic. TMS is sampled on the rising edge of TCK. To guarantee
deterministic behavior of the TAP controller TMS is provided with an internal pull-up
resistor.

16

intgl. Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 1.1. Output Pins Table 1.4. Test Pins (50 MHz Version Only)
Active When Input or Sampled/
Name Level Floated Name Output Driven On
BREQ HIGH TCK Input N/A
HLDA HIGH .
| dge of TC
BEO#-BE3# | LOW | BusHold o nput Rising Edge of TOK
PWT, PCD HIGH Bus Hold TDO Output Falling Edge of TCK
W/R#,D/C#, M/I0# | HIGH Bus Hold TMS lnput R|s|ng Edge of TCK
LOCK # LOW Bus Hold
PLOCK # LOW Bus Hold i
5. 1
ADS# LOW Bus Hold Table 1.5. Component and Revision ID
BLAST # LOW Bus Hold Intel486™ CPU Component Revision
PCHK # LOW Stepping Name ID ID
FERR # LOW B3 04 01
A2-A3 HIGH | Bus, Address Hold B4 04 01
Table 1.2. Input Pins B5 04 o1
Active | Synchronous/ B6 04 01
Name
Level Asynchronous Cco 04 02
CLK Ct 04 03
RESET HIGH Asynchronous
HOLD HIGH Synchronous Do 04 04
AHOLD HIGH Synchronous cA2 04 10
EADS # LOW Synchronous
BOFF # LOW Synchronous oAS 04 10
FLUSH# LOW Asynchronous cB0 04 1
A20M # LOW Asynchronous cB1 04 11
BS16+#, BS8# LOW Synchronous o —
KEN # LOW Synchronous intel OverDrive
RDY # LOW Synchronous Pro.c es;or
BRDY # LOW Synchronous Stepping Name
INTR HIGH Asynchronous A2 04 32
NMI HIGH Asynchronous B1 04 33
IGNNE # LOW Asynchronous

Table 1.3. Input/Output Pins

Name Active When
Level Floated
D0-D31 HIGH Bus Hold
DPO-DP3 HIGH Bus Hold
A4-A31 HIGH Bus, Address Hold

17

intel.

Iintel486™ DX MICROPROCESSOR

PRELIMINARY

2.0 ARCHITECTURAL OVERVIEW

The Intel486 Microprocessor is a 32-bit architecture
with on-chip memory management, floating point
and cache memory units.

The Intel486 Microprocessor contains all the fea-
tures of the 386™ Microprocessor with enhance-
ments to increase performance. The instruction set
includes the complete 386 microprocessor instruc-
tion set along with extensions to serve new applica-
tions. The on-chip memory management unit (MMU)
is completely compatible with the 386 Microproces-
sor MMU. The Intel486 Microprocessor brings the
387™ math coprocessor on-chip. All software writ-
ten for the 386 microprocessor, 387 math coproces-
sor and previous members of the 86/87 architectur-
al family will run on the Intel486 Microprocessor
without any modifications.

Several enhancements have been added to the In-
tel486 Microprocessor to increase performance. On-
chip cache memory allows frequently used data and
code to be stored on-chip reducing accesses to the
external bus. RISC design techniques have been
used to reduce instruction cycle times. A burst bus
feature enables fast cache fills. All of these features,
combined, lead to performance greater than twice
that of a 386 Microprocessor.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows management of the logical address space by
providing easy data and code relocatibility and effi-
cient sharing of global resources. The paging mech-
anism operates beneath segmentation and is trans-
parent to the segmentation process. Paging is
optional and can be disabled by system software.
Each segment can be divided into one or more
4 Kbyte segments. To implement a virtual memory
system, the Intel486 Microprocessor supports full re-
startability for all page and segment faults.

Memory is organized into one or more variable
length segments, each up to four gigabytes (232
bytes) in size. A segment can have attributes associ-
ated with it which include its location, size, type (i.e.,
stack, code or data), and protection characteristics.
Each task on an Intel486 Microprocessor can have a
maximum of 16,381 segments, each up to four giga-
bytes in size. Thus each task has a maximum of 64
terabytes (trillion bytes) of virtual memory.

The segmentation unit provides four-levels of pro-
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of integrity.

The Intel486 Microprocessor has two modes of op-
eration: Real Address Mode (Real Mode) and Pro-
tected Mode Virtual Address Mode (Protected
Mode). In Real Mode the Intel486 Microprocessor
operates as a very fast 8086. Real Mode is required
primarily to set up the processor for Protected Mode
operation. Protected Mode provides access to the
sophisticated memory management paging and priv-
ilege capabilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each virtual 8086 task behaves with
8086 semantics, allowing 8086 software (an applica-
tion program or an entire operating system) to exe-
cute.

The on-chip floating point unit operates in parallel
with the arithmetic and logic unit and provides arith-
metic instructions for a variety of numeric data types.
It executes numerous built-in transcendental func-
tions (e.g., tangent, sine, cosine, and log functions).
The floating point unit fully conforms to the ANSI/
IEEE standard 754-1985 for floating point arithmetic.

The on-chip cache is 8 Kbytes in size. It is 4-way set
associative and follows a write-through policy. The
on-chip cache includes features to provide flexibility
in external memory system design. Individual pages
can be designated as cacheable or non-cacheable
by software or hardware. The cache can also be en-
abled and disabled by software or hardware..

Finally the Intel486 Microprocessor has features to
facilitate high performance hardware designs. The
1X clock eases high frequency board level designs.
The burst bus feature enables fast cache fills. These
features are described beginning in Section 6.

2.1 Register Set

The Intel486 Microprocessor register set includes all
the registers contained in the 386 Microprocessor
and the 387 math coprocessor. The register set can
be split into the following categories:

Base Architecture Registers
General Purpose Registers
Instruction Pointer
Flags Register
Segment Registers

Systems Level Registers
Control Registers
System Address Registers

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Floating Point Registers
Data Registers
Tag Word
Status Word
Instruction and Data Pointers
Control Word

Debug and Test Registers

The base architecture and floating point registers
are accessible by the applications program. The sys-
tem level registers are only accessible at privilege
level 0 and are used by the systems level program.
The debug and test registers are also only accessi-
ble at privilege level 0.

2.1.1 BASE ARCHITECTURE REGISTERS

Figure 2.1 shows the Intel486 Microprocessor base
architecture registers. The contents of these regis-
ters are task-specific and are automatically loaded
with a new context upon a task switch operation.

General Purpose Registers

31 24|23 16]15 8|7 0

' AH AX AL | EAX

BH BX BL |EBX
CH cx ©L |EcX
DH DX DL |EDX

S| Esl

DI EDI

BP EBP

sp ESP

Segment Registers

15 0
cs Code Segment
SS Stack Segment
DS
ES Data Segments
FS
GS

Instruction Pointer

31 16 15 0

[| P | er
Flags Register

| | FLAGS | EFLAGS

Figure 2.1. Base Architecture Registers

19

The base architecture includes six directly accessi-
ble descriptors, each specifying a segment up to
4 Gbytes in size. The descriptors are indicated by
the selector values placed in the Intel486 Microproc-
essor segment registers. Various selector values
can be loaded as a program executes.

The selectors are also task-specific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

2.1.1.1 General Purpose Registers

The eight 32-bit general purpose registers are
shown in Figure 2.1. These registers hold data or
address quantities. The general purpose registers
can support data operands of 1, 8, 16 and 32 bits,
and bit fields of 1 to 32 bits. Address operands of 16
and 32 bits are supported. The 32-bit registers are
named EAX, EBX, ECX, EDX, ESI, EDI, EBP and
ESP.

The least significant 16 bits of the general purpose
registers can be accessed separately by using the
16-bit names of the registers AX, BX, CX, DX, SI, DI,
BP and SP. The upper 16 bits of the register are not
changed when the lower 16 bits are accessed sepa-
rately.

Finally 8-bit operations can individually access the
lowest byte (bits 0-7) and the higher byte (bits
8-15) of the general purpose registers AX, BX, CX
and DX. The lowest bytes are named AL, BL, CL and
DL respectively. The higher bytes are named AH,
BH, CH and DH respectively. The individual byte ac-
cessibility offers additional flexibility for data opera-
tions but is not used for effective address calcula-
tion.

2.1.1.2 Instruction Pointer

The instruction pointer, shown in Figure 2.1, is a
32-bit register named EIP. EIP holds the offset of the
next instruction to be executed. The offset is always
relative to the base of the code segment (CS). The
lower 16 bits (bits 0—15) of the EIP contain the 16-bit
instruction pointer named IP, which is used for 16-bit
addressing.

2.1.1.3 Flags Register

The flags register is a 32-bit register named
EFLAGS. The defined bits and bit fields within
EFLAGS control certain operations and indicate
status of the Intel486 Microprocessor. The lower
16 bits (bits 0-15) of EFLAGS contain the 16-bit
register named FLAGS, which is most useful when
executing 8086 and 80286 code. EFLAGS is shown
in Figure 2.2.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

FLAGS

NOTE:

0 indicates Intel Reserved: do not define; see Section 2.1.6.

1
09876543210
oft]r|s|z c
EFLAGS Flr|F|F]F 1|F
y XX} T 'y Y Y
ALIGNMENT CHECK———-J T caver e
VIRTUAL MODE PARITY FLAG
RESUME FLAG AUXILIARY CARRY
NESTED TASK FLAG ZERO FLAG
1/0 PRIVILEGE LEVEL SIGN FLAG
OVERFLOW TRAP FLAG
DIRECTION FLAG
INTERRUPT ENABLE
240440-6

Figure 2.2. Flags Register

EFLAGS bits 1, 3, 5, 15 and 19-31 are “undefined”.
When these bits are stored during interrupt process-
ing or with a PUSHF instruction (push flags onto
stack), a one is stored in bit 1 and zeros in bits 3, 5,
15 and 19-31.

The EFLAGS register in the Intel486 Microprocessor
contains a new bit not previously defined. The new
bit, AC, is defined in the upper 16 bits of the register
and it enables faults on accesses to misaligned
data.

AC (Alignment Check, bit 18)

The AC bit enables the generation of faults if a
memory reference is to a misaligned address.
Alignment faults are enabled when AC is set
to 1. A mis-aligned address is a word access

to an odd address, a dword access to an ad-
dress that is not on a dword boundary, or an
8-byte reference to an address that is not on a
64-bit word boundary. See Section 7.1.6 for
more information on operand alignment.

Alignment faults are only generated by pro-
grams running at privilege level 3. The AC bit
setting is ignored at privilege levels 0, 1 and 2.
Note that references to the descriptor tables
(for selector loads), or the task state segment
(TSS), are implicitly level 0 references even if
the instructions causing the references are
executed at level 3. Alignment faults are re-
ported through interrupt 17, with an error code
of 0. Table 2.1 gives the alignment required
for the Intel486 microprocessor data types.

Table 2.1. Data Type Alignment Requirements

Memory Access

Alignment (Byte Boundary)

Word

Dword

Single Precision Real
Double Precision Real
Extended Precision Real
Selector

48-Bit Segmented Pointer
32-Bit Flat Pointer

32-Bit Segmented Pointer
48-Bit “Pseudo-Descriptor”
FSTENV/FLDENV Save Area
FSAVE/FRSTOR Save Area
Bit String

ANAAEAENMNODOAADN

4/2 (On Operand Size)
4/2 (On Operand Size)
4

20

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

IMPLEMENTATION NOTE:

Several instructions on the Intel486 Microprocessor
generate misaligned references, even if their mem-
ory address is aligned. For example, on the In-
tel486 Microprocessor, the SGDT/SIDT (store glob-
al/interrupt descriptor table) instruction reads/
writes two bytes, and then reads/writes four bytes
from a “pseudo-descriptor” at the given address.
The Intel486 Microprocessor will generate misa-
ligned references unless the address is on a 2 mod
4 boundary. The FSAVE and FRSTOR instructions
(floating point save and restore state) will generate
misaligned references for one-half of the register
save/restore cycles. The Intel486 Microprocessor
will not cause any AC faults if the effective address
given in the instruction has the proper alignment.

VM (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the Intel486 Mi-
croprocessor is in Protected Mode, the In-
tel486 Microprocessor will switch to Virtual
8086 operation, handling segment loads as
the 8086 does, but generating exception 13
faults on privileged opcodes. The VM bit can
be set only in Protected Mode, by the IRET
instruction (if current privilege level = 0) and
by task switches at any privilege level. The
VM bit is unaffected by POPF. PUSHF always
pushes a 0 in this bit, even if executing in Vir-
tual 8086 Mode. The EFLAGS image pushed
during interrupt processing or saved during
task switches will contain a 1 in this bit if the
interrupted code was executing as a Virtual
8086 Task.

(Resume Flag, bit 16)

The RF flag is used in conjunction with the
debug register breakpoints. It is checked at
instruction boundaries before breakpoint pro-
cessing. When RF is set, it causes any debug
fault to be ignored on the next instruction. RF
is then automatically reset at the successful
completion of every instruction (no faults are
signalled) except the IRET instruction, the
POPF instruction, (and JMP, CALL, and INT
instructions causing a task switch). These in-
structions set RF to the value specified by the
memory image. For example, at the end of the
breakpoint service routine, the IRET instruc-
tion can pop an EFLAG image having the RF
bit set and resume the program’s execution at
the breakpoint address without generating an-
other breakpoint fault on the same location.

(Nested Task, bit 14)

This flag applies to Protected Mode. NT is set
to indicate that the execution of this task is
nested within another task. If set, it indicates

RF

NT

21

I0PL

OF

DF

TF

that the current nested task’s Task State Seg-
ment (TSS) has a valid back link to the previ-
ous task’s TSS. This bit is set or reset by con-
trol transfers to other tasks. The value of NT
in EFLAGS is tested by the IRET instruction to
determine whether to do an inter-task return
or an intra-task return. A POPF or an IRET
instruction will affect the setting of this bit ac-
cording to the image popped, at any privilege
level.

(Input/Output Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode.
IOPL indicates the numerically maximum CPL
(current privilege level) value permitted to ex-
ecute 1/0 instructions without generating an
exception 13 fault or consulting the 1/0 Per-
mission Bitmap. It also indicates the maximum
CPL value allowing alteration of the IF (INTR
Enable Flag) bit when new values are popped
into the EFLAG register. POPF and IRET in-
struction can alter the IOPL field when execut-
ed at CPL = 0. Task switches can always al-
ter the IOPL field, when the new flag image is
loaded from the incoming task’s TSS.

(Overflow Flag, bit 11)

OF is set if the operation resulted in a signed
overflow. Signed overflow occurs when the
operation resulted in carry/borrow into the
sign bit (high-order bit) of the result but did not
result in a carry/borrow out of the high-order
bit, or vice-versa. For 8-, 16-, 32-bit opera-
tions, OF is set according to overflow at bit 7,
15, 31, respectively.

(Direction Flag, bit 10)

DF defines whether ESI and/or EDI registers
postdecrement or postincrement during the
string instructions. Postincrement occurs if DF
is reset. Postdecrement occurs if DF is set.

(INTR Enable Flag, bit 9)

The IF flag, when set, allows recognition of
external interrupts signalled on the INTR pin.
When [F is reset, external interrupts signalled
on the INTR are not recognized. IOPL indi-
cates the maximum CPL value allowing altera-
tion of the IF bit when new values are popped
into EFLAGS or FLAGS.

(Trap Enable Flag, bit 8)

TF controls the generation of exception 1 trap
when single-stepping through code. When TF
is set, the Intel486 Microprocessor generates
an exception 1 trap after the next instruction is
executed. When TF is reset, exception 1 traps
occur only as a function of the breakpoint ad-
dresses loaded into debug registers DRO-
DR3.

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

SF (Sign Flag, bit 7) NOTE:
SF is set if the high-order bit of the result is I these descriptions, “set” means “set to 1,” and
set, it is reset otherwise. For 8-, 16-, 32-bit reset” means “reset to 0.
operations, SF reflects the state of bit 7, 15,
31 respectively. 2.1.1.4 Segment Registers
ZF (Zero Flag, bit 6) Six 16-bit t registers hold 1 selech
. . . ix 16-bit segment registers hold segment selector
ZI_:;sitspt Ifsae“t bits of the result are 0. Other- ;e identifying the currently addressable memory
wise 1Lis reset.) segments. In protected mode, each segment may
AF (Auxiliary Carry Flag, bit 4) range in size from one byte up to the entire linear
The Auxiliary Flag is used to simplify the addi- and physical address space of the machine, 4
tion and subtraction of packed BCD quanti- Gbytes (232 bytes). In real address mode, the maxi-
ties. AF is set if the operation resulted in a Mum segment size is fixed at 64 Kbytes (216 bytes).
carry out of bit 3 (addition) or a borrow into bit . .
3 (subtraction). Otherwise AF is reset. AF is The six addfessable segments are defined by the
affected by carry out of, or borrow into bit 3 ~ segment registers CS, SS, DS, ES, FS and GS. The
only, regardless of overall operand length: 8, selector in CS indicates the current code segment;
16 or 32 bits. the selector in SS indicates the current stack seg-
. . ment; the selectors in DS, ES, FS and GS indicate
PP (Parity Flags, bit 2) the current data segments.
PF is set if the low-order eight bits of the oper-
ation contains an even number of “1’s” (even
parity). PF is reset if the low-order eight bits ~ 2.1.1.5 Segment Descriptor Cache Registers
have odd parity. PF is a function of only the The segment descriptor cache registers are not pro-
I;;ve-order eight bits, regardless of operand grammer visible, yet it is very useful to understand
’ . their content. A programmer invisible descriptor
‘CF (Carry Flag, bit 0) cache register is associated with each programmer-
CF is set if the operation resulted in a carry visible segment register, as shown by Figure 2.3.
out of (addition), or a borrow into (subtraction) Each descriptor cache register holds a 32-bit base
the high-order bit. Otherwise CF is reset. For address, a 32-bit segment limit, and the other neces-
8-, 16- or 32-bit operations, CF is set accord- sary segment attributes.
ing to carry/borrow at bit 7, 15 or 31, respec-
tively.
SEGMENT ‘
REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY)
r N r Other A
Segment
15 0 Physical Base Address Segment Limit Attributes from Descriptor
Selector CS- —
Selector SS- — —
Selector DS- —|—|—
Selector ES- e Rl
Selector FS- —|——
Selector GS- _—| =

Figure 2.3. Intel486™ Microprocessor Segment Registers and Associated Descriptor Cache Registers

22

intal.

intel486™ DX MICROPROCESSOR

PRELIMINARY

When a selector value is loaded into a segment reg-
ister, the associated descriptor cache register is au-
tomatically updated with the correct information. In
Real Address Mode, only the base address is updat-
ed directly (by shifting the selector value four bits to
the left), since the segment maximum limit and attri-
butes are fixed in Real Mode. In Protected Mode,
the base address, the limit, and the attributes are all
updated per the contents of the segment descriptor
indexed by the selector.

Whenever a memory reference occurs, the segment
descriptor cache register associated with the seg-
ment being used is automatically involved with the
memory reference. The 32-bit segment base ad-
dress becomes a component of the linear address
calculation, the 32-bit limit is used for the limit-check
operation, and the attributes are checked against
the type of memory reference requested.

2.1.2 SYSTEM LEVEL REGISTERS

The system level registers, Figure 2.4, control opera-
tion of the on-chip cache, the on-chip floating point

unit (FPU) and the segmentation and paging mecha-
nisms. These registers are only accessible to pro-
grams running at privilege level 0, the highest privi-
lege level.

The system level registers include three control reg-
isters and four segmentation base registers. The
three control registers are CR0O, CR2 and CR3. CR1
is reserved for future Intel processors. The four seg-
mentation base registers are the Global Descriptor
Table Register (GDTR), the Interrupt Descriptor Ta-
ble Register (IDTR), the Local Descriptor Table Reg-
ister (LDTR) and the Task State Segment Register

(TR).

2.1.2.1 Control Registers
Control Register 0 (CR0)

CRO, shown in Figure 2.5, contains 10 bits for con-
trol and status purposes. Five of the bits defined in
the Intel486 Microprocessor's CRO are newly de-
fined. The new bits are CD, NW, AM, WP and NE.
The function of the bits in CRO can be categorized
as follows:

31 24|23 16|15 8|7 0
CRO
PAGE FAULT LINEAR ADDRESS REGISTER CR2
PAGE DIRECTORY BASE REGISTER I CR3
SYSTEM ADDRESS REGISTERS
47 32-BIT LINEAR BASE ADDRESS 16 15 LIMIT 0
GDTR
IDTR
SYSTEM SEGMENT
REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)
r——_&ﬁ A
15 0 /" 32.BIT LINEAR BASE ADDRESS 20-BIT SEGMENT LIMIT ATTRIBUTES"
TR SELECTOR
LDTR SELECTOR
Figure 2.4. System Level Registers
31 0
P TIE[M|P
G ! SIM|{P|E CRO
. —~ J
MSwW
NOTE:
_indicates Intel reserved: Do not define; See Section 2.1.6

Figure 2.5. Control Register 0

23

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Intel486 Microprocessor Operating Modes: PG, PE
(Table 2.2)

On-Chip Cache Control Modes: CD, NW (Table 2.3)

On-Floating Point Unit Control: TS, EM, MP, NE
(Table 2.4)

Alignment Check Control: AM
Supervisor Write Protect: WP

Table 2.2. Processor Operating Modes

PG | PE Mode

0 0 | REAL Mode. Exact 8086 semantics,
with 32-bit extensions available with
prefixes.

Protected Mode. Exact 80286
semantics, plus 32-bit extensions
through both prefixes and “default”
prefix setting associated with code
segment descriptors. Also, a sub-
mode is defined to support a virtual
8086 within the context of the
extended 80286 protection model.

UNDEFINED. Loading CRO with this
combination of PG and PE bits will
raise a GP fault with error code 0.

Paged Protected Mode. All the
facilities of Protected mode, with
paging enabled underneath
segmentation.

Table 2.3. On-Chip Cache Control Modes

CD | NW Operating Mode

Cache fills disabled, write-through and
invalidates disabled.

Cache fills disabled, write-through and
invalidates enabled.

INVALID. If CRO is loaded with this
configuration of bits, a GP fault with
error code is raised.

Cache fills enabled, write-through and

invalidates enabled.

Table 2.4. On-Chip Floating Point Unit Control

CRO BIT Instruction Type

EM | TS | MP | Floating-Point Wait
0 0 0 Execute Execute
0 0 1 Execute Execute
0 1 0 Trap7 Execute
0 1 1 Trap 7 Trap 7
1 0 0 Trap 7 Execute
1 0 1 Trap 7 Execute
1 1 0 Trap 7 Execute
1 1 1 Trap 7 Trap 7

24

The low-order 16 bits of CRO are also known as the
Machine Status Word (MSW), for compatibility with
the 80286 protected mode. LMSW and SMSW (load
and store MSW) instructions are taken as special
aliases of the load and store CRO operations, where
only the low-order 16 bits of CRO are involved. The
LMSW and SMSW instructions in the Intel486 micro-
processor work in an identical fashion to the LMSW
and SMSW instructions in the 80286 (i.e., they only
operate on the low-order 16 bits of CRO and ignores
the new bits). New Intel486 Microprocessor operat-
ing systems should use the MOV CRO, Reg instruc-
tion.

The defined CRO bits are described below.
PG (Paging Enable, bit 31)

The PG bit is used to indicate whether paging is
enabled (PG=1) or disabled (PG=0). See Ta-
ble 2.2.

(Cache Disable, bit 30)

The CD bit is used to enable the on-chip cache.
When CD=1, the cache will not be filled on
cache misses. When CD =0, cache fills may be
performed on misses. See Table 2.3.

The state of the CD bit, the cache enable input
pin (KEN#), and the relevant page cache dis-
able (PCD) bit determine if a line read in re-
sponse to a cache miss will be instalied in the
cache. A line is installed in the cache only if
CD=0 and KEN# and PCD are both zero. The
relevant PCD bit comes from either the page
table entry, page directory entry or control reg-
ister 3. Refer to Section 5.6 for more details on
page cacheability.

CD is set to one after RESET.
NW (Not Write-Through, bit 29)

The NW bit enables on-chip cache write-
throughs and write-invalidate cycles (NW=0).
When NW=0, all writes, including cache hits,
are sent out to the pins. Invalidate cycles are
enabled when NW=0. During an invalidate cy-
cle a line will be removed from the cache if the
invalidate address hits in the cache. See Table
2.3.

When NW =1, write-throughs and write-invali-
date cycles are disabled. A write will not be sent
to the pins if the write hits in the cache. With
NW=1 the only write cycles that reach the ex-
ternal bus are cache misses. Write hits with
NW=1 will never update main memory. Invali-
date cycles are ignored when NW=1.
(Alignment Mask, bit 18)

The AM bit controls whether the alignment
check (AC) bit in the flag register (EFLAGS) can
allow an alignment fault. AM=0 disables the

AC bit. AM=1 enables the AC bit. AM=0 is the
386 Microprocessor compatible mode.

CcD

AM

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

386 Microprocessor software may load incor-
rect data into the AC bit in the EFLAGS register.
Setting AM=0 will prevent AC faults from oc-
curring before the Intel486 Microprocessor has
created the AC interrupt service routine.

WP (Write Protect, bit 16)

WP protects read-only pages from supervisor
write access. The 386 Microprocessor allows a
read-only page to be written from privilege lev-
els 0-2. The Intel486 Microprocessor is com-
patible with the 386 Microprocessor when
WP=0. WP=1 forces a fault on a write to a
read-only page from any privilege level. Operat-
ing systems with Copy-on-Write features can be
supported with the WP bit. Refer to Section
4.5.3 for further details on use of the WP bit.

(Numerics Exception, bit 5)

The NE bit controls whether unmasked floating
point exceptions (UFPE) are handled through
interrupt vector 16 (NE=1) or through an exter-
nal interrupt (NE=0). NE=0 (default at reset)
supports the DOS operating system error re-
porting scheme from the 8087, 80287 and 387
math coprocessor. In DOS systems, math co-
processor errors are reported via external inter-
rupt vector 13. DOS uses interrupt vector 16 for
an operating system call. Refer to Sections
6.2.13 and 7.2.14 for more information on float-
ing point error reporting.

For any UFPE the floating point error output pin
(FERR #) will be driven active.

For NE=0, the Intel486 Microprocessor works
in conjunction with the ignore numeric error in-
put (IGNNE#) and the FERR# output pins.
When a UFPE occurs and the IGNNE # input is
inactive, the Intel486 Microprocessor freezes
immediately before executing the next floating
point instruction. An external interrupt controller
will supply an interrupt vector when FERR# is
driven active. The UFPE is ignored if IGNNE #
is active and floating point execution continues.

NOTE:

The freeze does not take place if the next in-
struction is one of the control instructions
FNCLEX, FNINIT, FNSAVE, FNSTENV,
FNSTCW, FNSTSW, FNSTSW AX, FNENI,
FNDISI and FNSETPM. The freeze does occur
if the next instruction is WAIT.

For NE=1, any UFPE will result in a software
interrupt 16, immediately before executing the
next non-control floating point or WAIT instruc-
tion. The ignore numeric error input (IGNNE #)
signal will be ignored.

NE

25

TS (Task Switched, bit 3)

The TS bit is set whenever a task switch opera-
tion is performed. Execution of a floating point
instruction with TS=1 will cause a device not
available (DNA) fault (trap vector 7). If TS=1
and MP=1 (monitor coprocessor in CRO) a
WAIT instruction will cause a DNA fault. See
Table 2.4.

(Emulate Coprocessor, bit 2)

The EM bit determines whether floating point
instructions are trapped (EM = 1) or executed. If
EM=1, all floating point instructions will cause
fault 7.

EM

NOTE:
WAIT instructions are not affected by the state
of EM. See Table 2.4.

(Monitor Coprocessor, bit 1)

The MP bit is used in conjunction with the TS bit
to determine if WAIT instructions should trap. If
MP=1 and TS=1, WAIT instructions cause
fault 7. Refer to Table 2.4. The TS bit is set to 1
on task switches by the Intel486 Microproces-
sor. Floating point instructions are not affected
by the state of the MP bit. It is recommended
that the MP bit be set to one for the normal
operation of the Intel486 Microprocessor.

(Protection Enable, bit 0)

The PE bit enables the segment based protec-
tion mechanism. If PE=1 protection is enabled.
When PE =0 the Intel486 Microprocessor oper-
ates in REAL mode, with segment based pro-
tection disabled, and addresses formed as in an
8086. Refer to Table 2.2

MP

PE

All new CRO bits added to the 386 and Intel486 Mi-
croprocessors, except for ET and NE, are upward
compatible with the 80286 because they are in reg-
ister bits not defined in the 80286. For strict compati-
bility with the 80286, the load machine status word
(LMSW) instruction is defined to not change the ET
or NE bits.

Control Register 1 (CR1)

CR1 is reserved for use in future Intel microproces-
SOrs.

Control Register 2 (CR2)

CR2, shown in Figure 2.6, holds the 32-bit linear ad-
dress that caused the last page fault detected. The
error code pushed onto the page fault handler’s
stack when it is invoked provides additional status
information on this page fault.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

31 0
PAGE FAULT LINEAR ADDRESS REGISTER CR2
31
PAGE DIRECTORY BASE REGISTER
NOTE:
0 indicates Intel reserved: Do not define; See Section 2.1.6.

Figure 2.6. Control Registers 2 and 3

* Control Register 3 (CR3)

CR83, shown in Figure 2.6, contains the physical
base address of the page directory table. The In-
tel486 Microprocessor page directory is always page
aligned (4 Kbyte-aligned). This alignment is enforced
by only storing bits 20-31 in CR3.

In the Intel486 Microprocessor CR3 contains two
new bits, page write-through (PWT) (bit 3) and page
cache disable (PCD) (bit 4).. The page table entry
(PTE) and page directory entry (PDE) also contain
PWT and PCD bits. PWT and PCD control page
cacheability. When a page is accessed in external
memory, the state of PWT and PCD are driven out
on the PWT and PCD pins. The source of PWT and
PCD can be CR3, the PTE or the PDE. PWT and
PCD are sourced from CR3 when the PDE is being
updated. When paging is disabled (PG = 0 in CRO),
PCD and PWT are assumed to be 0, regardless of
their state in CR3.

A task switch through a task state segment (TSS)
which changes the values in CR3, or an explicit load
into CR3 with any value, will invalidate all cached
page table entries in the translation lookaside buffer
(TLB).

The page directory base address in CR3 is a physi-
cal address. The page directory can be paged out
while its associated task is suspended, but the oper-
ating system must ensure that the page directory is
resident in physical memory before the task is dis-
patched. The entry in the TSS for CR3 has a physi-
cal address, with no provision for a present bit. This
means that the page directory for a task must be
resident in physical memory. The CR3 image in a
TSS must point to this area, before the task can be
dispatched through its TSS.

26

2.1.2.2 System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286, 386
and Intel486 Microprocessor protection model.
These tables or segments are:

GDT (Global Descriptor Table)
IDT (Interrupt Descriptor Table)
LDT (Local Descriptor Table)
TSS (Task State Segment)

The addresses of these tables and segments are
stored in special registers, the System Address and
System Segment Registers, illustrated in Figure 2.4.
These registers are named GDTR, IDTR, LDTR and
TR respectively. Section 4, Protected Mode Archi-
tecture, describes the use of these registers.

System Address Registers: GDTR and IDTR

The GDTR and IDTR hold the 32-bit linear base ad-
dress and 16-bit limit of the GDT and IDT, respec-
tively.

Since the GDT and IDT segments are global to all
tasks in the system, the GDT and IDT are defined by
32-bit linear addresses (subject to page translation if
paging is enabled) and 16-bit limit values.

System Segment Registers: LDTR and TR

The LDTR and TR hold the 16-bit selector for the
LDT descriptor and the TSS descriptor, respectively.

Since the LDT and TSS segments are task specific
segments, the LDT and TSS are defined by selector
values stored in the system segment registers.

NOTE:
A programmer-invisible segment descriptor register
is associated with each system segment register.

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

2.1.3 FLOATING POINT REGISTERS

Figure 2.7 shows the floating point register set. The
on-chip FPU contains eight data registers, a tag
word, a control register, a status register, an instruc-
tion pointer and a data pointer.

Tag
Field
79 78 64 63 0 1 0

RO | Sign | Exponent
R1
R2
R3
R4
R5
R6
R7

Significand

15 0 47 0
Control Register

Instruction Pointer

Data Pointer

Status Register
Tag Word

Figure 2.7. Floating Point Registers

The operation of the Intel486 Microprocessor’s on-
chip floating point unit is exactly the same as the
387 math coprocessor. Software written for the 387
math coprocessor will run on the on-chip floating
point unit (FPU) without any modifications.

2.1.3.1 Data Registers

Floating point computations use the Intel486 Micro-
processor’'s FPU data registers. These eight 80-bit
registers provide the equivalent capacity of twenty
32-bit registers. Each of the eight data registers is

divided into “fields” corresponding to the FPU’s ex-
tended-precision data type.

The FPU’s register set can be accessed either as a
stack, with instructions operating on the top one or
two stack elements, or as a fixed register set, with
instructions operating on explicitly designated regis-
ters. The TOP field in the status word identifies the
current top-of-stack register. A “push” operation
decrements TOP by one and loads a value into the
new top register. A “pop” operation stores the value
from the current top register and then increments
TOP by one. Like other Intel486 microprocessor
stacks in memory, the FPU register stack grows
“down” toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc-
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to use. This explicit
register addressing is also relative to TOP.

2.1.3.2 Tag Word

The tag word marks the content of each numeric
data register, as shown in Figure 2.8. Each two-bit
tag represents one of the eight data registers. The
principal function of the tag word is to optimize the
FPUs performance and stack handling by making it
possible to distinguish between empty and nonemp-
ty register locations. It also enables exception han-
dlers to check the contents of a stack location with-
out the need to perform complex decoding of the
actual data.

2.1.3.3 Status Word
The 16-bit status word reflects the overall state of

the FPU. The status word is shown in Figure 2.9 and
is located in the status register.

15

0

[TAam | T1AGEe) | TAGEH) | TAGW®)

| 7ac@ | 1AGE@ | TAG(M) | TAG(O) |

NOTE:

field refers to logical top of stack.

TAG VALUES:
00 = Valid
01 = Zero

11 = Empty

The index i of tag(i) is not top-relative. A program typically uses the “top” field of Status Word to determine which tag(i)

10 = QNaN, SNaN, Infinity, Denormal and Unsupported Formats

Figure 2.8. FPU Tag Word

inteL Intel486™ DX MICROPROCESSOR PRELIMINARY

BUSY
TOP OF STACK POINTER
CONDITION CODE

15 7 0

ERROR SUMMARY STATUS
STACK FLAG

EXCEPTION FLAGS:
PRECISION

UNDERFLOW

OVERFLOW

ZERO DIVIDE
DENORMALIZED OPERAND
INVALID OPERATION

240440-7
ES is set if any unmasked exception bit is set; cleared otherwise.
See Table 2.5 for interpretation of condition code.
TOP values:
000 = Register 0 is Top of Stack
001 = Register 1 is Top of Stack
L]

L]
111 = Register 7 is Top of Stack
For definitions of exceptions, refer to the Section entitled
“Exception Handling".

Figure 2.9. FPU Status Word

The B bit (Busy, bit 15) is included for 8087 compati- The four numeric condition code bits, CO-C3, are
bility. The B bit reflects the contents of the ES bit (bit similar to the flags in EFLAGS. Instructions that per-
7 of the status word). form arithmetic operations update CO-C3 to reflect

the outcome. The effects of these instructions on
Bits 13-11 (TOP) point to the FPU register that is the condition codes are summarized in Tables 2.5
the current top-of-stack. through 2.8.

28

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 2.5. FPU Condition Code Interpretation

Instruction cos) | c3@ | cim c2(C)
FPREM, FPREM1 Three least significant bits ' .
(see Table 2.3) of quotient Fleod Lfmon et
Q2 Qo Q1 = complete

orO/U# 1 = incomplete

FCOM, FCOMP,

FCOMPP, FTST, Result of comparison Zero Operand is not

FUCOM, FUCOMP, (see Table 2.7) or O/U# comparable

FUCOMPP, FICOM, (Table 2.7)

FICOMP

FXAM Operand class Sign Operand class

(see Table 2.8) orO/U# (Table 2.8)

FCHS, FABS, FXCH,

FINCTOP, FDECTOP,

Constant loads, Zero

EXTRACT, FLD, UNDEFINED or O/U# UNDEFINED

FILD, FBLD,

FSTP (ext real)

FIST, FBSTP,

FRNDINT, FST,

FSTP, FADD, FMUL,

FDIV, FDIVR, Roundup

FSUB, FSUBR, UNDEFINED or O/U# UNDEFINED

FSCALE, FSQRT,

FPATAN, F2XM1,

FYL2X, FYL2XP1

FPTAN, FSIN Roundup Reduction

FCOS, FSINCOS UNDEFINED or O/U#, 0 = complete
undefined 1 = incomplete
ifC2 =1

FLDENV, FRSTOR

Each bit loaded from memory

FINIT

Clears these bits

FLDCW, FSTENYV,
FSTCW, FSTSW,
FCLEX, FSAVE

UNDEFINED

O/u#

Reduction

Roundup

When both IE and SF bits of status word are set, indicating a stack exception, this bit
distinguishes between stack overflow (C1 = 1) and underflow (C1 = 0).

If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this
case the original operand remains at the top of the stack.

When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

29

inteL Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 2.6. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code Interpretation after FPREM and FPREM1
c2 Cc3 Cc1 co
Incomplete Reduction:
1 X X X further interaction required
for complete reduction
Q1 Qo Q2 Q MODs8
0 0 0 0
(1) ; g ; Complete Reduction:
0 1 1 0 3 C0, C3, C1 contain three least
0 0 1 4 significant bits of quotient
0 1 1 5
1 0 1 6
1 1 1 7

Table 2.7. Condition Code Resulting from Comparison
Order C3 Cc2 Co

TOP > Operand
TOP < Operand
TOP = Operand
Unordered

- -0
- O 0O
- O - O

Table 2.8. Condition Code Defining Operand Class

Cc3 c2 C1 Co Value at TOP

0 0 0 0 + Unsupported
0 0 0 1 + NaN

0 0 1 0 — Unsupported
0 0 1 1 — NaN

0 1 0 0 + Normal

0 1 0 1 + Infinity

0 1 1 0 — Normal

0 1 1 1 — Infinity

1 0 0 0 +0

1 0 0 1 + Empty

1 0 1 0 -0

1 0 1 1 — Empty

1 1 0 0 + Denormal

1 1 1 0 — Denormal

30

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Bit 7 is the error summary (ES) status bit. The ES bit
is set if any unmasked exception bit (bits 0-5 in the
status word) is set; ES is clear otherwise. The
FERR# (floating point error) signal is asserted when
ES is set.

Bit 6 is the stack flag (SF). This bit is used to distin-
guish invalid operations due to stack overflow or un-
derflow. When SF is set, bit 9 (C1) distinguishes be-
tween stack overflow (C1=1) and underflow
(C1=0).

Table 2.9 shows the six exception flags in bits 0-5
of the status word. Bits 0-5 are set to indicate that
the FPU has detected an exception while executing
an instruction.

The six exception flags in the status word can be
individually masked by mask bits in the FPU control
word. Table 2.9 lists the exception conditions, and
their causes in order of precedence. Table 2.9 also
shows the action taken by the FPU if the corre-
sponding exception flag is masked.

An exception that is not masked by the control word
will cause three things to happen: the corresponding
exception flag in the status word will be set, the ES
bit in the status word will be set and the FERR#
output signal will be asserted. When the Intel486 Mi-
croprocessor attempts to execute another floating
point or WAIT instruction, exception 16 occurs or an
external interrupt happens if the NE=1 in control

register 0. The exception condition must be resolved
via an interrupt service routine. The FPU saves the
address of the floating point instruction that caused
the exception and the address of any memory oper-
and required by that instruction in the instruction and
data pointers (see Section 2.1.3.4).

Note that when a new value is loaded into the status
word by the FLDENV (load environment) or
FRSTOR (restore state) instruction, the value of ES
(bit 7) and its reflection in the B bit (bit 15) are not
derived from the values loaded from memory. The
values of ES and B are dependent upon the values
of the exception flags in the status word and their
corresponding masks in the control word. If ES is set
in such a case, the FERR# output of the Intel486
Microprocessor is activated immediately.

2.1.3.4 Instruction and Data Pointers

Because the FPU operates in parallel with the ALU
(in the Intel486 microprocessor the arithmetic and
logic unit (ALU) consists of the base architecture
registers), any errors detected by the FPU may be
reported after the ALU has executed the floating
point instruction that caused it. To allow identifica-
tion of the failing numeric instruction, the Intel486
Microprocessor contains two pointer registers that
supply the address of the failing numeric instruction
and the address of its numeric memory operand (if
appropriate).

Table 2.9. FPU Exceptions

Excenption Cause Default Action
P (if exception is masked)

Invalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN, integer

Operation indeterminate form (0* o, 0/0, (+ o) + (— o), etc.), or | indefinite, or BCD indefinite
stack overflow/underflow (SF is also set).

Denormalized | At least one of the operands is denormalized, i.e., it has Normal processing

Operand the smallest exponent but a nonzero significand. continues

Zero Divisor The divisor is zero while the dividend is a noninfinite, Result is o
nonzero number.

Overflow The result is too large in magnitude to fit in the specified Result is largest finite value
format. or

Underflow The true result is nonzero but too small to be Result is denormalized or
represented in the specified format, and, if underflow zero
exception is masked, denormalization causes loss of
accuracy.

Inexact The true result is not exactly representable in the Normal processing

Result specified format (e.g., 1/3); the result is rounded continues

(Precision) according to the rounding mode.

31

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

The instruction and data pointers are provided for
user-written error handlers. These registers are ac-
cessed by the FLDENV (load environment),
FSTENV (store environment), FSAVE (save state)
and FRSTOR (restore state) instructions. Whenever
the Intel486 Microprocessor decodes a new floating
point instruction, it saves the instruction (including
any prefixes that may be present), the address of
the operand (if present) and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the Intel486 Microprocessor (protected mode or
real-address mode) and depending on the

operand-size attribute in effect (32-bit operand or
16-bit operand). When the Intel486 Microprocessor
is in the virtual-86 mode, the real address mode for-
mats are used. The four formats are shown in Fig-
ures 2.10-2.13. The floating point instructions
FLDENV, FSTENV, FSAVE and FRSTOR are used
to transfer these values to and from memory. Note
that the value of the data pointer is undefined if the
prior floating point instruction did not have a memory
operand.

NOTE:
The operand size attribute is the D bit in a segment
descriptor.

32-BIT PROTECTED MODE FORMAT

31 23 15 7 0
— +
RESERVED CONTROL WORD 0
: +—
RESERVED STATUS WORD 4
1 i
1 T
RESERVED TAG WORD 8
1 1
1 T
IP OFFSET c
1
1
00000 OPCODE 19,0 CS SELECTOR 10
1
DATA OPERAND OFFSET 14
1 1
T T
RESERVED OPERAND SELECTOR 18
1 i
T T

Figure 2.10. Protected Mode FPU Instruction and Data Pointer Image in Memory, 32-Bit Format

32-BIT REAL-ADDRESS MODE FORMAT

31 l23 15 |7 0
RESE:FIVED CONTRC%L WORD 0
RESE:HVED STATUS: WORD 4
RESEJ‘HVED TAG V:VOF(D 8
RESE:RVED INSTHUCTION:POINTER 15..0 C
0000 L INS'TILUCTION POINTER 31..16 L 0 L OPé'.)DE 10..0 10
RESE:RVED OPERAND P%)INTER 15..0 14
0000 OPE:RANDPOINTER31..16 0000 ' 00000000 18

Figure 2.11. Real Mode FPU Instruction and Data Pointer Image in Memory, 32-Bit Format

32

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

16-BIT PROTECTED MODE FORMAT
15 7 0
:
CONTROL WORD 0
I
T
STATUS WORD 2
L
T
TAG WORD 4
T
IP OFFSET 6
[l
T
CS SELECTOR 8
1
Ll
OPERAND OFFSET A
1
T
OPERAND SELECTOR c
Il
T

16-BIT REAL-ADDRESS MODE AND

VIRTUAL-8086 MODE FORMAT
15 7 0

}

CONTROL WORD 0
Il

1 .

STATUS WORD 2
1

TAG WORD .4
1

INSTRUCTION POINTER 15..0 6
1

IP19.16 |0 OPCODE 10..0 8
1

OPERAND POINTER 15..0 A
1

DP19.16 |00 0 00000000 O0| C
1

Figure 2.12. Protected Mode FPU
Instruction and Data Pointer
Image in Memory, 16-Bit Format

2.1.3.5 FPU Control Word

Figure 2.13. Real Mode FPU
Instruction and Data Pointer
Image in Memory, 16-Bit Format

The FPU provides several processing options that are selected by loading a control word from memory into
the control register. Figure 2.14 shows the format and encoding of fields in the control word.

RESERVED

RESERVED*

ROUNDING CONTROL

15 7

PRECISION CONTROL

RESERVED

EXCEPTION MASKS:

PRECISION

UNDERFLOW

* 0" AFTER RESET OR FINIT;
CHANGEABLE UPON LOADING THE
CONTROL WORD (CW). PROGRAMS
MUST IGNORE THIS BIT.

OVERFLOW

ZERO DIVIDE

DENORMALIZED OPERAND

INVALID OPERATION

Precision Control
00—24 bits (single precision)
01—(reserved)
10—53 bits (double precision)
11—64 bits (extended precision)

240440-8
Rounding Control
00—Round to nearest or even
01—Round down (toward —)
10—Round up (toward + o)
11—Chop (truncate toward zero)

Figure 2.14. FPU Control Word

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

The low-order byte of the FPU control word config-
ures the FPU error and exception masking. Bits 0-5
of the control word contain individual masks for each
of the six exceptions that the FPU recognizes.

The high-order byte of the control word configures
the FPU operating mode, including precision and
rounding.

RC (Rounding Control, bits 10-11)

The RC bits provide for directed rounding and
true chop, as well as the unbiased round to
nearest even mode specified in the |IEEE stan-
dard. Rounding control affects only those in-
structions that perform rounding at the end of
the operation (and thus can generate a preci-
sion exception); namely, FST, FSTP, FIST, all
arithmetic instructions (except FPREM,
FPREM1, FXTRACT, FABS and FCHS), and all
transcendental instructions.

PC (Precision Control, bits 8-9)

The PC bits can be used to set the FPU internal »

operating precision of the significand at less
than the default of 64 bits (extended precision).
This can be useful in providing compatibility with
early generation arithmetic processors of small-
er precision. PC affects only the instructions
ADD, SUB, DIV, MUL, and SQRT. For all other
instructions, either the precision is determined
by the opcode or extended precision is used.

2.1.4 DEBUG AND TEST REGISTERS

2'1.4.1, Debug Registers

The six programmer accessible debug registers, Fig-
ure 2.15, provide on-chip support for debugging. De-
bug registers DR0-3 specify the four linear break-
points. The Debug control register DR7, is used to
set the breakpoints and the Debug Status Register,
DR®6, displays the current state of the breakpoints.
The use of the Debug registers is described in Sec-
tion 9.

34

Debug Registers
LINEAR BREAKPOINT ADDRESS 0 DRO
LINEAR BREAKPOINT ADDRESS 1 DR1
LINEAR BREAKPOINT ADDRESS 2 DR2
LINEAR BREAKPOINT ADDRESS 3 DR3
Intel Reserved Do Not Define DR4
Intel Reserved Do Not Define DR5S
BREAKPOINT STATUS DR6
BREAKPOINT CONTROL DR7
Test Registers
CACHE TEST DATA TR3
CACHE TEST STATUS TR4
CACHE TEST CONTROL TR5
TLB TEST CONTROL TR6
TLB TEST STATUS TR7

TLB = Translation Lookaside Buffer

Figure 2.15

2.1.4.2 Test Registers

The Intel486 Microprocessor contains five test regis-
ters. The test registers are shown in Figure 2.15.
TR6 and TR7 are used to control the testing of the
translation lookaside buffer. TR3, TR4 and TR5 are
used for testing the on-chip cache. The use of the
test registers is discussed in Section 8.

2.1.5 REGISTER ACCESSIBILITY

There are a few differences regarding the accessibil-
ity of the registers in Real and Protected Mode. Ta-
ble 2.10 summarizes these differences. See Section
4, Protected Mode Architecture, for further details.

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 2.10. Register Usage

Usein Usein Usein

Register Real Mode Protected Mode Virtual 8086 Mode

Load Store Load Store Load Store
General Registers Yes Yes Yes Yes Yes Yes
Segment Register Yes Yes Yes Yes Yes Yes

Flag Register Yes Yes Yes Yes IOPL I0OPL*
Control Registers Yes Yes PL=0 PL=10 No Yes
GDTR Yes Yes PL=0 Yes No Yes
IDTR Yes Yes PL=0 Yes No Yes
LDTR No No PL=0 Yes No No
TR No No PL=0 Yes No No
FPU Data Registers Yes Yes Yes Yes Yes Yes
FPU Control Registers Yes Yes Yes Yes Yes Yes
FPU Status Registers Yes Yes Yes Yes Yes Yes
FPU Instruction Pointer Yes Yes Yes Yes Yes Yes
FPU Data Pointer Yes Yes Yes Yes Yes Yes
Debug Registers Yes Yes PL=0 PL=0 No No
Test Registers Yes Yes PL=0 PL=0 No No

NOTES:

PL = 0: The registers can be accessed only when the current privilege level is zero.
*|OPL: The PUSHF and POPF instructions are made |/O Privilege Level sensitive in Virtual 86 Mode.

2.1.6 COMPATIBILITY

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note cer-
tain Intel486 Microprocessor register bits are
Intel reserved. When reserved bits are called
out, treat them as fully undefined. This is essen-
tial for your software compatibility with future
processors! Follow the guidelines below:

1) Do not depend on the states of any unde-
fined bits when testing the values of defined
register bits. Mask them out when testing.

2) Do not depend on the states of any unde-
fined bits when storing them to memory or
another register.

3) Do not depend on the ability to retain infor-
mation written into any undefined bits.

4) When loading registers always load the unde-
fined bits as zeros.

5) However, registers which have been previ-
ously stored may be reloaded without mask-
ing.

Depending upon the values of undefined regis-
ter bits will make your software dependent upon
the unspecified Intel486 Microprocessor han-
dling of these bits. Depending on undefined val-
ues risks making your software incompatible
with future processors that define usages for
the Intel486 Microprocessor-undefined bits.
AVOID ANY SOFTWARE DEPENDENCE UPON
THE STATE OF UNDEFINED Intel486 MICRO-
PROCESSOR REGISTER BITS.

35

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

2.2

The Intel486 Microprocessor instruction set can be
divided into 11 categories of operations:

Instruction Set

Data Transfer

Arithmetic

Shift/Rotate

String Manipulation

Bit Manipulation

Control Transfer

High Level Language Support
Operating System Support
Processor Control
Floating Point

Floating Point Control

The Intel486 Microprocessor instructions are listed
in Section 10. Note that all floating point unit instruc-
tion mnemonics begin with an F.

All Intel486 Microprocessor instructions operate on
either 0, 1, 2 or 3 operands; where an operand re-
sides in a register, in the instruction itself or in mem-
ory. Most zero operand instructions (e.g., CLI, STI)
take only one byte. One operand instructions gener-
ally are two bytes long. The average instruction is
3.2 bytes long. Since the Intel486 Microprocessor
has a 32-byte instruction queue, an average of 10
instructions will be prefetched. The use of two oper-
ands permits the following types of common instruc-
tions:

Register to Register
Memory to Register
Memory to Memory
Immediate to Register
Register to Memory
Immediate to Memory

The operands can be either 8, 16, or 32 bits long. As
a general rule, when executing code written for the
Intel486 or 386 Microprocessors (32-bit code), oper-
ands are 8 or 32 bits; when executing existing 80286
or 8086 code (16-bit code), operands are 8 or 16
bits. Prefixes can be added to all instructions which
override the default length of the operands (i.e., use
32-bit operands for 16-bit code, or 16-bit operands
for 32-bit code).

2.3 Memory Organization

Introduction

Memory on the Intel486 Microprocessor is divided
up into 8-bit quantities (bytes), 16-bit quantities
(words), and 32-bit quantities (dwords). Words are
stored in two consecutive bytes in memory with the
low-order byte at the lowest address, the high order

36

byte at the high address. Dwords are stored in four
consecutive bytes in memory with the low-order byte
at the lowest address, the high-order byte at the
highest address. The address of a word or dword is
the byte address of the low-order byte.

In addition to these basic data types, the Intel486
Microprocessor supports two larger units of memory:
pages and segments. Memory can be divided up
into one or more variable length segments, which
can be swapped to disk or shared between pro-
grams. Memory can also be organized into one or
more 4 Kbyte pages. Finally, both segmentation and
paging can be combined, gaining the advantages of
both systems. The Intel486 Microprocessor sup-
ports both pages and segments in order to provide
maximum flexibility to the system designer. Segmen-
tation and paging are complementary. Segmentation
is useful for organizing memory in logical modules,
and as such is a tool for the application programmer,
while pages are useful for the system programmer
for managing the physical memory of a system.

2.3.1 ADDRESS SPACES

The Intel486 Microprocessor has three distinct ad-
dress spaces: logical, linear, and physical. A logi-
cal address (also known as a virtual address) con-
sists of a selector and an offset. A selector is the
contents of a segment register. An offset is formed
by summing all of the addressing components
(BASE, INDEX, DISPLACEMENT) discussed in Sec-
tion 2.5.3 Memory Addressing Modes into an ef-
fective address. Since each task on the Intel486 Mi-
croprocessor has a maximum of 16K (214 —1) se-
lectors, and offsets can be 4 gigabytes, (232 bits)
this gives a total of 246 bits or 64 terabytes of logi-
cal address space per task. The programmer sees
this virtual address space.

The segmentation unit translates the logical ad-
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad-
dress corresponds to the physical address. The
paging unit translates the linear address space into
the physical address space. The physical address
is what appears on the address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs
the translation of the logical address into the linear
address. In Real Mode, the segmentation unit shifts
the selector left four bits and adds the result to the
offset to form the linear address. While in Protected
Mode every selector has a linear base address as-
sociated with it. The linear base address is stored in
one of two operating system tables (i.e., the Local
Descriptor Table or Global Descriptor Table). The
selector’s linear base address is added to the offset
to form the final linear address.

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

EFFECTIVE ADDRESS CALCULATION

INDEX

BASE DISPLACEMENT

31

SCALE
1,2,4,8
PHYSICAL
v MEMORY
e (D BE3# - BEO#
A31-A2
32, EFFECTIVE
L >
, —>
ADDRESS s
15 320 LOGICAL OR SEGMENTATION 2, | PAGING UNIT /32 .
»> >
R | 43 VIRTUAL ADDRESS UNIT LINEAR | (OPTIONAL USE) |7 pHysicAL
SELECTOR [P | R ADDRESS ADDRESS
L DESCRIPTOR
INDEX
SEGMENT
REGISTER
240440-4

Figure 2.16. Address Translation

Figure 2.16 shows the relationship between the vari-
ous address spaces.

2.3.2 SEGMENT REGISTER USAGE

The main data structure used to organize memory is
the segment. On the Intel486 Microprocessor, seg-
ments are variable sized blocks of linear addresses
which have certain attributes associated with them.
There are two main types of segments: code and
data, the segments are of variable size and can be
as small as 1 byte or as large as 4 gigabytes (232
bytes).

In order to provide compact instruction encoding,
and increase processor performance, instructions
do not need to explicitly specify which segment reg-
ister is used. A default segment register is automati-
cally chosen according to the rules of Table 2.11
(Segment Register Selection Rules). In general, data
references use the selector contained in the DS reg-
ister; Stack references use the SS register and In-
struction fetches use the CS register. The contents
of the Instruction Pointer provide the offset. Special
segment override prefixes allow the explicit use of a
given segment register, and override the implicit
rules listed in Table 2.11. The override prefixes also
allow the use of the ES, FS and GS segment regis-
ters.

There are no restrictions regarding the overlapping
of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero

37

and create a system with a four gigabyte linear ad-
dress space. This creates a system where the virtual
address space is the same as the linear address
space. Further details of segmentation are dis-
cussed in Section 4.1.

2.4 1/0 Space

The Intel486 Microprocessor has two distinct physi-
cal address spaces: Memory and I/0. Generally, pe-
ripherals are placed in 1/0 space although the In-
tel486 Microprocessor also supports memory-
mapped peripherals. The |/O space consists of
64 Kbytes, it can be divided into 64K 8-bit ports, 32K
16-bit ports, or 16K 32-bit ports, or any combination
of ports which add up to less than 64 Kbytes. The
64K 1/0 address space refers to physical memory
rather-than linear address since 1/0 instructions do
not go through the segmentation or paging hard-
ware. The M/IO# pin acts as an additional address
line thus allowing the system designer to easily de-
termine which address space the processor is ac-
cessing.

The 1/0 ports are accessed via the IN and OUT 1/0
instructions, with the port address supplied as an
immediate 8-bit constant in the instruction or in the
DX register. All 8- and 16-bit port addresses are zero
extended on the upper address lines. The 1/0 in-
structions cause the M/IO# pin to be driven low.

1/0 port addresses 00F8H through OOFFH are re-
served for use by Intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 2.11. Segment Register Selection Rules

Type of Implied (Default) Segment Override
Memory Reference Segment Use Prefixes Possible

Code Fetch (013 None
Destination of PUSH, PUSHF, INT, SS None
CALL, PUSHA Instructions
Source of POP, POPA, POPF, SS None
IRET, RET instructions
Destination of STOS, MOVS, REP ES None
STOS, REP MOVS Instructions
(Dl is Base Register)
Other Data References, with
Effective Address Using Base
Register of:

[EAX] DS

[EBX] DS

[ECX] DS

[EDX] DS Al

[ESI] DS

[EDI] DS

[EBP] SS

[ESP] SS

2.5 Addressing Modes

2.5.1 ADDRESSING MODES OVERVIEW

The Intel486 Microprocessor provides a total of 11
addressing modes for instructions to specify oper-
ands. The addressing modes are optimized to allow
the efficient execution of high level languages such
as C and FORTRAN, and they cover the vast majori-
ty of data references needed by high-level lan-
guages.

2.5.2 REGISTER AND IMMEDIATE MODES
Two of the addressing modes provide for instruc-

tions that operate on register or immediate oper-
ands:

Register Operand Mode: The operand is located in
one of the 8-, 16- or 32-bit general registers.

Immediate Operand Mode: The operand is includ-
ed in the instruction as part of the opcode.

2.5.3 32-BIT MEMORY ADDRESSING MODES

The remaining 9 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-
ment base address and an effective address. The
effective address is calculated by using combina-
tions of the following four address elements:

DISPLACEMENT: An 8-, or 32-bit immediate value,
following the instruction.

BASE: The contents of any general purpose regis-
ter. The base registers are generally used by compil-
ers to point to the start of the local variable area.

INDEX: The contents of any general purpose regis-
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char-
acters.

SCALE: The index register’s value can be multiplied
by a scale factor, either 1, 2, 4 or 8. Scaled index

38

intal.

intel486™ DX MICROPROCESSOR

mode is especially useful for accessing arrays or
structures.

Combinations of these 4 components make up the 9
additional addressing modes. There is no perform-
ance penalty for using any of these addressing com-
binations, since the effective address calculation is
pipelined with the execution of other instructions.
The one exception is the simultaneous use of Base
and Index components which requires one addition-
al clock.

As shown in Figure 2.17, the effective address (EA)
of an operand is calculated according to the follow-
ing formula.

EA=Base Reg+ (Index Reg * Scaling)+ Displacement

Direct Mode: The operand’s offset is contained as
part of the instruction as an 8-, 16- or 32-bit dis-
placement.

EXAMPLE: INC Word PTR [500]

Register Indirect Mode: A BASE register contains
the address of the operand.
EXAMPLE: MOV [ECX], EDX

Based Mode: A BASE register's contents is added
to a DISPLACEMENT to form the operand’s offset.

EXAMPLE: MOV ECX, [EAX +24]

Index Mode: An INDEX register’s contents is added
to a DISPLACEMENT to form the operand’s offset.

EXAMPLE: ADD EAX, TABLE[ESI]

Scaled Index Mode: An INDEX fegister's contents is
multiplied by a scaling factor which is added to a

DISPLACEMENT to form the operand’s offset.
EXAMPLE: IMUL EBX, TABLE[ESI*4],7

Based Index Mode: The contents of a BASE register
is added to the contents of an INDEX register to

form the effective address of an operand.
EXAMPLE: MOV EAX, [ESI] [EBX]

Based Scaled Index Mode: The contents of an IN-
DEX register is multiplied by a SCALING factor and
the result is added to the contents of a BASE regis-

ter to obtain the operand’s offset.
EXAMPLE: MOV ECX, [EDX*8] [EAX]

SEGMENT REGISTER

SS
GS
FS
ES
DS

— CS

SELECTOR

= BASE REGISTER I
INDEX REGISTER

SCALE
1,2,4,0R 8

DISPLACEMENT

v
()«

)

ACCESS RIGHTS CS
LIMIT
BASE ADDRESS

EFFECTIVE

(IN INSTRUCTION)

ADDRESS fﬁﬁ;‘im
LINEAR
DESCRIPTOR REGISTERS _,: ADDRESS [s
SELECTED
SEGMENT

cee-

SEGMENT BASE ADDRESS

240440-5

Figure 2.17. Addressing Mode Calculations

39

PRELIMINARY

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Based Index Mode with Displacement: The contents
of an INDEX Register and a BASE register’s con-
tents and a DISPLACEMENT are all summed to-
gether to form the operand offset.

EXAMPLE: ADD EDX, [ESI] [EBP + 00FFFFFOH]

Based Scaled Index Mode with Displacement: The
contents of an INDEX register are multiplied by a
SCALING factor, the result is added to the contents
of a BASE register and a DISPLACEMENT to form
the operand’s offset.

EXAMPLE: MOV EAX, LOCALTABLE[EDI*4]
[EBP +80]

2.5.4 DIFFERENCES BETWEEN 16- AND 32-BIT
ADDRESSES

In order to provide software compatibility with the
80286 and the 8086, the Intel486 Microprocessor
can execute 16-bit instructions in Real and Protect-
ed Modes. The processor determines the size of the
instructions it is executing by examining the D bit in
the CS segment Descriptor. If the D bit is 0 then all
operand lengths and effective addresses are as-
sumed to be 16 bits long. If the D bit is 1 then the
default length for operands and addresses is 32 bits.
In Real Mode the default size for operands and ad-
dresses is 16-bits.

Regardless of the default precision of the operands
or addresses, the Intel486 Microprocessor is able to
execute either 16- or 32-bit instructions. This is
specified via the use of override prefixes. Two prefix-
es, the Operand Size Prefix and the Address
Length Prefix, override the value of the D bit on an
individual instruction basis. These prefixes are auto-
matically added by Intel assemblers.

Example: The processor is executing in Real Mode
and the programmer needs to access the EAX regis-
ters. The assembler code for this might be MOV
EAX, 32-bit MEMORYOP, ASM486 Macro Assem-
bler automatically determines that an Operand Size
Prefix is needed and generates it.

Example: The D bit is 0, and the programmer wishes
to use Scaled Index addressing mode to access an
array. The Address Length Prefix allows the use of
MOV DX, TABLE[ESI*2]. The assembler uses an

Address Length Prefix since, with D=0, the default
addressing mode is 16-bits.

Example: The D bit is 1, and the program wants to
store a 16-bit quantity. The Operand Length Prefix is
used to specify only a 16-bit value; MOV MEM16,
DX.

The OPERAND LENGTH and Address Length Pre-
fixes can be applied separately or in combination to
any instruction. The Address Length Prefix does not
allow addresses over 64 Kbytes to be accessed in
Real Mode. A memory address which exceeds
FFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad-
ditional Intel486 Microprocessor addressing modes.

When executing 32-bit code, the Intel486 Microproc-
essor uses either 8-, or 32-bit displacements, and
any register can be used as base or index registers.
When executing 16-bit code, the displacements are
either 8, or 16 bits, and the base and index register
conform to the 80286 model. Table 2.12 illustrates
the differences.

2.6 Data Formats

2.6.1 DATA TYPES

The Intel486 Microprocessor can support a wide va-
riety of data types. In the following descriptions, the
on-chip floating point unit (FPU) consists of the float-
ing point registers. The central processing unit
(CPU) consists of the base architecture registers.

2.6.1.1 Unsigned Data Types

The FPU does not support unsigned data types. Re-
fer to Table 2.13.

Byte: Unsigned 8-bit quantity

Word: Unsigned 16-bit quantity

Dword: Unsigned 32-bit quantity

The least significant bit (LSB) in a byte is bit 0, and
the most significant bit is 7.

Table 2.12. BASE and INDEX Registers for 16- and 32-Bit Addresses

16-Bit Addressing

32-Bit Addressing

BASE REGISTER BX,BP
INDEX REGISTER SI,DI
SCALE FACTOR none
DISPLACEMENT 0, 8, 16 bits

Any 32-bit GP Register
Any 32-bit GP Register
Except ESP

1,2,4,8

0, 8, 32 bits

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

2.6.1.2 Signed Data Types

All signed data types assume 2's complement nota-
tion. The signed data types contain two fields, a sign
bit and a magnitude. The sign bit is the most signifi-
cant bit (MSB). The number is negative if the sign bit
is 1. If the sign bit is 0, the number is positive. The
magnitude field consists of the remaining bits in the
number. Refer to Table 2.13.

8-bit Integer: Signed 8-bit quantity

16-bit Integer: Signed 16-bit quantity
32-bit Integer: Signed 32-bit quantity
64-bit Integer: Signed 64-bit quantity

The FPU only supports 16-, 32- and 64-bit integers.
The CPU only supports 8-, 16- and 32-bit integers.

2.6.1.3 Floating Point Data Types

Floating point data type in the Intel486 Microproces-
sor contain three fields, sign, significand and expo-
nent. The sign field is one bit and is the MSB of the
floating point number. The number is negative if the
sign bit is 1. If the sign bit is 0, the number is posi-
tive. The significand gives the significant bits of the
number. The exponent field contains the power of 2
needed to scale the significand. Refer to Table 2.13.

Only the FPU supports floating point data types.

Single Precision Real: 23-bit significand and 8-
bit exponent. 32 bits total.

52-bit significand and 11-
bit exponent. 64 bits total.
64-bit significand and 15-
bit exponent. 80 bits total.

Double Precision Real:

Extended Precision Real:

M

2.6.1.4 BCD Data Types

The Intel486 Microprocessor supports packed and
unpacked binary coded decimal (BCD) data types. A
packed BCD data type contains two digits per byte,
the lower digit is in bits 0-3 and the upper digit in
bits 4-7. An unpacked BCD data type contains 1
digit per byte stored in bits 0-3.

The CPU supports 8-bit packed and unpacked BCD
data types. The FPU only supports 80-bit packed
BCD data types. Refer to Table 2.13.

2.6.1.5 String Data Types
A string data type is a contiguous sequence of bits,

bytes, words or dwords. A string may contain be-
tween 1 byte and 4 Gbytes. Refer to Table 2.14.

String data types are only supported by the CPU.
Byte String: Contiguous sequence of bytes.

Word String: Contiguous sequence of words.
Dword String: Contiguous sequence of dwords.

Bit String: A set of contiguous bits. In the Intel486

Microprocessor bit strings can be up to 4 gigabits
long.

2.6.1.6 ASCII Data Types

The Intel486 Microprocessor supports ASCIl (Ameri-
can Standard Code for Information Interchange)
strings and can perform arithmetic operations (such
as addition and division) on ASCII data. Refer to Ta-
ble 2.14.

intel. Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 2.13. Intel486™ Microprocessor Data Types
Supported by Supported by

Base Registers FPU Least Significant Byte
1l i
Data Format Range |Precision| 7 o|7 ol 7 o|7 o|7 o|7 oI 7 o|1 o| 7 0[7 0
7 0‘
Byte X 0-255 |8 bits
15 0|
Word X 0-64K |16 bits I
31 ' 0
Dword X 0-4G |32 bits
7 0
8-Bit Integer X 102 |8bits Comploment
SignBit T
15 0|
16-Bit Integer x|x| 10* |16bits Comptement
SignBit T
31 0
32.Bit Integer x{x| 10° |s2bits Compiement | |
SignBit T
63 0
64-Bit Integer X| 10! |eabits | Gomement | |
SignBit T
7 0]
8-Bit Unpacked BCD X 0-9 |1 Digit One BCD Digit P"'BV“’I
7 0‘
8-Bit Packed BCD X 0-9 2 Digits Two BCD Digits per BV"’I
79 72 0|
80-Bit Packed BCD X| £10%8 |18 Digits | |wont |
T SignBit
31 23 0
Single Precision Real X| £10%38 |24 Bits “2;?_" l Significand
SignBit T
63 52 0|
Double Precision Real X| £10%308 |53 Bits [[B"E,f:" Significand
SignBit T
79 63 0
i +4932 : Biased Significand
Extended Precision Real| [X|+10 64 Bits Exp. 1 ignifican
T SignBit

intgl. Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 2.14. String and ASCII Data Types

String Data Types
Address A+N A+1 A
. N e 1 0
Byte String 7 0 7 0|7 0|
A+2N+1 A+2N A+3 A+2 A+1 A
J T I
Word String |‘5 N J oo |15 1 °|'5 0 J
A+4N+3 A+4N+2 A+4N+1 A+4N A+7 A+6 A+5 A+4 A+3 A+2 A+1 A
T T T T T T T T T
Dword N cee 1 o
String |31 0| 31 0|31 0

A+268,435,455 A—268,435,456

A+2 A+1 A A-1 A-2

1 A+3 A-3
o N N
String 7 0|7 0) 7 0|7 0|7 07 ...1 0f7 0|7 0|7 0 7 0{7 0
T

T 1t1
+2,147,483,647 +7 +10 —2,147,483,648

ASCII Data Types

ASCII Character

2.6.1.7 Pointer Data Types Table 2.15. Pointer Data Types

. . . Least Sig Byte
A pointer data type contains a value that gives the 1
address of a piece of data. The Intel486 Microproc-
essor supports two types of pointers. Refer to Table Data Format [L I I ' I l I I
2.15. 47 31 0
48-bit Pointer: 16-bit selector and 32-bit offset 48-Bit Pointer l selmrT Offset

32-bit Pointer: 32-bit offset

31)

32-Bit Pointer Offset

43

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

2.6.2 LITTLE ENDIAN vs BIG ENDIAN
DATA FORMATS

The Intel486 Microprocessor, as well as all other
members of the 86 architecture use the “little-endi-
an” method for storing data types that are larger
than one byte. Words are stored in two consecutive
bytes in memory with the low-order byte at the low-
est address and the high order byte at the high ad-
dress. Dwords are stored in four consecutive bytes
in memory with the low-order byte at the lowest ad-
dress and the high order byte at the highest address.
The address of a word or dword data item is the byte
address of the low-order byte. ’

Figure 2.18 illustrates the differences between the
big-endian and little-endian formats for dwords. The
32 bits of data are shown with the low order bit num-
bered bit 0 and the high order bit numbered 32. Big-
endian data is stored with the high-order bits at the
lowest addressed byte. Little-endian data is stored
with the high-order bits in the highest addressed
byte.

The Intel486 Microprocessor has two instructions
which can convert 16- or 32-bit data between the
two byte orderings. BSWAP (byte swap) handles
four byte values and XCHG (exchange) handles two
byte values.

m+3
24

m+2
23 16

m+1
15 8 7 0

Dword in Little-Endian Memory Format

m m+1 m+2
24 23 16 15 8 7 0

L I | l |

Dword in Big-Endian Memory Format

Figure 2.18. Big vs Little Endian Memory Format

2.7 Interrupts

2.7.1 INTERRUPTS AND EXCEPTIONS

Interrupts and exceptions alter the normal program
flow, in order to handle external events, to report
errors or exceptional conditions. The difference be-
tween interrupts and exceptions is that interrupts are
used to handle asynchronous external events while
exceptions handle instruction faults. Although a pro-
gram can generate a software interrupt via an INT N
instruction, the processor treats software interrupts
as exceptions.

44

Hardware interrupts occur as the result of an exter-
nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter-
rupt handler is finished servicing the interrupt, exe-
cution proceeds with the instruction immediately af-
ter the interrupted instruction. Sections 2.7.3 and
2.7.4 discuss the differences between Maskable and
Non-Maskable interrupts.

Exceptions are classified as faults, traps, or aborts
depending on the way they are reported, and wheth-
er or not restart of the instruction causing the excep-
tion is supported. Faults are exceptions that are de-
tected and serviced before the execution of the
faulting instruction. A fault would occur in a virtual
memory system, when the processor referenced a
page or a segment which was not present. The oper-
ating system would fetch the page or segment from
disk, and then the Intel486 Microprocessor would re-
start the instruction. Traps are exceptions that are
reported immediately after the execution of the in-
struction which caused the problem. User defined
interrupts are examples of traps. Aborts are excep-
tions which do not permit the precise location of the
instruction causing the exception to be determined.
Aborts are used to report severe errors, such as a
hardware error, or illegal values in system tables.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
immediately following the interrupted instruction. On
the other hand, the return address from an excep-
tion fault routine will always point at the instruction
causing the exception and include any leading in-
struction prefixes. Table 2.16 summarizes the possi-
ble interrupts for the Intel486 Microprocessor and
shows where the return address points.

The Intel486 Microprocessor has the ability to han-
dle up to 256 different interrupts/exceptions. In or-
der to service the interrupts, a table with up to 256
interrupt vectors must be defined. The interrupt vec-
tors are simply pointers to the appropriate interrupt
service routine. In Real Mode (see Section 3.1), the
vectors are 4 byte quantities, a Code Segment plus
a 16-bit offset; in Protected Mode, the interrupt vec-
tors are 8 byte quantities, which are put in an Inter-
rupt Descriptor Table (see Section 4.3.3.4). Of the
256 possible interrupts, 32 are reserved for use by
Intel, the remaining 224 are free to be used by the
system designer.

2.7.2 INTERRUPT PROCESSING

When an interrupt occurs the following actions hap-
pen. First, the current program address and the
Flags are saved on the stack to allow resumption of
the interrupted program. Next, an 8-bit vector is sup-

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

plied to the Intel486 Microprocessor which identifies
the appropriate entry in the interrupt table. The table
contains the starting address of the interrupt service
routine. Then, the user supplied interrupt service
routine is executed. Finally, when an IRET instruc-
tion is executed the old processor state is restored
and program execution resumes at the appropriate
instruction.

The 8-bit interrupt vector is supplied to the Intel486
Microprocessor in several different ways: exceptions
supply the interrupt vector internally; software INT
instructions contain or imply the vector; maskable
hardware interrupts supply the 8-bit vector via the
interrupt acknowledge bus sequence. Non-Maska-
ble hardware interrupts are assigned to interrupt
vector 2.

2.7.3 MASKABLE INTERRUPT

Maskable interrupts are the most common way used
by the Intel486 Microprocessor to respond to asyn-
chronous external hardware events. A hardware in-
terrupt occurs when the INTR is pulled high and
the Interrupt Flag bit (IF) is enabled. The processor
only responds to interrupts between instructions,
(REPeat String instructions, have an “interrupt win-
dow”, between memory moves, which allows inter-
rupts during long string moves). When an interrupt
occurs the processor reads an 8-bit vector supplied
by the hardware which identifies the source of the
interrupt, (one of 224 user defined interrupts). The
exact nature of the interrupt sequence is discussed
in Section 7.2.10.

Table 2.16. Interrupt Vector Assignments

Instruction Which Returr.l Address
Function Interrupt Can Cause Pomt§ to Type
Number Exception Faultln.g
Instruction
Divide Error 0 DIv, IDIV YES FAULT
Debug Exception 1 Any Instruction YES TRAP*
NMI Interrupt 2 INT 2 or NMI NO NMI
One Byte Interrupt 3 INT NO TRAP
Interrupt on Overflow 4 INTO NO TRAP
Array Bounds Check 5 BOUND YES FAULT
Invalid OP-Code 6 Any lllegal Instruction YES FAULT
Device Not Available 7 ESC, WAIT YES FAULT
Double Fault 8 Any Instruction That Can ABORT
Generate an Exception

Intel Reserved 9
Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT
Segment Not Present 11 Segment Register Instructions YES FAULT
Stack Fault 12 Stack References YES FAULT
General Protection Fault 13 Any Memory Reference YES FAULT
Page Fault 14 Any Memory Access or Code Fetch YES FAULT
Intel Reserved 15
Floating Point Error 16 Floating Point, WAIT YES FAULT
Alignment Check Interrupt 17 Unaligned Memory Access YES FAULT
Intel Reserved 18-31
Two Byte Interrupt 0-255 INT n NO TRAP

*Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction.

45

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

The IF bit in the EFLAG registers is reset when an
interrupt is being serviced. This effectively disables
servicing additional interrupts during an interrupt
service routine. However, the IF may be set explicitly
by the interrupt handler, to allow the nesting of inter-
rupts. When an IRET instruction is executed the
original state of the IF is restored.

2.7.4 NON-MASKABLE INTERRUPT

Non-maskable interrupts provide a method of servic-
ing very high priority interrupts. A common example
of the use of a non-maskable interrupt (NMI) would
be to activate a power failure routine. When the NMI
input is pulled high it causes an interrupt with an
internally supplied vector value of 2. Unlike a normal
hardware interrupt, no interrupt acknowledgment se-
quence is performed for an NMI.

While executing the NMI servicing procedure, the In-
tel486 Microprocessor will not service further NMI
requests until an interrupt return (IRET) instruction is
executed or the processor is reset. If NMI occurs
while currently servicing an NMl, its presence will be
saved for servicing after executing the first IRET in-
struction. The IF bit is cleared at the beginning of an
NMI interrupt to inhibit further INTR interrupts.

2.7.5 SOFTWARE INTERRUPTS

A third type of interrupt/exception for the Intel486
Microprocessor is the software interrupt. An INT n
instruction causes the processor to execute the in-
terrupt service routine pointed to by the nth vector in
the interrupt table.

A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug-
ging tool.

A final type of software interrupt is the single step
interrupt. It is discussed in Section 9.2.

46

2.7.6 INTERRUPT AND EXCEPTION
PRIORITIES

Interrupts are externally-generated events. Maska-
ble Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at in-
struction boundaries. When NMI and maskable
INTR are both recognized at the same instruction
boundary, the Intel486 Microprocessor invokes the
NMI service routine first. If, after the NMI service
routine has been invoked, maskable interrupts are
still enabled, then the Intel486 Microprocessor will
invoke the appropriate interrupt service routine.

Table 2.17a. Intel486™ Microprocessor Priority
for Invoking Service Routines in Case
of Simultaneous External Interrupts
1. NMI
2.INTR

Exceptions are internally-generated events. Excep-
tions are detected by the Intel486 Microprocessor if,
in the course of executing an instruction, the In-
tel486 Microprocessor detects a problematic condi-
tion. The Intel486 Microprocessor then immediately
invokes the appropriate exception service routine.
The state of the Intel486 Microprocessor is such
that the instruction causing the exception can be re-
started. If the exception service routine has taken
care of the problematic condition, the instruction will
execute without causing the same exception.

It is possible for a single instruction to generate sev-
eral exceptions (for example, transferring a single
operand could generate two page faults if the oper- .
and location spans two “not present” pages). How-
ever, only one exception is generated upon each at-
tempt to execute the instruction. Each exception
service routine should correct its corresponding ex-
ception, and restart the instruction. In this manner,
exceptions are serviced until the instruction exe-
cutes successfully.

As the Intel486 Microprocessor executes instruc-
tions, it follows a consistent cycle in checking for
exceptions, as shown in Table 2.17b. This cycle is
repeated as each instruction is executed, and oc-
curs in parallel with instruction decoding and execu-
tion.

intelo Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 2.17b. Sequence of Exception Checking

Consider the case of the Intel486 Microproces-
sor having just completed an instruction. It then
performs the following checks before reaching
the point where the next instruction is completed:

1. Check for Exception 1 Traps from the instruc-
tion just completed (single-step via Trap Flag,
or Data Breakpoints set in the Debug Regis-
ters).

2. Check for Exception 1 Faults in the next in-
struction (Instruction Execution Breakpoint
set in the Debug Registers for the next in-
struction).

3. Check for external NMI and INTR.

4. Check for Segmentation Faults that prevent-
ed fetching the entire next instruction (excep-
tions 11 or 13).

5. Check for Page Faults that prevented fetching
the entire next instruction (exception 14).

6. Check for Faults decoding the next instruction
(exception 6 if illegal opcode; exception 6 if in
Real Mode or in Virtual 8086 Mode and at-
tempting to execute an instruction for Protect-
ed Mode only (see Section 4.6.4); or excep-
tion 13 if instruction is longer than 15 bytes, or
privilege violation in Protected Mode (j.e., not
at IOPL or at CPL=0).

7. If WAIT opcode, check if TS=1 and MP=1
(exception 7 if both are 1).

8. If opcode for Floating Point Unit, check if
EM=1 or TS=1 (exception 7 if either are 1).

9. If opcode for Floating Point Unit (FPU), check
FPU error status (exception 16 if error status
is asserted).

10. Check in the following order for each memo-
ry reference required by the instruction:

a. Check for Segmentation Faults that pre-
vent transferring the entire memory quan-
tity (exceptions 11, 12, 13).

b. Check for Page Faults that prevent trans-
ferring the entire memory quantity (ex-
ception 14).

NOTE:
The order stated supports the concept of the
paging mechanism being “underneath” the seg-
mentation mechanism. Therefore, for any given
code or data reference in memory, segmenta-
tion exceptions are generated before paging ex-
ceptions are generated.

47

2.7.7 INSTRUCTION RESTART

The Intel486 Microprocessor fully supports restart-
ing all instructions after faults. If an exception is de-
tected in the instruction to be executed (exception
categories 4 through 10 in Table 2.17b), the Intel486
Microprocessor invokes the appropriate exception
service routine. The Intel486 Microprocessor is in a
state that permits restart of the instruction, for all
cases but those in Table 2.17c. Note that all such
cases are easily avoided by proper design of the
operating system.

Table 2.17c. Conditions Preventing
Instruction Restart

An instruction causes a task switch to a task
whose Task State Segment is partially “not
present”. (An entirely “not present” TSS is re-
startable.) Partially present TSS's can be avoid-
ed either by keeping the TSS’s of such tasks
present in memory, or by aligning TSS segments
to reside entirely within a single 4K page (for TSS
segments of 4 Kbytes or less).

NOTE:
These conditions are avoided by using the oper-
ating system designs mentioned in this table.

2.7.8 DOUBLE FAULT

A Double Fault (exception 8) results when the proc-
essor attempts to invoke an exception service rou-
tine for the segment exceptions (10, 11, 12 or 13),
but in the process of doing so, detects an exception
other than a Page Fault (exception 14).

A Double Fault (exception 8) will also be generated
when the processor attempts to invoke the Page
Fault (exception 14) service routine, and detects an
exception other than a second Page Fault. In any
functional system, the entire Page Fault service rou-
tine must remain “present” in memory.

When a Double Fault occurs, the Intel486 Micro-
processor invokes the exception service routine for
exception 8.

2.7.9 FLOATING POINT INTERRUPT VECTORS

Several interrupt vectors of the Intel486 Microproc-
essor are used to report exceptional conditions
while executing numeric programs in either real or
protected mode. Table 2.18 shows these interrupts
and their causes.

intelw Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 2.18. Interrupt Vectors Used by FPU

Interrupt

Number Cause of Interrupt

7 A Floating Point instruction was encountered when EM or TS of the Intel486™ Processor
control register zero (CR0) was set. EM = 1 indicates that software emulation of the
instruction is required. When TS is set, either a Floating Point or WAIT instruction causes
interrupt 7. This indicates that the current FPU context may not belong to the current task.

13 The first word or doubleword of a numeric operand is not entirely within the limit of its
segment. The return address pushed onto the stack of the exception handler points at the
Floating Point instruction that caused the exception, including any prefixes. The FPU has
not executed this instruction; the instruction pointer and data pointer register refer to a
previous, correctly executed instruction.

16 The previous numerics instruction caused an unmasked exception. The address of the
faulty instruction and the address of its operand are stored in the instruction pointer and
data pointer registers. Only Floating Point and WAIT instructions can cause this interrupt.
The Intel486T™ Processor return address pushed onto the stack of the exception handler
points to a WAIT or Floating Point instruction (including prefixes). This instruction can be
restarted after clearing the exception condition in the FPU. The FNINIT, FNCLEX,
FNSTSW, FNSTENV, and FNSAVE instructions cannot cause this interrupt.

48

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

3.0 REAL MODE ARCHITECTURE

3.1 Real Mode Introduction

When the processor is reset or powered up it is ini-
tialized in Real Mode. Real Mode has the same base
architecture as the 8086, but allows access to the
32-bit register set of the Intel486 Microprocessor.
The addressing mechanism, memory size, interrupt
handling, are all identical to the Real Mode on the
80286.

All of the Intel486 Microprocessor instructions are
available in Real Mode (except those instructions
listed in Section 4.6.4). The default operand size in
Real Mode is 16 bits, just like the 8086. In order to
use the 32-bit registers and addressing modes, over-
ride prefixes must be used. In addition, the segment
size on the Intel486 Microprocessor in Real Mode is
64 Kbytes so 32-bit effective addresses must have a
value less the 0000FFFFH. The primary purpose of
Real Mode is to set up the processor for Protected
Mode Operation.

The LOCK prefix on the Intel486 Microprocessor,
even in Real Mode, is more restrictive than on the
80286. This is due to the addition of paging on the
Intel486 Microprocessor in Protected Mode and Vir-
tual 8086 Mode. Paging makes it impossible to guar-
antee that repeated string instructions can be
LOCKed. The Intel486 Microprocessor can’t require
that all pages holding the string be physically pres-
ent in memory. Hence, a Page Fault (exception 14)
might have to be taken during the repeated string
instruction. Therefore the LOCK prefix can’t be sup-
ported during repeated string instructions.

These are the only instruction forms where the
LOCK prefix is legal on the Intel486 Microprocessor:

Operands
Opcode (Dest, Source)

BIT Test and Mem, Reg/immed
SET/RESET/COMPLEMENT

XCHG Reg, Mem

XCHG Mem, Reg

ADD, OR, ADC, SBB, Mem, Reg/immed
AND, SUB, XOR

NOT, NEG, INC, DEC Mem

CMPXCHG, XADD Mem, Reg

An exception 6 will be generated if a LOCK prefix is
placed before any instruction form or opcode not
listed above. The LOCK prefix allows indivisible
read/modify/write operations on memory operands
using the instructions above. For example, even the
ADD Reg, Mem is not LOCKable, because the Mem
operand is not the destination (and therefore no
memory read/modify/operation is being performed).

Since, on the Intel486 Microprocessor, repeated
string instructions are not LOCKable, it is not possi-
ble to LOCK the bus for a long period of time. There-
fore, the LOCK prefix is not IOPL-sensitive on the
Intel486 Microprocessor. The LOCK prefix can be
used at any privilege level, but only on the instruc-
tion forms listed above.

3.2 Memory Addressing

In Real Mode the maximum memory size is limited to
1 megabyte. Thus, only address lines A2-A19 are
active. (Exception, after RESET address lines A20—-
A31 are high during CS-relative memory cycles until
an intersegment jump or call is executed (see Sec-
tion 6.5)).

15 0

OFFSET

19 0

SEGMENT
SELECTOR

0000

MEMORY OPERAND

MAX LIMIT
FIXED AT 64K IN
REAL MODE
SELECTED
64K SEGMENT

SEGMENT BASE

240440-9

Figure 3.1. Real Address Mode Addressing

49

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Since paging is not allowed in Real Mode the linear
addresses are the same as physical addresses.
Physical addresses are formed in Real Mode by
adding the contents of the appropriate segment reg-
ister which is shifted left by four bits to an effective
address. This addition results in a physical address
from 00000000H to 0010FFEFH. This is compatible
with 80286 Real Mode. Since segment registers are
shifted left by 4 bits, Real Mode segments always
start on 16 byte boundaries.

All segments in Real Mode are exactly 64 Kbytes
long, and may be read, written, or executed. The
Intel486 Microprocessor will generate an exception
13 if a data operand or instruction fetch occurs past
the end of a segment (i.e., if an operand has an
offset greater than FFFFH, for example a word with
a low byte at FFFFH and the high byte at 0000H).

Segments may be overlapped in Real Mode. Thus, if
a particular segment does not use all 64 Kbytes an-
other segment can be overlayed on top of the un-
used portion of the previous segment. This allows
the programmer to minimize the amount of physical
memory needed for a program.

3.3 Reserved Locations

There are two fixed areas in memory which are re-
served in Real address mode: system initialization
area and the interrupt table area. Locations 00000H
through 003FFH are reserved for interrupt vectors.
Each one of the 256 possible interrupts has a 4-byte
jump vector reserved for it. Locations FFFFFFFOH
through FFFFFFFFH are reserved for system initiali-
zation.

3.4

Many of the exceptions shown in Table 2.16 and
discussed in Section 2.7 are not applicable to Real
Mode operation, in particular exceptions 10, 11, 14,
17, will not happen in Real Mode. Other exceptions
have slightly different meanings in Real Mode; Table
3.1 identifies these exceptions.

Interrupts

3.5 Shutdown and Halt

The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, INTR with interrupts enabled
(IF=1), or RESET will force the Intel486 Microproc-
essor out of halt. If interrupted, the saved CS:IP will
point to the next instruction after the HLT.

As in the case in protected mode, the shutdown will
occur when a severe error is detected that prevents
further processing. In Real Mode, shutdown can oc-
cur under two conditions:

An interrupt or an exception occur (exceptions 8 or
13) and the interrupt vector is larger than the Inter-
rupt Descriptor Table (i.e., there is not an interrupt
handler for the interrupt).

A CALL, INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even (i.e.,
pushing a value on the stack when SP = 0001 re-
sulting in a stack segment greater than FFFFH).

An NMI input can bring the processor out of shut-
down if the Interrupt Descriptor Table limit is large
enough to contain the NMI interrupt vector (at least
0017H) and the stack has enough room to contain
the vector and flag information (i.e., SP is greater
than 0005H). If these conditions are not met, the
Intel486 CPU is unable to execute the NMI and exe-
cutes another shutdown cycle. In this case, the proc-
essor remains in the shutdown and can only exit via
the RESET input.

Table 3.1. Exceptions with Different Meanings in Real Mode (see Table 2.16)

Function Interrupt Related Return
Number Instructions Address Location
Interrupt table limit too small 8 INT Vector is not Before
within table limit Instruction
CS, DS, ES, FS, GS 13 Word memory reference Before
Segment overrun exception beyond offset = FFFFH. Instruction
An attempt to execute
past the end of CS segment.
SS Segment overrun exception 12 Stack Reference Before
beyond offset = FFFFH Instruction

50

intelo Intel486™ DX MICROPROCESSOR PRELIMINARY

4.0 PROTECTED MODE
ARCHITECTURE

4.1 Introduction

The complete capabilities of the Intel486 Microproc-
essor are unlocked when the processor operates in
Protected Virtual Address Mode (Protected Mode).
Protected Mode vastly increases the linear address
space to four gigabytes (232 bytes) and allows the
running of virtual memory programs of almost unlim-
ited size (64 terabytes or 246 bytes). In addition Pro-
tected Mode allows the Intel486 Microprocessor to
run all of the existing 8086, 80286 and 386 micro-
processor software, while providing a sophisticated
memory management and a hardware-assisted pro-
tection mechanism. Protected Mode allows the use
of additional instructions especially optimized for
supporting multitasking operating systems. The base
architecture of the Intel486 Microprocessor remains
the same, the registers, instructions, and addressing
modes described in the previous sections are re-
tained. The main difference between Protected
Mode, and Real Mode from a programmer’s view is
the increased address space, and a different ad-
dressing mechanism.

4.2 Addressing Mechanism

Like Real Mode, Protected Mode uses two compo-
nents to form the logical address, a 16-bit selector is
used to determine the linear base address of a seg-
ment, the base address is added to a 32-bit effective
address to form a 32-bit linear address. The linear
address is then either used as the 32-bit physical
address, or if paging is enabled the paging mecha-
nism maps the 32-bit linear address into a 32-bit
physical address.

The difference between the two modes lies in calcu-
lating the base address. In Protected Mode the se-
lector is used to specify an index into an operating
system defined table (see Figure 4.1). The table
contains the 32-bit base address of a given seg-
ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the Intel486 Microprocessor. As such,
paging operates beneath segmentation. The paging
mechanism translates the protected linear address
which comes from the segmentation unit into a
physical address. Figure 4.2 shows the complete In-
tel486 Microprocessor addressing mechanism with
paging enabled.

48/32 BIT POINTER

SELECTOR OFFSET

47/31 31/15 0

ACCESS RIGHTS
LIMIT
BASE ADDRESS

SEGMENT
DESCRIPTOR

SEGMENT LIMIT

| MEMORY OPERAND

UP TO SELECTED
4G BYTES SEGMENT

SEGMENT BASE
ADDRESS

240440-10

Figure 4.1. Protected Mode Addressing

51

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

48 BIT POINTER

ﬁEGM ENT

15

PHYSICAL ADDRESS

4KBYTES

ACCESS RIGHTS
LIMIT
BASE ADDRESS

LINEAR
ADDRESS

32

SEGMENT

Intel486™ CPU
PAGING
MECHANISM

4K BYTES

4K BYTES
PHYSICAL
ADDRESS

PHYSICAL PAGE:
4K BYTES

MEMORY OPERAND

v

PAGE FRAME
ADDRESS

DESCRIPTOR

4K BYTES

4K BYTES

4K BYTES

240440-11

Figure 4.2. Paging and Segmentation

4.3 Segmentation

4.3.1 SEGMENTATION INTRODUCTION

Segmentation is one method of memory manage-
ment. Segmentation provides the basis for protec-
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam-
ple, all of the code of a given program could be con-
tained in a segment, or an operating system table
may reside in a segment. All information about a
segment is stored in an 8 byte data structure called
a descriptor. All of the descriptors in a system are
contained in tables recognized by hardware.

4.3.2 TERMINOLOGY

The following terms are used throughout the discus-
sion of descriptors, privilege levels and protection:

PL: Privilege Level—One of the four hierarchical
privilege levels. Level 0 is the most privileged level
and level 3 is the least privileged. More privileged
levels are numerically smaller than less privileged
levels.

RPL: Requestor Privilege Level—The privilege level
of the original supplier of the selector. RPL is deter-
mined by the least two significant bits of a selector.

52

DPL: Descriptor Privilege Level—This is the least
privileged level at which a task may access that de-
scriptor (and the segment associated with that de-
scriptor). Descriptor Privilege Level is determined by
bits 6:5 in the Access Right Byte of a descriptor.

CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which equals the
privilege level of the code segment being executed.
CPL can also be determined by examining the low-
est 2 bits of the CS register, except for conforming
code segments.

EPL: Effective Privilege Level—The effective privi-
lege level is the least privileged of the RPL and DPL.
Since smaller privilege level values indicate greater
privilege, EPL is the numerical maximum of RPL and
DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

4.3.3 DESCRIPTOR TABLES

4.3.3.1 Descriptor Tables Introduction

The descriptor tables define all of the segments
which are used in an Intel486 Microprocessor sys-
tem. There are three types of tables on the Intel486

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Microprocessor which hold descriptors: the Global
Descriptor Table, Local Descriptor Table, and the In-
terrupt Descriptor Table. All of the tables are vari-
able length memory arrays. They can range in size
between 8 bytes and 64 Kbytes. Each table can hold
up to 8192 8-byte descriptors. The upper 13 bits of a
selector are used as an index into the descriptor ta-
ble. The tables have registers associated with them
. which hold the 32-bit linear base address, and the
16-bit limit of each table.

Each of the tables has a register associated with it,
the GDTR, LDTR, and the IDTR (see Figure 4.3).
The LGDT, LLDT, and LIDT instructions, load the
base and limit of the Global, Local, and Interrupt De-
scriptor Tables, respectively, into the appropriate
register. The SGDT, SLDT, and SIDT store the base
and limit values. These tables are manipulated by
the operating system. Therefore, the load descriptor
table instructions are privileged instructions.

32
1 PROGRAM INVISIBLE

} AUTOMATICALLY LOADED |
+ FROM LDT DESCRIPTOR

.
H 1]

15 [15 o !

LDT DESCR ' '

LDTR l SELECIOR I ! J LDT LIMIT :
' L]

v [oor ease 1

' | UNEaR ADDRESS |

15 0, !

' .

1]

]

.

IDT BASE
LINEAR ADDRESS

31 0

IDTR

GDT LIMIT

GDT BASE
LINEAR ADDRESS

31 4]

GDTR

240440-12

Figure 4.3. Descriptor Table Registers

4.3.3.2 Global Descriptor Table

The Global Descriptor Table (GDT) contains de-
scriptors which are possibly available to all of the
tasks in a system. The GDT can contain any type of
segment descriptor except for descriptors which are
used for servicing interrupts (i.e., interrupt and trap
descriptors). Every Intel486 Microprocessor system
contains a GDT. Generally the GDT contains code
and data segments used by the operating systems
and task state segments, and descriptors for the
LDTs in a system.

The first slot of the Global Descriptor Table corre-
sponds to the null selector and is not used. The null
selector defines a null pointer value.

53

4.3.3.3 Local Descriptor Table

LDTs contain descriptors which are associated with
a given task. Generally, operating systems are de-
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LDTs provide a mecha-
nism for isolating a given task’s code and data seg-
ments from the rest of the operating system, while
the GDT contains descriptors for segments which
are common to all tasks. A segment cannot be ac-
cessed by a task if its segment descriptor does not
exist in either the current LDT or the GDT. This pro-
vides both isolation and protection for a task’s seg-
ments, while still allowing global data to be shared
among tasks.

Unlike the 6 byte GDT or IDT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 16-bit selector. This se-
lector refers to a Local Descriptor Table descriptor in
the GDT.

4.3.3.4 Interrupt Descriptor Table

The third table needed for Intel486 Microprocessor
systems is the Interrupt Descriptor Table. (See Fig-
ure 4.4.) The IDT contains the descriptors which
point to the location of up to 256 interrupt service
routines. The IDT may contain only task gates, inter-
rupt gates, and trap gates. The IDT should be at
least 256 bytes in size in order to hold the descrip-
tors for the 32 Intel Reserved Interrupts. Every inter-
rupt used by a system must have an entry in the IDT.
The IDT entries are referenced via INT instructions,
external interrupt vectors, and exceptions. (See Sec-
tion 2.7 Interrupts).

~ ~\
X MEMORY 2
GATE FOR
INTERRUPT #n
GATE FOR
INTERRUPT #n-1
. INTERRUPT
o DESCRIPTOR
CPY . TABLE
(IoT)
- ° GATE FOR
1T LIMIT || INTERRUPT #1 ‘z", ﬂ
GATE FOR ax ﬁ
INTERRUPT #0 3 S
IDT BASE s S
- - } J z3
~
~ ~
240440-13

Figure 4.4. Interrupt Descriptor
Table Register Use

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

4.3.4 DESCRIPTORS

4.3.4.1 Descriptor Attribute Bits

The object to which the segment selector points to
is called a descriptor. Descriptors are eight byte
quantities which contain attributes about a given re-
gion of linear address space (i.e., a segment). These
attributes include the 32-bit base linear address of
the segment, the 20-bit length and granularity of the
segment, the protection level, read, write or execute
privileges, the default size of the operands (16-bit or
32-bit), and the type of segment. All of the attribute
information about a segment is contained in 12 bits
in the segment descriptor. Figure 4.5 shows the gen-
eral format of a descriptor. All segments on the In-
tel486 Microprocessor have three attribute fields in
common: the P bit, the DPL bit, and the S bit. The
Present P bit is 1 if the segment is loaded in physical
memory, if P=0 then any attempt to access this

segment causes a not present exception (exception
11). The Descriptor Privilege Level DPL is a two-bit
field which specifies the protection level 0-3 associ-
ated with a segment.

The Intel486 Microprocessor has two main catego-
ries of segments: system segments and non-system
segments (for code and data). The segment S bit in
the segment descriptor determines if a given seg-
ment is a system segment or a code or data seg-
ment. If the S bit is 1 then the segment is either a
code or data segment, if it is O then the segment is a
system segment.

4.3.4.2 Intel486™ CPU Code, Data Descriptors
(s=1)

Figure 4.6 shows the general format of a code and
data descriptor and Table 4.1 illustrates how the bits
in the Access Rights Byte are interpreted.

31 0 BYTE
ADDRESS
SEGMENTBASE 15...0 SEGMENT LIMIT15...0 0
LIMIT BASE
BASE31...24 [G| D | 0| AVL 19.. 16 P DI|DL S il'YPEI A 23.. 16 +4
BASE Base Address of the segment
LIMIT The length of the segment
P Present Bit 1=Present 0=Not Present
DPL Descriptor Privilege Level 0-3
S Segment Descriptor 0= System Descriptor 1=Code or Data Segment Descriptor
TYPE Type of Segment
A Accessed Bit
G Granularity Bit 1=Segment length is page granular 0=Segment length is byte granular
D Default Operation Size (recognized in code segment descriptors only)
1=_32-bit segment 0= 16-bit segment
0 Bit must be zero (0) for compatibility with future processors
AVL Available field for user or OS
NOTE:

In a maximum-size segment (i.e., a segment with G=1 and segment limit 19...0=FFFFFH), the lowest 12 bits of the
segment base should be zero (i.e., segment base 11...000=000H).

Figure 4.5. Segment Descriptors

31 0
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 0
LIMIT ACCESS BASE
BASE31...24 | G| D | O | AVL 19.. .16 RIGHTS 23...16 +4
. BYTE o

D/B 1=Default Instruction Attributes are 32-Bits
0= Default Instruction Attributes are 16-Bits
AVL Available field for user or OS

G Granularity Bit

1=Segment length is page granular
0=Segment length is byte granular
0 Bit must be zero (0) for compatibility with future processors

Figure 4.6. Segment Descriptors

54

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 4.1. Access Rights Byte Definition for Code and Data Descriptions

Po:‘:;o“ Name Function
7 Present (P) P =1 Segmentis mapped into physical memory.
P = 0 No mapping to physical memory exits, base and limit are
not used.
6-5 |Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)
4 Segment Descrip- |[S = 1 Code or Data (includes stacks) segment descriptor.
tor (S) S =0 System Segment Descriptor or Gate Descriptor.
3 Executable (E) E = 0 Descriptor type is data segment: I
2 Expansion Direc- |ED = 0 Expand up segment, offsets must be < limit. Data
tion (ED) ED = 1 Expand down segment, offsets must be > limit. (Segment
1 Writeable (W) W = 0 Data segment may not be written into. S=1,
Type W = 1 Data segment may be written into. J E=0)
F|e|‘d. . 3 Executable (E) E =1 Descriptor type is code segment: 1K
Definition| Conforming (C) [C =1 Code segment may only be executed Code
when CPL = DPL and CPL | Segment
remains unchanged. Ss=1,
1 Readable (R) R = 0 Code segment may not be read. E=1)
R =1 Code segment may be read. J
0 Accessed (A) A = 0 Segment has not been accessed.
A =1 Segment selector has been loaded into segment register
or used by selector test instructions.

Code and data segments have several descriptor
fields in common. The accessed A bit is set whenev-
er the processor accesses a descriptor. The A bit is
used by operating systems to keep usage statistics
on a given segment. The G bit, or granularity bit,
specifies if a segment length is byte-granular or
page-granular. Intel486 Microprocessor segments
can be one megabyte long with byte granularity
(G=0) or four gigabytes with page granularity
(G=1), (i.e., 220 pages each page is 4 Kbytes in
length). The granularity is totally unrelated to paging.
A Intel486 Microprocessor system can consist of
segments with byte granularity, and page granularity,
whether or not paging is enabled.

The executable E bit tells if a segment is a code or
data segment. A code segment (E=1, S=1) may be
execute-only or execute/read as determined by the
Read R bit. Code segments are execute only if
R=0, and execute/read if R=1. Code segments
may never be written into.

NOTE:
Code segments may be modified via aliases. Alias-
es are writeable data segments which occupy the
same range of linear address space as the code
segment.

55

The D bit indicates the default length for operands
and effective addresses. If D=1 then 32-bit oper-
ands and 32-bit addressing modes are assumed. If
D=0 then 16-bit operands and 16-bit addressing
modes are assumed. Therefore all existing 80286
code segments will execute on the Intel486 Micro-
processor assuming the D bit is set 0.

Another attribute of code segments is determined by
the conforming C bit. Conforming segments, C=1,
can be executed and shared by programs at differ-
ent privilege levels. (See Section 4.4 Protection.)

Segments identified as data segments (E=0, S=1)
are used for two types of Intel486 Microprocessor
segments: stack and data segments. The expansion
direction (ED) bit specifies if a segment expands
downward (stack) or upward (data). If a segment is a
stack segment all offsets must be greater than the
segment limit. On a data segment all offsets must be
less than or equal to the limit. In other words, stack
segments start at the base linear address plus the
maximum segment limit and grow down to the base
linear address plus the limit. On the other hand, data
segments start at the base linear address and ex-
pand to the base linear address plus limit.

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

The write W bit controls the ability to write into a
segment. Data segments are read-only if W=0. The
stack segment must have W=1.

The B bit controls the size of the stack pointer regis-
ter. If B=1, then PUSHes, POPs, and CALLs all use
the 32-bit ESP register for stack references and as-
sume an upper limit of FFFFFFFFH. If B=0, stack
instructions all use the 16-bit SP register and as-
sume an upper limit of FFFFH.

4.3.4.3 System Descriptor Formats

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 4.7
shows the general format of system segment de-
scriptors, and the various types of system segments.
Intel486 Microprocessor system descriptors contain
a 32-bit base linear address and a 20-bit segment
limit. 80286 system descriptors have a 24-bit base
address and a 16-bit segment limit. 80286 system
descriptors are identified by the upper 16 bits being
all zero.

4.3.4.4 LDT Descriptors (S=0, TYPE=2)

LDT descriptors (S=0, TYPE=2) contain informa-
tion about Local Descriptor Tables. LDTs contain a
table of segment descriptors, unique to a particular
task. Since the instruction to load the LDTR is only
available at privilege level 0, the DPL field is ignored.
LDT descriptors are only allowed in the Global De-
scriptor Table (GDT).

4.3.4.5 TSS Descriptors (S=0,
TYPE=1, 3,9, B)

A Task State Segment (TSS) descriptor contains in-
formation about the location, size, and privilege level
of a Task State Segment (TSS). A TSS in turn is a
special fixed format segment which contains all the
state information for a task and a linkage field to
permit nesting tasks. The TYPE field is used to indi-
cate whether the task is currently BUSY (i.e., on a
chain of active tasks) or the TSS is available. The
TYPE field also indicates if the segment contains a
80286 or an Intel486 Microprocessor TSS. The Task
Register (TR) contains the selector which points to
the current Task State Segment.

4.3.4.6 Gate Descriptors (S=0,
TYPE=4-7,C, F)

Gates are used to control access to entry points
within the target code segment. The various types of
gate descriptors are call gates, task gates, inter-
rupt gates, and trap gates. Gates provide a level of
indirection between the source and destination of
the control transfer. This indirection allows the proc-
essor to automatically perform protection checks. It
also allows system designers to control entry points
to the operating system. Call gates are used to
change privilege levels (see Section 4.4 Protec-
tion), task gates are used to perform a task switch,
and interrupt and trap gates are used to specify in-
terrupt service routines.

31 16 0
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 0
LIMIT BASE
BASE31...24 (G| 0|0 | O P DPL | O TYPE +4
19...16 . L, ., |2s...16

Type Defines Type Defines

0 Invalid 8 Invalid

1 Available 80286 TSS 9 Available Intel486™ CPU TSS

2 LDT A Undefined (Intel Reserved)

3 Busy 80286 TSS B Busy Intel486™ CPU TSS

4 80286 Call Gate : C Intel486™ CPU Call Gate

5 Task Gate (for 80286 or Intel486™ CPU Task) D Undefined (Intel Reserved)

6 80286 Interrupt Gate E Intel486™ CPU Interrupt Gate

7 80286 Trap Gate F Intel486™ CPU Trap Gate

Figure 4.7. System Segment Descriptors

56

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Figure 4.8 shows the format of the four types of gate
descriptors. Call gates are primarily used to transfer
program control to a more privileged level. The call
gate descriptor consists of three fields: the access
byte, a long pointer (selector and offset) which
points to the start of a routine and a word count
which specifies how many parameters are to be cop-
ied from the caller’s stack to the stack of the called
routine. The word count field is only used by call
gates when there is a change in the privilege level,
other types of gates ignore the word count field.

Interrupt and trap gates use the destination selector
and destination offset fields of the gate descriptor as
a pointer to the start of the interrupt or trap handler
routines. The difference between interrupt gates and
trap gates is that the interrupt gate disables inter-
rupts (resets the IF bit) while the trap gate does not.

Task gates are used to switch tasks. Task gates
may only refer to a task state segment (see Section
4.4.6 Task Switching) therefore only the destination
selector portion of a task gate descriptor is used,
and the destination offset is ignored.

Exception 13 is generated when a destination selec-
tor does not refer to a correct descriptor type, i.e., a
code segment for an interrupt, trap or call gate, a
TSS for a task gate.

The access byte format is the same for all gate de-
scriptors. P=1 indicates that the gate contents are
valid. P=0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de-
scriptor privilege level and specifies when this de-
scriptor may be used by a task (see Section 4.4 Pro-
tection). The S field, bit 4 of the access rights byte,
must be 0 to indicate a system control descriptor.
The type field specifies the descriptor type as indi-
cated in Figure 4.8.

4.3.4.7 Differences Between Intel486™
Microprocessor and 80286 Descriptors

In order to provide operating system compatibility
between the 80286 and Intel486 Microprocessor,
the Intel486 Microprocessor supports all of the
80286 segment descriptors. Figure 4.9 shows the
general format of an 80286 system segment de-
scriptor. The only differences between 80286 and
Intel486 Microprocessor descriptor formats are that
the values of the type fields, and the limit and base
address fields have been expanded for the Intel486
Microprocessor. The 80286 system segment de-
scriptors contained a 24-bit base address and 16-bit
limit, while the Intel486 Microprocessor system seg-
ment descriptors have a 32-bit base address, a 20-
bit limit field, and a granularity bit.

31 24 16 8 5 0
SELECTOR OFFSET 15...0 0
WORD
OFFSET 31...16 P| DPL | O TYPE 0| 0] 0|COUNT|+4
. Ly 4...0
Gate Descriptor Fields
Name Value Description
Type 4 80286 call gate
5 Task gate (for 80286 or Intel486™ CPU task)
6 80286 interrupt gate
7 80286 trap gate
C Intel486™ CPU call gate
E Intel486™ CPU interrupt gate
F Intel486™ CPU trap gate
P 0 Descriptor contents are not valid
1 Descriptor contents are valid
DPL—least privileged level at which a task may access the gate. WORD COUNT 0-31—the number of parameters to copy from caller’s stack
to the called procedure’s stack. The parameters are 32-bit quantities for Intel486™ CPU gates, and 16-bit quantities for 80286 gates.
DESTINATION 16-bit Selector to the target code segment
SELECTOR selector or
Selector to the target task state segment for task gate
DESTINATION offset Entry point within the target code segment
OFFSET 16-bit 80286
32-bit Intel486™ CPU

Figure 4.8. Gate Descriptor Formats

57

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

By supporting 80286 system segments the Intel486
Microprocessor is able to execute 80286 application
programs on an Intel486 Microprocessor operating
system. This is possible because the processor au-
tomatically understands which descriptors are
80286-style descriptors and which descriptors are
Intel486 Microprocessor-style descriptors. In partic-
ular, if the upper word of a descriptor is zero, then
that descriptor is a 80286-style descriptor.

The only other differences between 80286-style de-
scriptors and Intel486 Microprocessor descriptors is
the interpretation of the word count field of call gates
and the B bit. The word count field specifies the
number of 16-bit quantities to copy for 80286 call
gates and 32-bit quantities for Intel486 Microproces-
sor call gates. The B bit controls the size of PUSHes
when using a call gate; if B=0 PUSHes are 16 bits,
if B=1 PUSHes are 32 bits.

4.3.4.8 Selector Fields

A selector in Protected Mode has three fields: Local
or Global Descriptor Table Indicator (T1), Descriptor

Entry Index (Index), and Requestor (the selector’s)
Privilege Level (RPL) as shown in Figure 4.10. The
TI bits select one of two memory-based tables of
descriptors (the Global Descriptor Table or the Local
Descriptor Table). The Index selects one of 8K de-
scriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector’s
privilege attributes.

4.3.4.9 Segment Descriptor Cache

In addition to the selector value, every segment reg-
ister has a segment descriptor cache register asso-
ciated with it. Whenever a segment register’s con-
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg-
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg-
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor’s val-
ue.

31 0
SEGMENTBASE 15...0 SEGMENT LIMIT 15...0 0
Intel Reserved BASE

Sett00 PLPPLIS] [TP |os1e |t

BASE Base Address of the segment DPL Descriptor Privilege Level 0-3

LIMIT The length of the segment S System Descriptor 0=System 1=User

P Present Bit 1=Present 0=Not Present TYPE Type of Segment

Figure 4.9. 80286 Code and Data Segment Descriptors

58

Intel486™ DX MICROPROCESSOR

PRELIMINARY

SELECTOR
15 43210
SEGMENT | RPL
REGISTER JoJo -——-oo|1]1]1]
h ? | TABLE
INDEX INDICATOR
TI=1 n:ol
N N
A DESCRIPTOR A
A NUMBER A
6 6
5 5
4 4
3 3
2 2
1 1
o 0 NULL
LOCAL GLOBAL
DESCRIPTOR DESCRIPTOR
TABLE TABLE
240440-14

Figure 4.10. Example Descriptor Selection

4.3.4.10 Segment Descriptor Register Settings

The contents of the segment descriptor cache vary
depending on the mode the Intel486 Microprocessor
is operating in. When operating in Real Address
Mode, the segment base, limit, and other attributes
within the segment cache registers are defined as
shown in Figure 4.11. For compatibility with the 8086

59

architecture, the base is set to sixteen times the cur-
rent selector value, the limit is fixed at 0000FFFFH,
and the attributes are fixed so as to indicate the seg-
ment is present and fully usable. In Real Address
Mode, the internal “privilege level” is always fixed to
the highest level, level 0, so 1/0 and other privileged
opcodes may be executed.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

intersegment JMP, or INT). (See Figure 4.13 Example.)
Key: = yes

privilege level 3
expand up

cwn=0Z<

LI T R |

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS
32 - BIT BASE 32-BIT LIMIT OTHER ATTRIBUTES
(UPDATED DURING SELECTOR (FIXED) (FIXED)
LOAD INTO SEGMENT REGISTER)
CONFORMING PRIVILEGE
STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY]
ACCESSED
PRIVILEGE LEVEL
PRESENT L
_ BASE __ LMt } IRZ2 222X
cs 16X CURRENT CS SELECTOR® 0000FFFFH |Y|o|Y|B|U|Y|Y|Y|-|N
Ss 16X CURRENT SS SELECTOR 0000FFFFH |Y|0|Y[B|U|Y[Y|N|W]|=
DS 16X CURRENT DS SELECTOR 0000FFFFH |Y|0|Y[B|U|Y[Y|N[=]=
ES 16X CURRENT ES SELECTOR 0000FFFFH |Y|O|Y[B|U[Y[Y[N[=]=
FS 16X CURRENT FS SELECTOR 0000FFFFH |Y|0|Y|B|U[Y|Y[N|=]=
GS 16X CURRENT GS SELECTOR 0000FFFFH |Y|O|Y[B|U[Y[Y[N[=|=

*Except the 32-bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (i.e., intersegment CALL, or

D = expand down
no B = byte granularity
privilege level 0 P = page granularity
privilege level 1 W = push/pop 16-bit words
privilege level 2 F = push/pop 32-bit dwords

240440-15

= does not apply to that segment cache register

Figure 4.11. Segment Descriptor Caches for Real Address Mode
(Segment Limit and Attributes are Fixed)

When operating in Protected Mode, the segment
base, limit, and other attributes within the segment
cache registers are defined as shown in Figure 4.12.
In Protected Mode, each of these fields are defined

according to the contents of the segment descriptor

indexed

by the selector value loaded into the seg-

ment register.

60

Intel486™ DX MICROPROCESSOR

PRELIMINARY

SEGMENT
32~ BIT BASE

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

CONFORMING PRIVILEGE

32=BIT LIMIT

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

DESCRIPTOR CACHE REGISTER CONTENTS

SELECTOR LOAD INTO

OTHER ATTRIBUTES
(UPDATED DURING

SEGMENT REGISTER)

STACK SIZE

EXECUTABLE
WRITEABLE

READABLE

EXPANSION DIRECTION

GRANULARITY

ACCESSED

PRIVILEGE LEVEL
PRESENT

BASE PER SEG DESCR

LIMIT PER SEG DESCR

BASE PER SEG DESCR

LIMIT PER SEG DESCR

BASE PER SEG DESCR

BASE PER SEG DESCR

LIMIT PER SEG DESCR

BASE PER SEG DESCR

LIMIT PER SEG DESCR

BASE PER SEG DESCR

[
e

LIMIT PER SEG DESCR p
p

p

p

LIMIT PER SEG DESCR

Key:

240440-16

Y = fixed yes

N = fixed no

d = per segment descriptor

p = per segment descriptor; descriptor must indicate “present” to avoid exception 11
(exception 12 in case of SS)

r = per segment descriptor, but descriptor must indicate “‘readable” to avoid exception 13
(special case for SS)

= per segment descriptor, but descriptor must indicate “writable” to avoid exception 13

(special case for SS)

- = does not apply to that segment cache register

Figure 4.12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)

When operating in a Virtual 8086 Mode within the
Protected Mode, the segment base, limit, and other
attributes within the segment cache registers are de-
fined as shown in Figure 4.13. For compatibility with
the 8086 architecture, the base is set to sixteen
times the current selector value, the limit is fixed at

61

0000FFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. The
virtual program executes at lowest privilege level,
level 3, to allow trapping of all IOPL-sensitive in-
structions and level-0-only instructions.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS
32 = BIT BASE 32 = BIT LIMIT OTHER ATTRIBUTES
(UPDATED DURING SELECTOR (FIXED) (FIXED)
LOAD INTO SEGMENT REGISTER)
CONFORMING PRIVILEGE
STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY
ACCESSED
PRIVILEGE LEVEL
PRESENT
BASE LIMIT ¥ \
Cs 16X CURRENT CS SELECTOR O000FFFFH Y|3|Y|B|U|Y|Y|Y|[=]|N
SS 16X CURRENT SS SELECTOR 0000FFFFH |Y|3|Y|B[U|Y]|Y|N -
DS 16X CURRENT DS SELECTOR Q000FFFFH |Y([3[Y|B|U[Y|Y|N|=| =~
ES 16X CURRENT ES SELECTOR 0000FFFFH [Y|3[Y[B|U[Y|Y|N|=[~=
FS 16X CURRENT FS SELECTOR 0000FFFFH _ [Y[3|Y|B|U|Y|Y|N|=|=
GS 16X CURRENT GS SELECTOR 0000FFFFH [Y[3|YIB|U[YIYIN|=]=
240440-17
Key: Y =yes D = expand down
N = no B = byte granularity
0 = privilege level 0 P = page granularity
1 = privilege level 1 W = push/pop 16-bit words
2 = privilege level 2 F = push/pop 32-bit dwords
3 = privilege level 3 - = does not apply to that segment cache register
U = expand up

Figure 4.13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode
(Segment Limit and Attributes are Fixed)

4.4 Protection

4.4.1 PROTECTION CONCEPTS

APPLICATIONS
CcPU

ENFORCED
SOFTWARE

INTERFACES 0S EXTENSIONS

SYSTEM
SERVICES

HIGH SPEED
OPERATING
SYSTEM
INTERFACE

240440-18

Figure 4.14. Four-Level Hierarchical Protection

62

The Intel486 Microprocessor has four levels of pro-
tection which are optimized to support the needs of
a multi-tasking operating system to isolate and pro-
tect user programs from each other and the operat-
ing system. The privilege levels control the use of
privileged instructions, 1/0 instructions, and access
to segments and segment descriptors. Unlike tradi-
tional microprocessor-based systems where this
protection is achieved only through the use of com-
plex external hardware and software the Intel486 Mi-
croprocessor provides the protection as part of its
integrated Memory Management Unit. The Intel486
Microprocessor offers an additional type of protec-
tion on a page basis, when paging is enabled (See
Section 4.5.3 Page Level Protection).

The four-level hierarchical privilege system is illus-
trated in Figure 4-14. It is an extension of the user/
supervisor privilege mode commonly used by mini-
computers and, in fact, the user/supervisor mode is
fully supported by the Intel486 Microprocessor pag-

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

ing mechanism. The privilege levels (PL) are num-
bered 0 through 3. Level 0 is the most privileged or
trusted level.

4.4.2 RULES OF PRIVILEGE

The Intel486 Microprocessor controls access to
both data and procedures between levels of a task,
according to the following rules.

® Data stored in a segment with privilege level p
can be accessed only by code executing at a
privilege level at least as privileged as p.

® A code segment/procedure with privilege level p
can only be called by a task executing at the
same or a lesser privilege level than p.

4.4.3 PRIVILEGE LEVELS

4.4.3.1 Task Privilege

At any point in time, a task on the Intel486 Micro-
processor always executes at one of the four privi-
lege levels. The Current Privilege Level (CPL) speci-
fies the task’s privilege level. A task’s CPL may only
be changed by control transfers through gate de-
scriptors to a code segment with a different privilege
level. (See Section 4.4.4 Privilege Level Transfers)
Thus, an application program running at PL = 3 may
call an operating system routine at PL = 1 (via a
gate) which would cause the task’s CPL to be set to
1 until the operating system routine was finished.

4.4.3.2 Selector Privilege (RPL)

The privilege level of a selector is specified by the
RPL field. The RPL is the two least significant bits of
the selector. The selector’s RPL is only used to es-
tablish a less trusted privilege level than the current
privilege level for the use of a segment. This level is
called the task’s effective privilege level (EPL). The
EPL is defined as being the least privileged (i.e. nu-
merically larger) level of a task’s CPL and a selec-
tor's RPL. Thus, if selector’'s RPL = 0 then the CPL
always specifies the privilege level for making an ac-
cess using the selector. On the other hand if RPL =
3 then a selector can only access segments at level

63

3 regardless of the task’s CPL. The RPL is most
commonly used to verify that pointers passed to an
operating system procedure do not access data that
is of higher privilege than the procedure that origi-
nated the pointer. Since the originator of a selector
can specify any RPL value, the Adjust RPL (ARPL)
instruction is provided to force the RPL bits to the
originator’s CPL.

4.4.3.3 1/0 Privilege and 1/0 Permission Bitmap

The 1/0O privilege level (IOPL, a 2-bit field in the
EFLAG register) defines the least privileged level at
which 1/0 instructions can be unconditionally per-
formed. 1/0 instructions can be unconditionally per-
formed when CPL < IOPL. (The I/0 instructions are
IN, OUT, INS, OUTS, REP INS, and REP OUTS.)
When CPL > IOPL, and the current task is associat-
ed with a 286 TSS, attempted |/0 instructions cause
an exception 13 fault. When CPL > IOPL, and the
current task is associated with an Intel486 Micro-
processor TSS, the 1/0 Permission Bitmap (part of
an Intel486 Microprocessor TSS) is consulted on
whether 1/0 to the port is allowed, or an exception
13 fault is to be generated instead. For diagrams of
the 1/0 Permission Bitmap, refer to Figures 4.15a
and 4.15b. For further information on how the 1/0
Permission Bitmap is used in Protected Mode or in
Virtual 8086 Mode, refer to Section 4.6.4 Protection
and 1/0 Permission Bitmap.

The 1/0 privilege level (IOPL) also affects whether
several other instructions can be executed or cause
an exception 13 fault instead. These instructions are
called “IOPL-sensitive” instructions and they are
CLI and STI. (Note that the LOCK prefix is not IOPL-
sensitive on the Intel486 Microprocessor.)

The IOPL also affects whether the IF (interrupts en-
able flag) bit can be changed by loading a value into
the EFLAGS register. When CPL < IOPL, then the
IF bit can be changed by loading a new value into
the EFLAGS register. When CPL > I0PL, the IF bit
cannot be changed by a new value POP’ed into (or
otherwise loaded into) the EFLAGS register; the IF
bit merely remains unchanged and no exception is
generated.

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 4.2. Pointer Test Instructions

Instruction Function

ARPL

Operands

Selector,
Register

Adjust Requested Privi-
lege Level: adjusts the
RPL of the selector to the
numeric maximum of
current selector RPL value
and the RPL value in the
register. Set zero flag if
selector RPL was
changed.

VERIify for Read: sets the
zero flag if the segment
referred to by the selector
can be read.

VERIify for Write: sets the
zero flag if the segment
referred to by the selector
can be written.

VERR Selector

VERW |Selector

LSL Register,

Selector

Load Segment Limit: reads
the segment limit into the
register if privilege rules
and descriptor type allow.
Set zero flag if successful.

LAR Register,

Selector

Load Access Rights: reads
the descriptor access
rights byte into the register
if privilege rules allow. Set
zero flag if successful.

4.4.3.4 Privilege Validation

The Intel486 Microprocessor provides several in-
structions to speed pointer testing and help maintain
system integrity by verifying that the selector value
refers to an appropriate segment. Table 4.2 summa-
rizes the selector validation procedures available for
the Intel486 Microprocessor.

This pointer verification prevents the common prob-
lem of an application at PL = 3 calling a operating
systems routine at PL = 0 and passing the operat-
ing system routine a “bad” pointer which corrupts a
data structure belonging to the operating system. If
the operating system routine uses the ARPL instruc-

64

tion to ensure that the RPL of the selector has no
greater privilege than that of the caller, then this
problem can be avoided.

4.4.3.5 Descriptor Access

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data accesses. Deter-
mining the ability of a task to access a segment in-
volves the type of segment to be accessed, the in-
struction used, the type of descriptor used and CPL,
RPL, and DPL as described above.

Any time an instruction loads data segment registers
(DS, ES, FS, GS) the Intel486 Microprocessor
makes protection validation checks. Selectors load-
ed in the DS, ES, FS, GS registers must refer only to
data segments or readable code segments. The
data access rules are specified in Section 4.4.2
Rules of Privilege. The only exception to those
rules is readable conforming code segments which
can be accessed at any privilege level.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL an exception 13 (gen-
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In-
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg-
ments. The DPL and RPL must equal the CPL. All
other descriptor types or a privilege level violation
will cause exception 13. A stack not present fault
causes exception 12. Note that an exception 11 is
used for a not-present code or data segment.

4.4.4 PRIVILEGE LEVEL TRANSFERS

Inter-segment control transfers occur when a selec-
tor is loaded in the CS register. For a typical system
most of these transfers are simply the result of a call
or a jump to another routine. There are five types of
control transfers which are summarized in Table 4.3.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only via
control transfers, by using gates, task switches, and
interrupt or trap gates.

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 4.3. Descriptor Types Used for Control Transfer

. Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table

Intersegment within the same privilege level JMP, CALL, RET, IRET* | Code Segment | GDT/LDT
Intersegment to the same or higher privilege level | CALL Call Gate GDT/LDT
Interrupt within task may change CPL Interrupt Instruction, Trap or DT

Exception, External Interrupt

Interrupt Gate
Intersegment to a lower privilege level RET, IRET* Code Segment | GDT/LDT
(changes task CPL)

CALL, JMP Task State GDT

Segment

Task Switch CALL, JMP Task Gate GDT/LDT

IRET** Task Gate IDT

Interrupt Instruction,

Exception, External

Interrupt

*NT (Nested Task bit of flag register)
**NT (Nested Task bit of flag register)

=0
=1
Control transfers can only occur if the operation
which loaded the selector references the correct de-
scriptor type. Any violation of these descriptor usage

rules will cause an exception 13 (e.g. JMP through a
call gate, or IRET from a normal subroutine call).

In order to provide further system security, all control
transfers are also subject to the privilege rules.

The privilege rules require that:

— Privilege level transitions can only occur via
gates.

JMPs can be made to a non-conforming code
segment with the same privilege or to a conform-
ing code segment with greater or equal privilege.

CALLs can be made to a non-conforming code
segment with the same privilege or via a gate to
a more privileged level.

Interrupts handled within the task obey the same
privilege rules as CALLs.

Conforming Code segments are accessible by
privilege levels which are the same or less privi-
leged than the conforming-code segment’s DPL.

Both the requested privilege level (RPL) in the
selector pointing to the gate and the task’s CPL
must be of equal or greater privilege than the
gate’s DPL.

The code segment selected in the gate must be
the same or more privileged than the task’s CPL.

65

— Return instructions that do not switch tasks can
only return control to a code segment with same
or less privilege.

— Task switches can be performed by a CALL,
JMP, or INT which references either a task gate
or task state segment who’s DPL is less privi-
leged or the same privilege as the old task’s CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privi-
lege level change. The initial values of SS:ESP for
privilege levels 0, 1, and 2 are retained in the task
state segment (see Section 4.4.6 Task Switching).
During a JMP or CALL control transfer, the new
stack pointer is loaded into the SS and ESP regis-
ters and the previous stack pointer is pushed onto
the new stack.

When RETurning to the original privilege level, use
of the lower-privileged stack is restored as part of
the RET or IRET instruction operation. For subrou-
tine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words (as
specified in the gate’s word count field) are copied
from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack
pointer upon return.

intgl. Intel486™ DX MICROPROCESSOR PRELIMINARY

31 16 15 0 4_]
0000000000000000 | BACK LINK 0 1SS BASE
ESPO 4]
0000000000000000 | sso 8
ESP1 ¢ STACKS
0000000000000000 | ss1 10 ng 0.1,2
ESP2 14
0000000000000000 | ss2 18)
CR3 1c
EIP 20
EFLAGS 24
EAX 28
ECX 2c
EDX 30
EBX 34
ESP 38
£8P * CURRENT
Es| 40} task
-~ 44 | sTATE
0000000000000000 ES 48
0000000000000000 cs 4
0000000000000000 ss 50
0000000000000000 DS 54
0000000000000000 FS 58
0000000000000000 [sc
0000000000000000 LDT 60 |
NOTE: BIT_MAP_OFFSET(15:0) 0000000000000000 | T {
BIT_MAP_OFFSET AVAILABLE S~ — 155 peus
must be < DFFFH Jn SYSTEM STATUS, ETC. 18 TRAP BIT
v IN Intel486™ cPU TSS €
31 24] 23 16] 15 8|7 [}
63 s6]55 48|47 40] 39 32| BIT_MAP_OFFSET
95 88|87 8079 7271 64
Tessoo—ooooes 96| oFFseT +C
[[o 1 o 1
' ' bl h
! BASE - b 1/0 PERMISSION BITMAP T
e il |] e i
Lo INVISBLE ! 53439 TRUNCATED USING TSS LIMIT.) OFFSET + 1FFO
TASK REGISTER 65471 OFFSET + 1FF4
65503 65472 | OFFSET + 1FF8
™ SELECTOR B 65535 65504 | OFFSET + 1FFC
15 0 “FFHY OFFSET + 2000
4 rss LM =oFFseT + 2000H
31 Inte1486™ CPU TSS DESCRIPTOR (IN GDT) 0
SEGMENT BASE 15...0 SEGMENT LIMIT 15..0

LiMIT BASE
BASE 31..24 |GI1|0IOI 19.16 PIDi;LIOI I'I'YIPEl I 23..16

240440-19
Type = 9: Available Intel486™ CPU TSS,
Type = B: Busy Intel486™ CPU TSS

Figure 4.15a. Intel486™ Microprocessor TSS and TSS Registers
66

Intel486™ DX MICROPROCESSOR

PRELIMINARY

313029 2827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
3t 111011000001 111|01001100/00000O0C0O0T1 1
63|10 01t 0001111t 00C1TO0O1TO0OJIT11111O0O0O}1T 1111001
-2 I T N T D N I T O A T N I I A T A T A A T N D TN O AN HR A
127|0 0 0000 00/O000O00OO|0OOO0O0OOOO|0OOOO0O0OOO
11111111

€T etc. L

240440-20

1/0 Ports Accessible: 2 —> 9, 12, 13, 15, 20 — 24, 27,

33, 34, 40, 41, 48, 50, 52, 53, 58 — 60, 62, 63, 96 — 127

Figure 4.15b. Sample 1/0 Permission Bit Map

4.45 CALL GATES

Gates provide protected, indirect CALLs. One of the

major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust-
ed procedures (such as those which allocate memo-
ry, or perform |/0).

- Gate descriptors follow the data access rules of priv-
ilege; that is, gates can be accessed by a task if the
EPL, is equal to or more privileged than the gate
descriptor’s DPL. Gates follow the control transfer
rules of privilege and therefore may only transfer
control to a more privileged level.

Call Gates are accessed via a CALL instruction and
are syntactically identical to calling a normal subrou-
tine. When an inter-level Intel486 Microprocessor
call gate is activated, the following actions occur.

1. Load CS:EIP from gate check for validity
2. SS is pushed zero-extended to 32 bits
3. ESP is pushed

4. Copy Word Count 32-bit parameters from the
old stack to the new stack

5. Push Return address on stack

The procedure is identical for 80286 Call gates, ex-
cept that 16-bit parameters are copied and 16-bit
registers are pushed.

Interrupt Gates and Trap gates work in a similar
fashion as the call gates, except there is no copying
of parameters. The only difference between Trap
and Interrupt gates is that control transfers through
an Interrupt gate disable further interrupts (i.e. the IF
bit is set to 0), and Trap gates leave the interrupt
status unchanged.

4.4.6 TASK SWITCHING

A very important attribute of any multi-tasking/multi-
user operating systems is its ability to rapidly switch
between tasks or processes. The Intel486 Micro-
processor directly supports this operation by provid-
ing a task switch instruction in hardware. The In-
tel486 Microprocessor task switch operation saves
the entire state of the machine (all of the registers,

67

address space, and a link to the previous task),
loads a new execution state, performs protection
checks, and commences execution in the new task,
in about 10 microseconds. Like transfer of control
via gates, the task switch operation is invoked by
executing an inter-segment JMP or CALL instruction
which refers to a Task State Segment (TSS), or a
task gate descriptor in the GDT or LDT. An INT n
instruction, exception, trap, or external interrupt may
also invoke the task switch operation if there is a
task gate descriptor in the associated IDT descriptor
slot.

The TSS descriptor points to a segment (see Figure
4.15) containing the entire Intel486 Microprocessor
execution state while a task gate descriptor contains
a TSS selector. The Intel486 Microprocessor sup-
ports both 80286 and Intel486 Microprocessor style
TSSs. Figure 4.16 shows a 80286 TSS. The limit of
an Intel486 Microprocessor TSS must be greater
than 0064H (002BH for a 80286 TSS), and can be
as large as 4 Gigabytes. In the additional TSS
space, the operating system is free to store addition-
al information such as the reason the task is inac-
tive, time the task has spent running, and open files
belong to the task.

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
Intel486 Microprocessor called the Task State Seg-
ment Register (TR). This register contains a selector
referring to the task state segment descriptor that
defines the current TSS. A hidden base and limit
register associated with TR are loaded whenever TR
is loaded with a new selector. Returning from a task
is accomplished by the IRET instruction. When IRET
is executed, control is returned to the task which
was interrupted. The current executing task’s state
is saved in the TSS and the old task state is restored
from its TSS.

Several bits in the flag register and machine status
word (CRO) give information about the state of a
task which are useful to the operating system. The
Nested Task (NT) (bit 14 in EFLAGS) controls the
function of the IRET instruction. If NT = 0, the IRET
instruction performs the regular return; when NT =
1, IRET performs a task switch operation back to the
previous task. The NT bit is set or reset in the follow-
ing fashion:

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

15 0
BACK LINK SELECTOR TO TSS
SPFOR CPL 0

SS FOR CPL 0

SP FOR CPL 1

SS FOR CPL 1

SP FOR CPL 2

SS FOR CPL 2

1P (ENTRY POINT)
FLAGS

AX

cX

DX

BX

Sp

BP

S|

DI

ES SELECTOR

CS SELECTOR

SS SELECTOR

DS SELECTOR

TASK'S LDT SELECTOR

h AVAILABLE
“

INITIAL
STACKS
FOR CPL 0,1,2

oOomO » O &~ N O
s\)

N

S

o

18

CURRENT
TASK
STATE

C
by

240440-21

Figure 4.16. 80286 TSS

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. (The NT bit will
be restored after execution of the interrupt handler)
NT may also be set or cleared by POPF or IRET
instructions.

The Intel486 Microprocessor task state segment is
marked busy by changing the descriptor type field
from TYPE 9H to TYPE BH. An 80286 TSS is
marked busy by changing the descriptor type field
from TYPE 1 to TYPE 3. Use of a selector that refer-
ences a busy task state segment causes an excep-
tion 13.

The Virtual Mode (VM) bit 17 is used to indicate if a
task, is a virtual 8086 task. If VM = 1, then the tasks
will use the Real Mode addressing mechanism. The
virtual 8086 environment is only entered and exited
via a task switch (see Section 4.6 Virtual Mode).

The FPU’s state is not automatically saved when a
task switch occurs, because the incoming task may
not use the FPU. The Task Switched (TS) Bit (bit 3 in
the CRO) helps deal with the FPU’s state in a multi-
tasking environment. Whenever the Intel486 Micro-

68

processor switches tasks, it sets the TS bit. The In-
tel486 Microprocessor detects the first use of a
processor extension instruction after a task switch
and causes the processor extension not available
exception 7. The exception handler for exception 7
may then decide whether to save the state of the
FPU. A processor extension not present exception
(7) will occur when attempting to execute a Floating
Point or WAIT instruction if the Task Switched and
Monitor coprocessor extension bits are both set (i.e.
TS = 1 and MP = 1).

The T bit in the Intel486 Microprocessor TSS indi-
cates that the processor should generate a debug
exception when switching to a task. If T = 1 then
upon entry to a new task a debug exception 1 will be
generated.

4.4.7 INITIALIZATION AND TRANSITION TO
PROTECTED MODE

Since the Intel486 Microprocessor begins executing
in Real Mode immediately after RESET it is neces-
sary to initialize the system tables and registers with
the appropriate values.

The GDT and IDT registers must refer to a valid GDT
and IDT. The IDT should be at least 256 bytes long,
and GDT must contain descriptors for the initial
code, and data segments. Figure 4.17 shows the ta-
bles and Figure 4.18 the descriptors needed for a
simple Protected Mode Intel486 Microprocessor
system. It has a single code and single data/stack
segment each four gigabytes long and a single privi-
lege level PL = 0.

The actual method of enabling Protected Mode is to
load CRO with the PE bit set, via the MOV CRO, R/M
instruction. This puts the Intel486 Microprocessor in
Protected Mode.

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The
final step is to load all of the data segment registers
with the initial selector values.

An alternate approach to entering Protected Mode
which is especially appropriate for multi-tasking op-
erating systems, is to use the built in task-switch to
load all of the registers. In this case the GDT would
contain two TSS descriptors in addition to the code
and data descriptors needed for the first task. The
first JMP instruction in Protected Mode would jump
to the TSS causing a task switch and loading all of
the registers with the values stored in the TSS. The
Task State Segment Register should be initialized to
point to a valid TSS descriptor since a task switch
saves the state of the current task in a task state
segment.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

3 0
15 0 RESET ROUTINES gi:;::g
ss] INITIALIZATION
ROUTINES
cs
s
£s
os [ooio] |
cs
GDTR | 00017 LIMIT ; 00000118
00000100 DATA DESCRIPTOR | '~ 10
BASE ADDRESS CSSfLD::f;g;?QR 00000108 | €07
IDTR { 000FF | LIMIT 0oooo100
00000000 INTERRUPT ";T
BASE ADDRESS DESCRIPTORS (32)
00000000
240440-22
Figure 4.17. Simple Protected System
LIMIT
BASES31...24({G|D BASE 23...16
2 o0 19.16 10 0|/1{0 O 1|0
00 (H) 1(1 00 (H)
F(H) |] |
DATA SEGMENTBASE 15...0 SEGMENT LIMIT15...0
DESCRIPTOR| 0118 (H) FFFF (H)
LIMIT
BASE31...24|G|D BASE23...16
1 00 (H) 111 0|0 1F9.:|6 1{0 0|1|1 0 1|0 00 (H)
H) | L
CODE SEGMENT BASE 15...0 SEGMENT LIMIT 15...0
DESCRIPTOR| 0118 (H) FFFF (H)
NULL | DESCRIPTOR
0
31 24 16 15 8 0

Figure 4.18. GDT Descriptors for Simple System

4.4.8 TOOLS FOR BUILDING PROTECTED
SYSTEMS

In order to simplify the design of a protected muiti-
tasking system, Intel provides a tool which allows
the system designer an easy method of constructing
the data structures needed for a Protected Mode
Intel486 Microprocessor system. This tool is the
builder BLD-386T™. BLD-386 lets the operating sys-
tem writer specify all of the segment descriptors dis-
cussed in the previous sections (LDTs, IDTs, GDTs,
Gates, and TSSs) in a high-level language.

69

4.5 Paging

4.5.1 PAGING CONCEPTS

Paging is another type of memory management
useful for virtual memory multitasking operating sys-
tems. Unlike segmentation which modularizes pro-
grams and data into variable length segments, pag-
ing divides programs into multiple uniform size
pages. Pages bear no direct relation to the logical

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

structure of a program. While segment selectors can
be considered the logical “name” of a program
module or data structure, a page most likely corre-
sponds to only a portion of a module or data struc-
ture.

By taking advantage of the locality of reference dis-
played by most programs, only a small number of
pages from each active task need be in memory at
any one moment.

4.5.2 PAGING ORGANIZATION

4.5.2.1 Page Mechanism

The Intel486 Microprocessor uses two levels of ta-
bles to translate the linear address (from the seg-
mentation unit) into a physical address. There are
three components to the paging mechanism of the
Intel486 Microprocessor: the page directory, the
page tables, and the page itself (page frame). All
memory-resident elements of the Intel486 Micro-
processor paging mechanism are the same size,
namely, 4 Kbytes. A uniform size for all of the ele-
ments simplifies memory allocation and reallocation
schemes, since there is no problem with memory
fragmentation. Figure 4.19 shows how the paging
mechanism works.

4.5.2.2 Page Descriptor Base Register

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
page fault detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory. The lower 12 bits of CR3 are
always zero to ensure that the Page Directory is al-
ways page aligned. Loading it via a MOV CR3, reg
instruction causes the Page Table Entry cache to be
flushed, as will a task switch through a TSS which
changes the value of CRO. (See 4.5.5 Translation
Lookaside Buffer).

4.5.2.3 Page Directory

The Page Directory is 4 Kbytes long and allows up to
1024 Page Directory Entries. Each Page Directory
Entry contains the address of the next level of ta-
bles, the Page Tables and information about the
page table. The contents of a Page Directory Entry
are shown in Figure 4.20. The upper 10 bits of the
linear address (A22-A31) are used as an index to
select the correct Page Directory Entry.

TWO LEVEL PAGING SCHEME

31 22 12 0
—————>| birectory | TasLe | orrser | USER
LINEAR MEMORY
ADDRESS 0 l 12 l
3 Q0 ()] Aooress
486™ cpu { T
31 0 & 2 (Ofe >
CRO [{ T
N | R
CR1 > >
® PAGE TABLE
CcR2 T
CR3 ROOT >
DIRECTORY
CONTROL REGISTERS
240440-23
Figure 4.19. Paging Mechanism
31 12 1N 10 9 8 7 6 5 4 3 2 1 0
0s P|{P|]U]|R
PAGE TABLE ADDRESS 31..12 RESERVED 0 0 DIA|C|W|—]|—]|P
D|T/|S|W

Figure 4.20. Page Directory Entry (Points to Page Table)

70

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

31 12 11 10 9 8 7 6 5 4 3 2 1 0
0os P|PJUJ|R

PAGE FRAME ADDRESS 31..12 RESERVED O|O|D|A|C|W|[—|—]|P
D|T|S|W

Figure 4.21. Page Table Entry (Points to Page)

4.5.2.4 Page Tables

Each Page Table is 4 Kbytes and holds up to 1024
Page Table Entries. Page Table Entries contain the
starting address of the page frame and statistical
information about the page (see Figure 4.21). Ad-
dress bits A12-A21 are used as an index to select
one of the 1024 Page Table Entries. The 20 upper-
bit page frame address is concatenated with the
lower 12 bits of the linear address to form the physi-
cal address. Page tables can be shared between
tasks and swapped to disks.

4.5.2.5 Page Directory/Table Entries

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit 0 indicates if a Page Directory or Page
Table entry can be used in address translation. If
P = 1 the entry can be used for address translation
if P = 0 the entry can not be used for translation,
and all of the other bits are available for use by the
software. For example the remaining 31 bits could
be used to indicate where on the disk the page is
stored.

The A (Accessed) bit 5, is set by the Intel486 Micro-
processor for both types of entries before a read or
write access occurs to an address covered by the
entry. The D (Dirty) bit 6 is set to 1 before a write to
an address covered by that page table entry occurs.
The D bit is undefined for Page Directory Entries.
When the P, A and D bits are updated by the In-
tel486 Microprocessor, the processor generates a
Read-Modify-Write cycle which locks the bus and
prevents conflicts with other processors or perpheri-
als. Software which modifies these bits should use
the LOCK prefix to ensure the integrity of the page
tables in multi-master systems.

The 3 bits marked OS Reserved in Figure 4.20 and
Figure 4.21 (bits 9-11) are software definable. OSs
are free to use these bits for whatever purpose they
wish. An example use of the OS Reserved bits
would be to store information about page aging. By
keeping track of how long a page has been in mem-
ory since being accessed, an operating system can
implement a page replacement algorithm like Least
Recently Used.

7

The (User/Supervisor) U/S bit 2 and the (Read/
Write) R/W bit 1 are used to provide protection attri-
butes for individual pages.

4.5.3 PAGE LEVEL PROTECTION
(R/W, U/S BITS)

The Intel486 Microprocessor provides a set of pro-
tection attributes for paging systems. The paging
mechanism distinguishes between two levels of pro-
tection: User which corresponds to level 3 of the
segmentation based protection, and supervisor
which encompasses all of the other protection levels
©, 1, 2).

The R/W and U/S bits are used in conjunction with
the WP bit in the flags register (EFLAGS). The 386
Microprocessor does not contain the WP bit. The
WP bit has been added to the Intel486 Microproces-
sor to protect read-only pages from supervisor write
accesses. The 386 Microprocessor allows a read-
only page to be written from protection levels 0, 1 or
2. WP=0 is the 386 Microprocessor compatible
mode. When WP =0 the supervisor can write to a
read-only page as defined by the U/S and R/W bits.
When WP =1 supervisor access to a read-only page
(R/W=0) will cause a page fault (exception 14).

Table 4.4 shows the affect of the WP, U/S and R/W
bits on accessing memory. When WP =0, the super-
visor can write to pages regardless of the state of
the R/W bit. When WP =1 and R/W=0 the supervi-
sor cannot write to a read-only page. A user attempt
to access a supervisor only page (U/S=0), or write
to a read only page will cause a page fault (excep-
tion 14).

The R/W and U/S bits provide protection from user
access on a page by page basis since the bits are
contained in the Page Table Entry and the Page Di-
rectory Table. The U/S and R/W bits in the first level
Page Directory Table apply to all entries in the page
table pointed to by that directory entry. The U/S and
R/W bits in the second level Page Table Entry apply
only to the page described by that entry. The most
restrictive of the U/S and R/W bits from the Page
Directory Table and the Page Table Entry are used
to address a page.

Example: If the U/S and R/W bits for the Page Di-
rectory entry were 10 (user read/execute) and the

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

U/S and R/W bits for the Page Table Entry were 01
(no user access at all), the access rights for the
page would be 01, the numerically smaller of the
two.

Note that a given segment can be easily made read-
only for level 0, 1 or 2 via use of segmented protec-
tion mechanisms. (Section 4.4 Protection).

4.5.4 PAGE CACHEABILITY
(PWT AND PCD BITS)

PWT (page write through) and PCD (page cache dis-
able) are two new bits defined in entries in both lev-
els of the page table structure, the Page Directory
Table and the Page Table Entry. PCD and PWT con-
trol page cacheability and write policy.

PWT controls write policy. PWT =1 defines a write-
through policy for the current page. PWT=0 allows
the possibility of write-back. PWT is ignored internal-
ly because the Intel486 microprocessor has a write-
through cache. PWT can be used to control the write
policy of a second level cache.

PCD controls cacheability. PCD=0 enables caching
in the on-chip cache. PCD alone does not enable
caching, it must be conditioned by the KEN # (cache
enable) input signal and the state of the CD (cache
disable bit) and NW (no write-through) bits in control
register 0 (CR0O). When PCD =1, caching is disabled
regardless of the state of KEN#, CD and NW. (See
Section 5.0, On-Chip Cache).

The state of the PCD and PWT bits are driven out on
the PCD and PWT pins during a memory access.

The PWT and PCD bits for a bus cycle are obtained
either from control register 3 (CR3), the Page Direc-
tory Entry or the Page Table Entry, depending on the
type of cycle run. However, when paging is disabled
(PG = 0 in CRO) or for cycles which bypass paging
(i.e., 170 (input/output) references, INTR (interrupt
request) and HALT cycles), the PCD and PWT bits
of CR3 are ignored. The Intel486 CPU assumes PCD
= 0 and PWT = 0 and drives these values on the
PCD and PWT pins.

When paging is enabled (PG=1 in CRO0), the bits
from the page table entry are cached in the transla-
tion lookaside buffer (TLB), and are driven any time
the page mapped by the TLB entry is referenced.
For normal memory cycles run with paging enabled,
the PWT and PCD bits are taken from the Page Ta-
ble Entry. During TLB refresh cycles when the Page
Directory and Page Table entries are read, the PWT
and PCD bits must be obtained elsewhere. The bits
are taken from CR3 when a Page Directory Entry is
being read. The bits are taken from the Page Direc-
tory Entry when the Page Table Entry is being updat-
ed.

The PCD or PWT bits in CR3 are initialized to zero at
reset, but can be set to any value by level 0 soft-
ware.

4.5.5 TRANSLATION LOOKASIDE BUFFER

The Intel486 Microprocessor paging hardware is de-
signed to support demand paged virtual memory
systems. However, performance would degrade
substantially if the processor was required to access
two levels of tables for every memory reference. To
solve this problem, the Intel486 Microprocessor
keeps a cache of the most recently accessed pages,
this cache is called the Translation Lookaside Buffer
(TLB). The TLB is a four-way set associative 32-en-
try page table cache. It automatically keeps the most
commonly used Page Table Entries in the proces-
sor. The 32-entry TLB coupled with a 4K page size,
results in coverage of 128 Kbytes of memory ad-
dresses. For many common multi-tasking systems,
the TLB will have a hit rate of about 98%. This
means that the processor will only have to access
the two-level page structure on 2% of all memory
references. Figure 4.22 illustrates how the TLB com-
plements the Intel486 Microprocessor's paging
mechanism.

Reading a new entry into the TLB (TLB refresh) is a
two step process handled by the Intel486 microproc-
essor hardware. The sequence of data cycles to per-
form a TLB refresh are:

Table 4.4. Page Level Protection Attributes

u/s R/W WP User Access Supervisor Access
0 0 0 None Read/Write/Execute
0 1 0 None Read/Write/Execute
1 0 0 Read/Execute Read/Write/Execute
1 1 0 Read/Write/Execute Read/Write/Execute
0 0 1 None Read/Execute
0 1 1 None Read/Write/Execute
1 0 1 Read/Execute Read/Execute
1 1 1 Read/Write/Execute Read/Write/Execute

72

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

1. Read the correct Page Directory Entry, as point-
ed to by the page base register and the upper
10 bits of the linear address. The page base
register is in control register 3.

Optionally perform a locked read/write to set
the accessed bit in the directory entry. The di-
rectory entry will actually get read twice if the
Intel486 Microprocessor needs to set any of the
bits in the entry. If the page directory entry
changes between the first and second reads,
the data returned for the second read will be
used.

2. Read the correct entry in the Page Table and
place the entry in the TLB.

Optionally perform a locked read/write to set
the accessed and/or dirty bit in the page table
entry. Again, note that the page table entry will
actually get read twice if the Intel486 Microproc-
essor needs to set any of the bits in the entry.
Like the directory entry, if the data changes be-
tween the first and second read the data re-
turned for the second read will be used.

1a.

2a.

Note that the directory entry must always be read
into the processor, since directory entries are never
placed in the paging TLB. Page faults can be sig-
naled from either the page directory read or the
page table read. Page directory and page table en-
tries may be placed in the Intel486 on-chip cache
just like normal data.

4.5.6 PAGING OPERATION

32 ENTRIES

PHYSICAL
MEMORY
TRANSLATION
LOOKASIDE —p
BUFFER HIT

LINEAR >
ADDRESS

MISS

31 0

Y
PAGE

j)_. |
TABLE

® 987 HIT RATE

PAGE
DIRECTORY

240440-24

Figure 4.22. Translation Lookaside Buffer

The paging hardware operates in the following fash-
ion. The paging unit hardware receives a 32-bit lin-
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en-
tries in the TLB to determine if there is a match. If
there is a match (i.e., a TLB hit), then the 32-bit
physical address is calculated and will be placed on
the address bus.

73

However, if the page table entry is not in the TLB,
the Intel486 Microprocessor will read the appropri-
ate Page Directory Entry. If P = 1 on the Page Di-
rectory Entry indicating that the page table is in
memory, then the Intel486 Microprocessor will read
the appropriate Page Table Entry and set the Ac-
cess bit. If P = 1 on the Page Table Entry indicating
that the page is in memory, the Intel486 Microproc-
essor will update the Access and Dirty bits as need-
ed and fetch the operand. The upper 20 bits of the
linear address, read from the page table, will be
stored in the TLB for future accesses. However, if
P = 0 for either the Page Directory Entry or the
Page Table Entry, then the processor will generate a
page fault, an Exception 14.

The processor will also generate an exception 14
page fault, if the memory reference violated the
page protection attributes (i.e., U/S or R/W) (e.g.,
trying to write to a read-only page). CR2 will hold the
linear address which caused the page fault. If a sec-
ond page fault occurs, while the processor is at-
tempting to enter the service routine for the first,
then the processor will invoke the page fault (excep-
tion 14) handler a second time, rather than the dou-
ble faulit (exception 8) handler. Since Exception 14 is
classified as a fault, CS: EIP will point to the instruc-
tion causing the page fault. The 16-bit error code
pushed as part of the page fault handler will contain
status bits which indicate the cause of the page
fault.

The 16-bit error code is used by the operating sys-
tem to determine how to handle the page fault. Fig-
ure 4.23a shows the format of the page-fault error
code and the interpretation of the bits.

NOTE:
Even though the bits in the error code (U/S, W/R,
and P) have similar names as the bits in the Page
Directory/Table Entries, the interpretation of the er-
ror code bits is different. Figure 4.23b indicates
what type of access caused the page fault.

15 3210
U

UJUJUJU|[UJU|U[U|UjU[U|U|UjU| |W|P
S|R

Figure 4.23a. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access
causing the fault occurred when the processor was
executing in User Mode (U/S = 1) or in Supervisor
mode (U/S = 0).

W/R: The W/R bit indicates whether the access
causing the fault was a Read (W/R = 0) or a Write
(W/R = 1).

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

P: The P bit indicates whether a page fault was
caused by a not-present page (P = 0), or by a page
level protection violation (P = 1).

U: UNDEFINED
uss W/R Access Type
0 0 Supervisor* Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write

*Descriptor table access will fault with U/S = 0, even if the program
is executing at level 3.

Figure 4.23b. Type of Access
Causing Page Fault

4.5.7 OPERATING SYSTEM RESPONSIBILITIES

The Intel486 Microprocessor takes care of the page
address translation process, relieving the burden
from an operating system in a demand-paged sys-
tem. The operating system is responsible for setting
up the initial page tables, and handling any page
faults. The operating system also is required to inval-
idate (i.e., flush) the TLB when any changes are
made to any of the page table entries. The operating
system must reload CR3 to cause the TLB to be
flushed.

Setting up the tables is simply a matter of loading
CR3 with the address of the Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper-
ating system is to implement a swapping policy and
handle all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
system sets the P present bit of page table entry to
zero, the TLB must be flushed. Operating systems
may want to take advantage of the fact that CR3 is
stored as part of a TSS, to give every task or group
of tasks its own set of page tables.

4.6 Virtual 8086 Environment

4.6.1 EXECUTING 8086 PROGRAMS

The Intel486 Microprocessor allows the execution of
8086 application programs in both Real Mode and in
the Virtual 8086 Mode (Virtual Mode). Of the two
methods, Virtual 8086 Mode offers the system de-
signer the most flexibility. The Virtual 8086 Mode al-
lows the execution of 8086 applications, while still
allowing the system designer to take full advantage
of the Intel486 Microprocessor protection mecha-

74

nism. In particular, the Intel486 Microprocessor al-
lows the simultaneous execution of 8086 operating
systems and its applications, and an Intel486 Micro-
processor operating system and both 80286 and In-
tel486 Microprocessor applications. Thus, in a multi-
user Intel486 Microprocessor computer, one person
could be running an MS-DOS spreadshest, another
person using MS-DOS, and a third person could be
running multiple Unix utilities and applications. Each
person in this scenario would believe that he had the
computer completely to himself. Figure 4.24 illus-
trates this concept.

4.6.2 VIRTUAL 8086 MODE ADDRESSING
MECHANISM

One of the major differences between Intel486 Mi-
croprocessor Real and Protected modes is how the
segment selectors are interpreted. When the proc-
essor is executing in Virtual 8086 Mode the segment
registers are used in an identical fashion to Real
Mode. The contents of the segment register is shift-
ed left 4 bits and added to the offset to form the
segment base linear address.

The Intel486 Microprocessor allows the operating
system to specify which programs use the 8086
style address mechanism, and which programs use
Protected Mode addressing, on a per task basis.
Through the use of paging, the one megabyte ad-
dress space of the Virtual Mode task can be mapped
to anywhere in the 4 gigabyte linear address space
of the Intel486 Microprocessor. Like Real Mode, Vir-
tual Mode effective addresses (i.e., segment offsets)
that exceed 64 Kbyte will cause an exception 13.
However, these restrictions should not prove to be
important, because most tasks running in Virtual
8086 Mode will simply be existing 8086 application
programs.

4.6.3 PAGING IN VIRTUAL MODE

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec-
tion and operating system isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks or to relo-
cate the address space of a Virtual Mode task to
physical address space greater than one megabyte.

The paging hardware allows the 20-bit linear ad-
dress produced by a Virtual Mode program to be
divided into up to 256 pages. Each one of the pages
can be located anywhere within the maximum 4 gig-
abyte physical address space of the Intel486 Micro-
processor. In addition, since CR3 (the Page Directo-
ry Base Register) is loaded by a task switch, each
Virtual Mode task can use a different mapping
scheme to map pages to different physical locations.

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Finally, the paging hardware allows the sharing of
the 8086 operating system code between multiple
8086 applications. Figure 4.24 shows how the In-
tel486 Microprocessor paging hardware enables
multiple 8086 programs to run under a virtual memo-
ry demand paged system.

4.6.4 PROTECTION AND 1/0 PERMISSION
BITMAP

All Virtual 8086 Mode programs execute at privilege
level 3, the level of least privilege. As such, Virtual
8086 Mode programs are subject to all of the protec-
tion checks defined in Protected Mode. (This is dif-
ferent from Real Mode which implicitly is executing
at privilege level 0, the level of greatest privilege.)
Thus, an attempt to execute a privileged instruction
when in Virtual 8086 Mode will cause an exception
13 fault.

The following are privileged instructions, which may

LIDT; MOV DRn,reg; MOV reg,DRn;
LGDT; MOV TRn,reg; MOV reg,TRn;
LMSW; MOV CRn,reg; MOV reg,CRn.
CLTS;
HLT ;

Several instructions, particularly those applying to
the multitasking model and protection model, are
available only in Protected Mode. Therefore, at-
tempting to execute the following instructions in
Real Mode or in Virtual 8086 Mode generates an
exception 6 fault:

LTR; STR;
LLDT; SLDT;
LAR; VERR ;
LSL; VERW;
ARPL.

The instructions which are |OPL-sensitive in Protect-
ed Mode are:

be executed only at Privilege Level 0. Therefore, at- IN; STI;
tempting to execute these instructions in Virtual OUT ; CLI
8086 Mode (or anytime CPL > 0) causes an excep- INS;
tion 13 fault: OUTS;
REP INS;
REP OUTS;
PHYSICAL
MEMORY
- 02000000(H)
/ PAGE N
8086 0S
EMPTY
TASK 2 PAGE 4
TABLE ////////////
VIRTUAL MODE PAGE DIRECTORY e /4
Nmem]
il :LH Ik
[AVAILABLE
PAGE N
PAGE 1
8086 0S
k EMPTY 00000000(H)
PAGE DIRECTORY TASK 1 PAGE TASK 1 8086 0S
ROOT »] TABLE MEMORY MEMORY
TASK 2 § 386™ cpPuU oS
oz s) Ulweor N weworr
240440-25

Figure 4.24. Virtual 8086 Environment Memory Management

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

In Virtual 8086 Mode, a slightly different set of in-
structions are made |IOPL-sensitive. The following in-
structions are IOPL-sensitive in Virtual 8086 Mode:

INT n; STI;
PUSHF ; CLI;
POPF; IRET

The PUSHF, POPF, and IRET instructions are IOPL-
sensitive in Virtual 8086 Mode only. This provision
allows the IF flag (interrupt enable flag) to be virtual-
ized to the Virtual 8086 Mode program. The INT n
software interrupt instruction is also IOPL-sensitive
in Virtual 8086 Mode. Note, however, that the INT 3
(opcode OCCH), INTO, and BOUND instructions are
not IOPL-sensitive in Virtual 8086 mode (they aren’t
IOPL sensitive in Protected Mode either).

Note that the 1/0 instructions (IN, OUT, INS, OUTS,
REP INS, and REP OUTS) are not IOPL-sensitive in
Virtual 8086 mode. Rather, the 1/0 instructions be-
come automatically sensitive to the 1/0 Permission
Bitmap contained in the Intel486 Microprocessor
Task State Segment. The I/0O Permission Bitmap,
automatically used by the Intel486 Microprocessor
in Virtual 8086 Mode, is illustrated by Figures 4.15a
and 4.15b.

The I/0 Permission Bitmap can be viewed as a 0-
64 Kbit bit string, which begins in memory at offset
Bit_Map__Offset in the current TSS. Bit_Map_
Offset must be < DFFFH so the entire bit map and
the byte FFH which follows the bit map are all at
offsets < FFFFH from the TSS base. The 16-bit
pointer Bit__Map__Offset (15:0) is found in the word
beginning at offset 66H (102 decimal) from the TSS
base, as shown in Figure 4.15a.

Each bit in the I/0 Permission Bitmap corresponds
to a single byte-wide 1/0 port, as illustrated in Figure
4.15a. If a bit is 0, I/0 to the corresponding byte-
wide port can occur without generating an excep-
tion. Otherwise the 170 instruction causes an excep-
tion 13 fault. Since every byte-wide 1/0 port must be
protectable, all bits corresponding to a word-wide or
dword-wide port must be 0 for the word-wide or
dword-wide /0 to be permitted. If all the referenced
bits are 0, the 1/0 will be allowed. If any referenced
bits are 1, the attempted |I/0 will cause an exception
13 fault.

Due to the use of a pointer to the base of the 1/0
Permission Bitmap, the bitmap may be located any-
where within the TSS, or may be ignored completely
by pointing the Bit__Map__Offset (15:0) beyond the
limit of the TSS segment. In the same manner, only
a small portion of the 64K /0O space need have an
associated map bit, by adjusting the TSS limit to
truncate the bitmap. This eliminates the commitment
of 8K of memory when a complete bitmap is not
required, while allowing the fully general case if de-
sired.

76

EXAMPLE OF BITMAP FOR 1/O PORTS 0-255:
Setting the TSS limit to {bit_Map__Offset + 31
+1**} [** see note below] will allow a 32-byte bit-
map for the I/0 ports #0-255, plus a terminator
byte of all 1’s [** see note below]. This allows the
1/0 bitmap to control I/0 Permission to 1/0 port 0-
255 while causing an exception 13 fault on attempt-
ed 1/0 to any 1/0 port 80256 through 65,565.

**IMPORTANT IMPLEMENTATION NOTE: Beyond
the last byte of 1/0 mapping information in the I/0
Permission Bitmap must be a byte containing all 1's.
The byte of all 1’s must be within the limit of the
Intel486 Microprocessor TSS segment (see Figure
4.15a).

4.6.5 INTERRUPT HANDLING

In order to fully support the emulation of an 8086
machine, interrupts in Virtual 8086 Mode are han-
dled in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi-
lege change back to the host Intel486 Microproces-
sor operating system. The Intel486 Microprocessor
operating system determines if the interrupt comes
from a Protected Mode application or from a Virtual
Mode program by examining the VM bit in the
EFLAGS image stored on the stack.

When a Virtual Mode program is interrupted and ex-
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The Intel486 Microprocessor operating system in
turn handles the exception or interrupt and then re-
turns control to the 8086 program. The Intel486 Mi-
croprocessor operating system may choose to let
the 8086 operating system handle the interrupt or it
may emulate the function of the interrupt handier.
For example, many 8086 operating system calls are
accessed by PUSHing parameters on the stack, and
then executing an INT n instruction. If the IOPL is set
to 0 then all INT n instructions will be intercepted by
the Intel486 Microprocessor operating system. The
Intel486 Microprocessor operating system could em-
ulate the 8086 operating system’s call. Figure 4.25
shows how the Intel486 Microprocessor operating
system could intercept an 8086 operating system’s
call to “Open a File”.

An Intel486 Microprocessor operating system can
provide a Virtual 8086 Environment which is totally
transparent to the application software via intercept-
ing and then emulating 8086 operating system’s
calls, and intercepting IN and OUT instructions.

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

4.6.6 ENTERING AND LEAVING VIRTUAL
8086 MODE

Virtual 8086 mode is entered by executing an IRET
instruction (at CPL=0), or Task Switch (at any CPL)
to an Intel486 Microprocessor task whose Intel486
Microprocessor TSS has a FLAGS image containing
a 1in the VM bit position while the processor is exe-
cuting in Protected Mode. That is, one way to enter
Virtual 8086 mode is to switch to a task with an In-
tel486 Microprocessor TSS that has a 1 in the VM
bit in the EFLAGS image. The other way is to exe-
cute a 32-bit IRET instruction at privilege level 0,
where the stack has a 1 in the VM bit in the EFLAGS
image. POPF does not affect the VM bit, even if the
processor is in Protected Mode or level 0, and so
cannot be used to enter Virtual 8086 Mode. PUSHF
always pushes a 0 in the VM bit, even if the proces-
sor is in Virtual 8086 Mode, so that a program can-
not tell if it is executing in REAL mode, or in Virtual
8086 mode.

The VM bit can be set by executing an IRET instruc-
tion only at privilege level 0, or by any instruction or
Interrupt which causes a task switch in Protected
Mode (with VM=1 in the new FLAGS image), and
can be cleared only by an interrupt or exception in
Virtual 8086 Mode. IRET and POPF instructions exe-
cuted in REAL mode or Virtual 8086 mode will not
change the value in the VM bit.

The transition out of virtual 8086 mode to Intel486
Microprocessor protected mode occurs only on re-
ceipt of an interrupt or exception (such as due to a
sensitive instruction). In Virtual 8086 mode, all inter-
rupts and exceptions vector through the protected
mode IDT, and enter an interrupt handler in protect-
ed Intel486 Microprocessor mode. That is, as part of
interrupt processing, the VM bit is cleared.

Because the matching IRET must occur from level 0,
if an Interrupt or Trap Gate is used to field an inter-
rupt or exception out of Virtual 8086 mode, the Gate
must perform an inter-level interrupt only to level 0.
Interrupt or Trap Gates through conforming seg-
ments, or through segments with DPL>0, will raise a
GP fault with the CS selector as the error code.

4.6.6.1 Task Switches To/From Virtual
8086 Mode

Tasks which can execute in virtual 8086 mode must
be described by a TSS with the new Intel486 Micro-
processor format (TYPE 9 or 11 descriptor).

A task switch out of virtual 8086 mode will operate
exactly the same as any other task switch out of a
task with an Intel486 Microprocessor TSS. All of the
programmer visible state, including the FLAGS reg-
ister with the VM bit set to 1, is stored in the TSS.

77

The segment registers in the TSS will contain 8086
segment base values rather than selectors.

A task switch into a task described by an Intel486
Microprocessor TSS will have an additional check to
determine if the incoming task should be resumed in
virtual 8086 mode. Tasks described by 80286 format
TSSs cannot be resumed in virtual 8086 mode, so
no check is required there (the FLAGS image in
80286 format TSS has only the low order 16 FLAGS
bits). Before loading the segment register images
from an Intel486 Microprocessor TSS, the FLAGS
image is loaded, so that the segment registers are
loaded from the TSS image as 8086 segment base
values. The task is now ready to resume in virtual
8086 execution mode.

4.6.6.2 Transitions Through Trap and Interrupt
Gates, and IRET

A task switch is one way to enter or exit virtual 8086
mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an interrupt, and
to enter as part of executing an IRET instruction.
The transition out must use an Intel486 Microproc-
essor Trap Gate (Type 14), or Intel486 Microproces-
sor Interrupt Gate (Type 15), which must point to a
non-conforming level 0 segment (DPL=0) in order
to permit the trap handler to IRET back to the Virtual
8086 program. The Gate must point to a non-con-
forming level 0 segment to perform a level switch to
level 0 so that the matching IRET can change the
VM bit. Intel486 Microprocessor gates must be used,
since 80286 gates save only the low 16 bits of the
FLAGS register, so that the VM bit will not be saved
on transitions through the 80286 gates. Also, the
16-bit IRET (presumably) used to terminate the
80286 interrupt handler will pop only the lower 16
bits from FLAGS, and will not affect the VM bit. The
action taken for an Intel486 Microprocessor Trap or
Interrupt gate if an interrupt occurs while the task is
executing in virtual 8086 mode is given by the follow-
ing sequence.

(1) Save the FLAGS register in a temp to push later.
Turn off the VM and TF bits, and if the interrupt
is serviced by an Interrupt Gate, turn off IF also.

Interrupt and Trap gates must perform a level
switch from 3 (where the VM86 program exe-
cutes) to level 0 (so IRET can return). This pro-
cess involves a stack switch to the stack given
in the TSS for privilege level 0. Save the Virtual
8086 Mode SS and ESP registers to push in a
later step. The segment register load of SS will
be done as a Protected Mode segment load,
since the VM bit was turned off above.

()

Intel486™ DX MICROPROCESSOR

PRELIMINARY

ROGRAM

8086 APPLICATION

Intel486™ cpU
APPLICATION
PROGRAM

GP FAULT

VIRTUAL 8086
MODE MONITOR

8086
OPERATING #3

l#z

SYSTEM

Intel486™ CPU 0S
FILE OPEN
ROUTINES

PRIVILEGE
LEVEL 3
(LOWEST)

8086 Application makes “Open File Call” —> causes
General Protection Fault (Arrow #1)

8086 OS returns control to application. (Arrow #4)
Transparent to Application

PRIVILEGE
LEVEL O
(HIGHEST)

Virtual 8086 Monitor intercepts call. Calls Intel486™ CPU OS (Arrow #2)
Intel486™ CPU OS opens file returns control to 8086 OS (Arrow #3)

8086 APPLICATION
PROGRAM

240440-26

Figure 4.25. Virtual 8086 Environment Interrupt and Call Handling

(3) Push the 8086 segment register values onto the
new stack, in the order: GS, FS, DS, ES. These
are pushed as 32-bit quantities, with undefined
values in the upper 16 bits. Then load these 4
registers with null selectors (0).

(4) Push the old 8086 stack pointer onto the new
stack by pushing the SS register (as 32-bits, high
bits undefined), then pushing the 32-bit ESP reg-
ister saved above.

(5) Push the 32-bit FLAGS register saved in step 1.

(6) Push the old 8086 instruction pointer onto the
new stack by pushing the CS register (as 32-bits,
high bits undefined), then pushing the 32-bit EIP
register.

(7) Load up the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine
in protected Intel486 Microprocessor mode.

The transition out of virtual 8086 mode performs a
level change and stack switch, in addition to chang-

ing back to protected mode. In addition, all of the
8086 segment register images are stored on the
stack (behind the SS:ESP image), and then loaded
with null (0) selectors before entering the interrupt
handler. This will permit the handler to safely save
and restore the DS, ES, FS, and GS registers as
80286 selectors. This is needed so that interrupt
handlers which don’t care about the mode of the
interrupted program can use the same prolog and
epilog code for state saving (i.e., push all registers in
prolog, pop all in epilog) regardless of whether or not
a “native” mode or Virtual 8086 mode program was
interrupted. Restoring null selectors to these regis-
ters before executing the IRET will not cause a trap
in the interrupt handler. Interrupt routines which ex-
pect values in the segment registers, or return val-
ues in segment registers will have to obtain/return
values from the 8086 register images pushed onto
the new stack. They will need to know the mode of
the interrupted program in order to know where to
find/return segment registers, and also to know how
to interpret segment register values.

78

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

The IRET instruction will perform the inverse of the
above sequence. Only the extended Intel486 Micro-
processors IRET instruction (operand size=32) can
be used, and must be executed at level 0 to change
the VM bit to 1.

(1) If the NT bit in the FLAGs register is on, an inter-
task return is performed. The current state is
stored in the current TSS, and the link field in the
current TSS is used to locate the TSS for the
interrupted task which is to be resumed.

Otherwise, continue with the following se-
quence.

Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value
active in the interrupted routine.

Pop off the instruction pointer CS:EIP. EIP is
popped first, then a 32-bit word is popped which
contains the CS value in the lower 16 bits. If
VM=0, this CS load is done as a protected
mode segment load. If VM =1, this will be done
as an 8086 segment load.

@

~

(©)]

79

(4) Increment the ESP register by 4 to bypass the
FLAGS image which was “popped” in step 1.

(5) If VM=1, load segment registers ES, DS, FS,
and GS from memory locations SS:[ESP+ 8],
SS:[ESP+12], SS:[ESP+16], and
SS:[ESP+20], respectively, where the new val-
ue of ESP stored in step 4 is used. Since VM =1,
these are done as 8086 segment register loads.

Else if VM=0, check that the selectors in ES,
DS, FS, and GS are valid in the interrupted rou-
tine. Null out invalid selectors to trap if an at-
tempt is made to access through them.

(6) If (RPL(CS) > CPL), pop the stack pointer
SS:ESP from the stack. The ESP register is
popped first, followed by 32-bits containing SS in
the lower 16 bits. If VM=0, SS is loaded as a
protected mode segment register load. If VM =1,
an 8086 segment register load is used.

(7) Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine’s stack image in step 1) deter-
mines whether the processor resumes the inter-
rupted routine in Protected mode of Virtual 8086
mode.

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

5.0 ON-CHIP CACHE

To meet its performance goals the Intel486 Micro-
processor contains an eight Kbyte cache. The cache
is software transparent to maintain binary compati-
bility with previous generations of the Intel386™/In-
tel486™ Architecture.

The on-chip cache has been designed for maximum
flexibility and performance. The cache has several
operating modes offering flexibility during program
execution and debugging. Memory areas can be de-
fined as non-cacheable by software and external
hardware. Protocols for cache line invalidations and
replacement are implemented in hardware, easing
system design.

5.1 Cache Organization

The on-chip cache is a unified code and data cache.
The cache is used for both instruction and data ac-
cesses and acts on physical addresses.

The cache organization is 4-way set associative and
each line is 16 bytes wide. The eight Kbytes of
cache memory are logically organized as 128 sets,
each containing four lines.

The cache memory is physically split into four
2-Kbyte blocks each containing 128 lines (see Fig-
ure 5.1). Associated with each 2-Kbyte block are
128 21-bit tags. There is a valid bit for each line in
the cache. Each line in the cache is either valid or
not valid. There are no provisions for partially valid
lines.

21 Bit
Tag

%_

!

128 Tags

3 LRU

4 Valid

l“ Bits _T_ Bits _’l

[+— 16=Byte Line Size —>

128
2k Bytes Sets
2k Bytes
2k Bytes
2k Bytes
128
Sets

240440-27

Figure 5.1. On-Chip Cache Physical Organization

80

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

The write strategy of on-chip cache is write-through.
All writes will drive an external write bus cycle in
addition to writing the information to the internal
cache if the write was a cache hit. A write to an
address not contained in the internal cache will only
be written to external memory. Cache allocations
are not made on write misses.

5.2 Cache Control

Control of the cache is provided by the CD and NW
bits in CRO. CD enables and disables the cache. NW
controls memory write-through and invalidates.

The CD and NW bits define four operating modes of
the on-chip cache as given in Table 5.1. These
modes provide flexibility in how the on-chip cache is
used.

Table 5.1. Cache Operating Modes

CD | NW Operating Mode

1 1 | Cache fills disabled, write-through and
invalidates disabled

1 0 | Cache fills disabled, write-through and
invalidates enabled

0 1 | INVALID. IF CRO is loaded with this
configuration of bits, a GP fault with
error code of 0 is raised.

0 0 | Cache fills enabled, write-through and
invalidates enabled

CD=1, NW=1

The cache is completely disabled by setting
CD=1 and NW=1 and then flushing the
cache. This mode may be useful for debug-
ging programs where it is important to see
all memory cycles at the pins. Writes which
hit in the cache will not appear on the exter-
nal bus.

It is possible to use the on-chip cache as
fast static RAM by ‘“pre-loading” certain
memory areas into the cache and then set-
ting CD=1 and NW=1. Pre-loading can be
done by careful choice of memory refer-
ences with the cache turned on or by use of
the testability functions (see Section 8.2).
When the cache is turned off the memory
mapped by the cache is “frozen” into the
cache since fills and invalidates are ais-
abled.

81

CD=1, NW=0

Cache fills are disabled but write-throughs
and invalidates are enabled. This mode is
the same as if the KEN# pin was strapped
HIGH disabling cache fills. Write-throughs
and invalidates may still occur to keep the
cache valid. This mode is useful if the soft-
ware must disable the cache for a short pe-
riod of time, and then re-enable it without
flushing the original contents.

NW=1

INVALID. If CRO is loaded with this bit con-
figuration, a General Protection fault with
error code of 0 is raised. Note that this
mode would imply a non-transparent write-
back cache. A future processor may define
this combination of bits to implement a
write-back cache.

NW=0
This is the normal operating mode.

Completely disabling the cache is a two step pro-
cess. First CD and NW must be set to 1 and then the
cache must be flushed. If the cache is not flushed,
cache hits on reads will still occur and data will be
read from the cache.

5.3 Cache Line Fills

Any area of memory can be cached in the Intel486
Microprocessor. Non-cacheable portions of memory
can be defined by the external system or by soft-
ware. The external system can inform the Intel486
Microprocessor that a memory address is non-
cacheable by returning the KEN# pin inactive during
a memory access (refer to Section 7.2.3). Software
can prevent certain pages from being cached by set-
ting the PCD bit in the page table entry.

A read request can be generated from program op-
eration or by an instruction pre-fetch. The data will
be supplied from the on-chip cache if a cache hit
occurs on the read address. If the address is not in
the cache, a read request for the data is generated
on the external bus.

If the read request is to a cacheable portion of mem-
ory, the Intel486 Microprocessor initiates a cache
line fill. During a line fill a 16-byte line is read into the
Intel486 Microprocessor.

Cache fills will only be generated for read misses.
Write misses will never cause a line in the internal
cache to be allocated. If a cache hit occurs on a
write, the line will be updated.

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Cache line fills can be performed over 8- and 16-bit
busses using the dynamic bus sizing feature. Refer
to Section 7.1.3 for a description of dynamic bus
sizing.

Refer to Section 7.2.3 for further information on
cacheable cycles.

5.4 Cache Line Invalidations

The Intel486 Microprocessor contains both a hard-
ware and software mechanism for invalidating lines
in its internal cache. Cache line invalidations are
needed to keep the Inteld86 Microprocessor's
cache contents consistent with external memory.

Refer to Section 7.2.8 for further information on
cache line invalidations.

5.5 Cache Replacement

When a line needs to be placed in its internal cache
the Intel486 Microprocessor first checks to see if
there is a non-valid line in the set that can be re-
placed. If all four lines in the set are valid, a pseudo
least-recently-used mechanism is used to determine
which line should be replaced.

A valid bit is associated with each line in the cache.
When a line needs to be placed in a set, the four

valid bits are checked to see if there is a non-valid
line that can be replaced. If a non-valid line is found,
that line is marked for replacement.

The four lines in the set are labeled 10, 11, 12, and I3.
The order in which the valid bits are checked during
an invalidation is 10, 1, 12 and I3. All valid bits are
cleared when the processor is reset or when the
cache is flushed.

Replacement in the cache is handled by a pseudo
least recently used (LRU) mechanism when all four
lines in a set are valid. Three bits, BO, B1 and B2,
are defined for each of the 128 sets in the cache.
These bits are called the LRU bits. The LRU bits are
updated for every hit or replace in the cache.

If the most recent access to the set was to 10 or [1,
BO is set to 1. BO is set to 0_if the most recent ac-
cess was to 12 or I3. If the most recent access to
10:11 was to 10, B1 is set to 1, else B1 is set to 0. If
the most recent access to 12:13 was to 12, B2 is set to
1, else B2 is set to 0.

The pseudo LRU mechanism works in the following
manner. When a line must be replaced, the cache
will first select which of 10:I1 and 12:I13 was least re-
cently used. Then the cache will determine which of
the two lines was least recently used and mark it for
replacement. This decision tree is shown in Figure
5.2. When the processor is reset or when the cache
is flushed all 128 sets of three LRU bits are set to 0.

Yes l

BO=0?
Yes: 10 or I1 least recently used

Replace
"

Replace
10

All four lines in the set valid? —— Replace non=valid line

No: 12 or I3 least recently used

Replace

No

Replace
13

240440-28

Figure 5.2. On-Chip Cache Replacement Strategy

82

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

5.6 Page Cacheability

Two bits for cache control, PWT and PCD, are de-
fined in the page table and page directory entries.
The state of these bits are driven out on the PWT
and PCD pins during memory access cycles.

The PWT bit controls write policy for second level
caches used with the Intel486 Microprocessor. Set-
ting PWT=1 defines a write-through policy for the
current page while PWT =0 allows the possibility of
write-back. The state of PWT is ignored internally by
the Intel486 Microprocessor since the on-chip cache
is write through.

The PCD bit controls cacheability on a page by page
basis. The PCD bit is internally ANDed with the
KEN# signal to control cacheability on a cycle by
cycle basis (see Figure 5.3). PCD=0 enables cach-
ing while PCD =1 forbids it. Note that cache fills are
enabled when PCD=0 AND KEN# =0. This logical
AND is implemented physically with a NOR gate.

The state of the PCD bit in the page table entry is
driven on the PCD pin when a page in external mem-
ory is accessed. The state of the PCD pin informs
the external system of the cacheability of the re-
quested information. The external system then re-
turns KEN# telling the Intel486 Microprocessor if
the area is cacheable. The Intel486 Microprocessor
initiates a cache line fill if PCD and KEN# indicate
that the requested information is cacheable.

c|n
CRO 5l
\AA 4
CACHE CONTROL LOGIC < AL
KEN
I (Ic EN
CACHE MEMORY
(A et I et I -
' 31 22 12 0 '
! '
1 ——>] DIRECTORY | TABLE | oFFsET | '
1 LINEAR '
1 ADDRESS 10l 10 '
! 0 g PCD PCD .
| ' >
' ' PWT
] T >
Vo3 0 31 0,
' 31 0 '
1 CRO | X
]]
1 CR1 4 PCD, PWT |
' ®» PCD, PWT '
' CR2 '
' > '
] 4 1
 CR3 | PCD, PWT [——> PAGE TABLE 1, OD
' DIRECTORY v (From CRO)
! CONTROL REGISTERS !
b oo emee-m-e--me-.m - - e - - e - - m = - - 4
240440-29

Figure 5.3. Page Cacheability

83

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

The PCD bit is masked with the CD (cache disable)
bit in control register 0 to determine the state of the
PCD pin. If CD=1 the Intel486 Microprocessor
forces the PCD pin HIGH. If CD=0 the PCD pin is
driven with the value for the page table entry/direc-
tory. See Figure 5.3.

The PWT and PCD bits for a bus cycle are obtained
from either CR3, the page directory or page table
entry. These bits are assumed to be zero during real
mode, whenever paging is disabled, or for cycles
that bypass paging, (I/O references, interrupt ac-
knowledge and Halt cycles), the PWT and PCD bits
are taken from CR3. These bits are initialized to 0 on
reset, but can be set to any value by level 0 soft-
ware.

When paging is enabled, the bits from the page table
entry are cached in the TLB, and are driven any time
the page mapped by the TLB entry is referenced.
For normal memory cycles, PWT and PCD are taken
from the page table entry. During TLB refresh cycles
where the page table and directory entries are read,
the PWT and PCD bits must be obtained elsewhere.
During page table updates the bits are obtained from
the page directory. When the page directory is up-
dated the bits are obtained from CR3.

5.7 Cache Flushing

The on-chip cache can be flushed by external hard-
ware or by software instructions. Flushing the cache
clears all valid bits for all lines in the cache. The
cache is flushed when external hardware asserts the
FLUSH# pin.

The flush pin needs to be asserted for one clock if
driven synchronously or for two clocks if driven
asynchronously. The flush input is asynchronous but
setup and hold times must be met. The flush pin
should be deasserted after the cache flush is com-
plete. Failure to deassert the pin will cause execu-
tion to stop as the processor will be repeatedly flush-
ing the cache. If external hardware activates flush in
response to an 1/0 write, flush must be asserted for
at least two clocks prior to ready being returned for
the 170 write. This ensures that the flush completes
before the CPU begins execution of the instruction
following the OUT instruction.

Flush is recognized during HOLD just like EADS #.

The instructions INVD and WBINVD cause the on-
cache to be flushed. External caches connected to
the Intel486 microprocessor are signalled to flush
their contents when these instructions are executed.

WBINVD will cause an external write-back cache to
write back dirty lines before flushing its contents.
The external cache is signalled using the bus cycle
definition pins and the byte enables (refer to Section

84

6.2.5 for the bus cycle definition pins and Section
7.2.11 for special bus cycles). Refer to the Intel486
Microprocessor programmers reference manual for
detailed instruction definitions.

The results of the INVD and WBINVD instructions
are identical for the operation of the Intel486 Micro-
processor’s on-chip cache since the cache is write-
through. Note that the INVD and WBINVD instruc-
tions are machine dependent. Future members of
the Intel486 Microprocessor family may change the
definition of this instruction.

5.8 Caching Translation Lookaside
Buffer Entries

The Intel486 Microprocessor contains an integrated
paging unit with a translation lookaside buffer (TLB).
The TLB contains 32 entries. The TLB has been en-
hanced over the 386 Microprocessor’s TLB by up-
grading the replacement strategy to a pseudo-LRU
(least recently used) algorithm. The pseudo-LRU re-
placement algorithm is the same as that used in the
on-chip cache.

The paging TLB operation is automatic whenever
paging is enabled. The TLB contains the most re-
cently used page table entries. A page table entry
translates the linear address pointing to a particular
page to the physical address where the page is
stored in memory (refer to Section 4.5, Paging).

The paging unit will look up the linear address in the
TLB in response to an internal bus request. The cor-
responding physical address is passed on to the on-
chip cache or the external bus (in the event of a
cache miss) when the linear address is present in
the TLB.

The paging unit will access the page tables in exter-
nal memory if the linear address is not in the TLB.
The required page table entry will be read into the
TLB and then the cache or bus cycle for the actual
data will take place. The process of reading a new
page table entry into the TLB is called a TLB refresh.

A TLB refresh is a two step process. The paging unit
must first read the page directory entry which points
to the appropriate page table. The page table entry
to be stored in the TLB is then read from the page
table. Control register 3 (CR3) points to the base of
the page directory table.

The Intel486 Microprocessor will allow page directo-
ry and page table entries (returned during TLB re-
freshes) to be stored in the on-chip cache. Setting
the PCD bits in CR3 and the page directory entry to
1 will prevent the page directory and page table en-
tries from being stored in the on-chip cache (see
Section 5.6, Page Cacheability).

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

6.0 HARDWARE INTERFACE

6.1 Introduction

The Intel486 Microprocessor bus has been designed
to be similar to the 386 Microprocessor bus whenev-
er possible. Several new features have been added
to the Intel486 Microprocessor bus resulting in in-
creased performance and functionality. New fea-
tures include a 1X clock, a burst bus mechanism for
high-speed internal cache fills, a cache line invalida-
tion mechanism, enhanced bus arbitration capabili-
ties, a BS8# bus sizing mechanism and parity sup-
port.

The Intel486 Microprocessor is driven by a 1X clock
as opposed to a 2X clock in the 386 Microprocessor.
A 25 MHz Intel486 Microprocessor uses a 25 MHz
clock in contrast to a 25 MHz 386 Microprocessor
which requires a 50 MHz clock. A 1X clock allows
simpler system design by cutting in half the clock
speed required in the external system.

Like the 386 Microprocessor, the Intel486 Micro-
processor has separate parallel busses for data and
addresses. The bidirectonal data bus is 32 bits in
width. The address bus consists of two components:

. 30 address lines (A2-A31) and 4 byte enable lines

(BEO# -BE3#). The address bus addresses exter-
nal memory in the same manner as the 386 Micro-
processor: The address lines form the upper 30 bits
of the address and the byte enables select individual
bytes within a 4 byte location. The address lines are
bidirectional for use in cache line invalidations.

The Intel486 Microprocessor’s burst bus mechanism
enables high-speed cache fills from external memo-
ry. Burst cycles can strobe data into the processor at
a rate of one item every clock. Non-burst cycles
have a maximum rate of one item every two clocks.
Burst cycles are not limited to cache fills: all bus
cycles requiring more than a single data cycle can
be bursted.

CLK

v

DATA BUS
32-Bit -
Data {DO D31

ADS#
RDY#

<
Bus ~
Control

v

il

INTR
RESET

Interrupt
Signals

Vv V V

|

AHOLD
EADS#

Cache

V%

|

vV VY

#
Control FLUSH

Page
Caching
Control

A A

FERR#

{

&=

o |
Cacho { s

(=

e

Numeric]
Error IGNNE#
Reporting

Address Bit A20M#

20 Mask v

Intol486 ™
Microprocessor e:za\

A2 A31

32-Bit
EES# Address
Bus

Byte
EE 1# Enables

BEO#

I

HOLD
HLDA
BOFF#
BREQ

|

Bus
Arbitration

I

BRDY#
BLAST#

|

Burst
Control

|

BSB#
BSIS#

Bus Size
Control

M/10#

D/C#

W/R# Bus Cycle
LOCK# Definition
PLOCK#

i

il

DP3
DP1 Parit
arity
DPO
l———
PCHK#

|

240440-30

Figure 6.1. Functional Signal Groupings

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

The Intel486 Microprocessor has a bus hold feature
similar to that of the 386 Microprocessor. During bus
hold, the Intel486 Microprocessor relinquishes con-
trol of the local bus by floating its address, data and
control busses.

The Intel486 Microprocessor has an address hold
feature in addition to bus hold. During address hold
only the address bus is floated, the data and control
busses can remain active. Address hold is used for
cache line invalidations.

Ahead is a brief description of the Intel486 Micro-
processor input and output signals arranged by func-
tional groups. Before beginning the signal descrip-
tions a few terms need to be defined. The # symbol
at the end of a signal name indicates the active, or
asserted, state occurs when the signal is at a low
voltage. When a # is not present after the signal
name, the signal is active at the high voltage level.
The term “ready” is used to indicate that the cycle is
terminated with RDY # or BRDY #.

Section 6 and 7 will discuss bus cycles and data
cycles. A bus cycle is at least two clocks long and
begins with ADS# active in the first clock and ready
active in the last clock. Data is transferred to or from
the Intel486 Microprocessor during a data cycle. A
bus cycle contains one or more data cycles.

6.2 Signal Descriptions

6.2.1 CLOCK (CLK)

CLK provides the fundamental timing and the inter-
nal operating frequency for the Intel486 Microproc-
essor. All external timing parameters are specified
with respect to the rising edge of CLK.

The Intel486 Microprocessor can operate over a
wide frequency range but CLK’s frequency cannot
change rapidly while RESET is inactive. CLK’s fre-
guency must be stable for proper chip operation
since a single edge of CLK is used internally to gen-
erate two phases. CLK only needs TTL levels for
proper operation. Figure 6.2 illustrates the CLK
waveform.

6.2.2 ADDRESS BUS (A31-A2, BEO#~BE3#)

A31-A2 and BEO#-BE3# form the address bus
and provide physical memory and 1/0 port address-
es. The Intel486 Microprocessor is capable of ad-
dressing 4 gigabytes of physical memory space
(00000000H through FFFFFFFFH), and 64 Kbytes
of I/0O address space (00000000H through
0000FFFFH). A31-A2 identify addresses to a 4-byte
location. BEO# —-BE3# identify which bytes within
the 4-byte location are involved in the current trans-
fer.

Addresses are driven back into the Intel486 Micro-
processor over A31-A4 during cache line invalida-
tions. The address lines are active HIGH. When
used as inputs into the processor, A31-A4 must
meet the setup and hold times, tp> and tp3. A31-A2
are not driven during bus or address hold.

The byte enable outputs, BEO# -BE3#, determine
which bytes must be driven valid for read and write
cycles to external memory.

BE3# applies to D24-D31
BE2# applies to D16-D23
BE1# applies to D8-D15
BEO# applies to DO-D7

tx = input setup times
ty = input hold times, output float, valid and hold times

tx—>te-ty

1.5V

240440-31

Figure 6.2. CLK waveform

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

BEO# -BE3# can be decoded to generate A0, Al
and BHE# signals used in 8- and 16-bit systems
(see Table 7.5). BEO# -BE3# are active LOW and
are not driven during bus hold.

6.2.3 DATA LINES (D31-D0)

The bidirectional lines, D31-D0, form the data bus
for the Intel486 Microprocessor. DO-D7 define the
least significant byte and D24-D31 the most signifi-
cant byte. Data transfers to 8- or 16-bit devices is
possible using the data bus sizing feature controlled
by the BS8# or BS16# input pins.

D31-D0 are active HIGH. For reads, D31-D0 must
meet the setup and hold times, t22 and to3. D31-DO0
are not driven during read cycles and bus hold.

6.2.4 PARITY
Data Parity Input/Outputs (DP0-DP3)

DPO0-DP3 are the data parity pins for the processor.
There is one pin for each byte of the data bus. Even
parity is generated or checked by the parity genera-
tors/checkers. Even parity means that there are an
even number of HIGH inputs on the eight corre-
sponding data bus pins and parity pin.

Data parity is generated on all write data cycles with
the same timing as the data driven by the Intel486
Microprocessor. Even parity information must be
driven back to the Intel486 Microprocessor on these
pins with the same timing as read information to in-
sure that the correct parity check status is indicated
by the Intel486 Microprocessor.

The values read on these pins do not affect program
execution. It is the responsibility of the system to
take appropriate actions if a parity error occurs.

Input signals on DPO-DP3 must meet setup and
hold times to2 and tog for proper operation.

Parity Status Output (PCHK #)

Parity status is driven on the PCHK # pin, and a pari-
ty error is indicated by this pin being LOW. PCHK #
is driven the clock after ready for read operations to
indicate the parity status for the data sampled at the
end of the previous clock. Parity is checked during
code reads, memory reads and 1/0 reads. Parity is
not checked during interrupt acknowledge cycles.
PCHK# only checks the parity status for enabled
bytes as indicated by the byte enable and bus size
signals. It is valid only in the clock immediately after
read data is returned to the Intel486 microprocessor.
At all other times it is inactive (HIGH). PCHK# is
never floated.

87

Driving PCHK # is the only effect that bad input pari-
ty has on the Intel486 Microprocessor. The Intel486
Microprocessor will not vector to a bus error inter-
rupt when bad data parity is returned. In systems
that will not employ parity, PCHK# can be ignored.
In systems not using parity, DPO-DP3 should be
connected to Vg through a pullup resistor.

6.2.5 BUS CYCLE DEFINITION
M/I0#, D/C#, W/R# Outputs

M/10#, D/C# and W/R# are the primary bus cycle
definition signals. They are driven valid as the ADS #
signal is asserted. M/IO# distinguishes between
memory and |I/O cycles, D/C# distinguishes be-
tween data and control cycles and W/R# distin-
guishes between write and read cycles.

Bus cycle definitions as a function of M/10#, D/C#
and W/R# are given in Table 6.1. Note there is a
difference between the Intel486 Microprocessor and
386 Microprocessor bus cycle definitions. The halt
bus cycle type has been moved to location 001 in
the Intel486 Microprocessor from location 101 in the
386 Microprocessor. Location 101 is now reserved
and will never be generated by the Intel486 Micro-
processor.

Table 6.1. ADS# Initiated Bus Cycle Definitions

M/1I0# D/C# W/R# Bus Cycle Initiated
0 0 0 Interrupt Acknowledge
0 0 1 Halt/Special Cycle
0 1 0 1/0 Read
0 1 1 1/0 Write
1 0 0 Code Read
1 0 1 Reserved
1 1 0 Memory Read
1 1 1 Memory Write

Special bus cycles are discussed in Section 7.2.11.
Bus Lock Output (LOCK#)

LOCK# indicates that the Intel486 Microprocessor
is running a read-modify-write cycle where the exter-
nal bus must not be relinquished between the read
and write cycles. Read-modify-write cycles are used
to implement memory-based semaphores. Multiple
reads or writes can be locked.

When LOCK# is asserted, the current bus cycle is
locked and the Intel486 Microprocessor should be
allowed exclusive access to the system bus.
LOCK# goes active in the first clock of the first
locked bus cycle and goes inactive after ready is
returned indicating the last locked bus cycle.

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

The Intel486 Microprocessor will not acknowledge
bus hold when LOCK# is asserted (though it will
allow an address hold). LOCK# is active LOW and
is floated during bus hold. Locked read cycles will
not be transformed into cache fill cycles if KEN# is
returned active. Refer to Section 7.2.6 for a detailed
discussion of Locked bus cycles.

Pseudo-Lock Output (PLOCK #)

The pseudo-lock feature allows atomic reads and
writes of memory operands greater than 32 bits.
These operands require more than one cycle to
transfer. The Intel486 Microprocessor asserts
PLOCK# during floating point long reads and writes
(64 bits), segment table descriptor reads (64 bits)
and cache line fills (128 bits).

When PLOCK # is asserted no other master will be
given control of the bus between cycles. A bus hold
request (HOLD) is not acknowledged during pseudo-
locked reads and writes, with one exception. During
non-cacheable non-bursted code prefetches, HOLD
is recognized on memory cycle boundaries even
though PLOCK# is asserted. The Intel486 Micro-
processor will drive PLOCK# active until the ad-
dresses for the last bus cycle of the transaction
have been driven regardless of whether BRDY # or
RDY # are returned.

A pseudo-locked transfer is meaningful only if the
memory operand is aligned and if its completely con-
tained within a single cache line. A 64-bit floating
point number must be aligned to an 8-byte boundary
to guarantee an atomic access.

Normally PLOCK# and BLAST# are inverse of
each other. However during the first cycle of a 64-bit
floating point write, both PLOCK # and BLAST # will
be asserted.

Since PLOCK# is a function of the bus size and
KEN# inputs, PLOCK# should be sampled only in
the clock ready is returned. This pin is active LOW
and is not driven during bus hold. Refer to Section
7.2.7 for a detailed discussion of pseudo-locked bus
cycles.

6.2.6 BUS CONTROL

The bus control signals allow the processor to indi-
cate when a bus cycle has begun, and allow other
system hardware to control burst cycles, data bus
width and bus cycle termination.

Address Status Output (ADS #)

The ADS# output indicates that the address and
bus cycle definition signals are valid. This signal will

88

go active in the first clock of a bus cycle and go
inactive in the second and subsequent clocks of the
cycle. ADS# is also inactive when the bus is idle.

ADS # is used by external bus circuitry as the indica-
tion that the processor has started a bus cycle. The
external circuit must sample the bus cycle definition
pins on the next rising edge of the clock after ADS #
is driven active.

ADS# is active LOW and is not driven during bus
hold.

Non-burst Ready Input (RDY #)

RDY # indicates that the current bus cycle is com-
plete. In response to a read, RDY # indicates that
the external system has presented valid data on the
data pins. In response to a write request, RDY # indi-
cates that the external system has accepted the In-
tel486 microprocessor data. RDY # is ignored when
the bus is idle and at the end of the first clock of the
bus cycle. Since RDY # is sampled during address
hold, data can be returned to the processor when
AHOLD is active.

RDY # is active LOW, and is not provided with an
internal pullup resistor. This input must satisfy setup
and hold times t1g and t17 for proper chip operation.

6.2.7 BURST CONTROL
Burst Ready Input (BRDY #)

BRDY # performs the same function during a burst
cycle that RDY # performs during a non-burst cycle.
BRDY # indicates that the external system has pre-
sented valid data on the data pins in response to a
read or that the external system has accepted the
Intel486 Microprocessor data in response to a write.
BRDY # is ignored when the bus is idle and at the
end of the first clock in a bus cycle.

During a burst cycle, BRDY # will be sampled each
clock, and if active, the data presented on the data
bus pins will be strobed into the Intel486 Microproc-
essor. ADS# is negated during the second through
last data cycles in the burst, but address lines A2-
A3 and byte enables will change to reflect the next
data item expected by the Intel486 Microprocessor.

If RDY# is returned simultaneously with BRDY #,
BRDY # is ignored and the burst cycle is premature-
ly aborted. An additional complete bus cycle will be
initiated after an aborted burst cycle if the cache line
fill was not complete. BRDY # is treated as a normal
ready for the last data cycle in a burst transfer or for
non-burstable cycles. Refer to Section 7.2.2 for
burst cycle timing.

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

BRDY # is active LOW and is provided with a small
internal pullup resistor. BRDY # must satisfy the set-
up and hold times t4g and t47.

Burst Last Output (BLAST #)

BLAST # indicates that the next time BRDY # is re-
turned it will be treated as a normal RDY #, terminat-
ing the line fill or other multiple-data-cycle transfer.
BLAST# is active for all bus cycles regardless of
whether they are cacheable or not. This pin is active
LOW and is not driven during bus hold.

6.2.8 INTERRUPT SIGNALS (RESET, INTR,
NMI)

The interrupt signals can interrupt or suspend exe-
cution of the processor’s current instruction stream.

Reset Input (RESET)

RESET forces the Intel486 Microprocessor to begin
execution at a known state. For a power-up (cold
start) reset, Voc and CLK must reach their proper
DC and AC specifications for at least 1 ms before
the Intel486 Microprocessor begins instruction exe-
cution. The RESET pin should remain active during
this time to ensure proper Intel486 Microprocessor
operation. However, for a warm boot-up case,
RESET is required to remain active for a minimum of
15 clocks. The testability operating modes are pro-
grammed by the falling (inactive going) edge of
RESET. (Refer to Section 8.0 for a description of the
test modes during reset.)

Maskable Interrupt Request Input (INTR)

INTR indicates that an external interrupt has been
generated. Interrupt processing is initiated if the IF
flag is active in the EFLAGS register.

The Intel486 Microprocessor will generate two
locked interrupt acknowledge bus cycles in re-
sponse to asserting the INTR pin. An 8-bit interrupt
number will be latched from an external interrupt
controller at the end of the second interrupt ac-
knowledge cycle. INTR must remain active until the
interrupt acknowledges have been performed to as-
sure program interruption. Refer to Section 7.2.10
for a detailed discussion of interrupt acknowledge
cycles.

The INTR pin is active HIGH and is not provided with
an internal pulldown resistor. INTR is asynchronous,
but the INTR setup and hold times, tpg and tp, must
be met to assure recognition on any specific clock.

Non-maskable Interrupt Request Input (NMI)

NMI is the non-maskable interrupt request signal.
Asserting NMI causes an interrupt with an internally

89

supplied vector value of 2. External interrupt ac-
knowledge cycles are not generated since the NMI
interrupt vector is internally generated. When NMI
processing begins, the NMI signal will be masked
internally until the IRET instruction is executed.

NMI is rising edge sensitive after internal synchroni-
zation. NMI must be held LOW for at least four CLK
periods before this rising edge for proper operation.
NMI is not provided with an internal pulldown resis-
tor. NMI is asynchronous but setup and hold times,
top and to4 must be met to assure recognition on any
specific clock.

6.2.9 BUS ARBITRATION SIGNALS

This section describes the mechanism by which the
processor relinquishes control of its local bus when
requested by another bus master.

Bus Request Output (BREQ)

The Intel486 Microprocessor asserts BREQ when-
ever a bus cycle is pending internally. Thus, BREQ is
always asserted in the first clock of a bus cycle,
along with ADS#. Furthermore, if the Intel486 Mi-
croprocessor is currently not driving the bus (due to
HOLD, AHOLD, or BOFF#), BREQ is asserted in
the same clock that ADS # would have been assert-
ed if the processor were driving the bus. After the
first clock of the bus cycle, BREQ may change state.
It will be asserted if additional cycles are necessary
to complete a transfer (via BS8#, BS16#, KEN#),
or if more cycles are pending internally. However, if
no additional cycles are necessary to complete the
current transfer, BREQ can be negated before ready
comes back for the current cycle. External logic can
use the BREQ signal to arbitrate among multiple
processors. This pin is driven regardless of the state
of bus hold or address hold. BREQ is active HIGH
and is never floated. During a hold state, internal
events may cause BREQ to be deasserted prior to
any bus cycles.

Bus Hold Request Input (HOLD)

HOLD allows another bus master complete control
of the Intel486 Microprocessor bus. The Intel486 Mi-
croprocessor will respond to an active HOLD signal
by asserting HLDA and placing most of its output
and input/output pins in a high impedance state
(floated) after completing its current bus cycle, burst
cycle, or sequence of locked cycles. In addition, if
the Intel486 CPU receives a HOLD request while
performing a non-cacheable, non-bursted code pre-
fetch and that cycle is backed off (BOFF #), the In-
tel486 CPU will recognize HOLD before restarting
the cycle. The BREQ, HLDA, PCHK# and FERR #
pins are not floated during bus hold. The Intel486

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Microprocessor will main.ain its bus in this state until
the HOLD is deasserted. Refer to Section 7.2.9 for
timing diagrams for a bus hold cycle.

Unlike the 386 Microprocessor, the Intel486 Micro-
processor will recognize HOLD during reset. Pullup
resistors are not provided for the outputs that are
floated in response to HOLD. HOLD is active HIGH
and is not provided with an internal pulldown resis-
tor. HOLD must satisfy setup and hold times t1g and
t1g for proper chip operation.

Bus Hold Acknowledge Output (HLDA)

HLDA indicates that the Intel486 Microprocessor
has given the bus to another local bus master. HLDA
goes active in response to a hold request presented
on the HOLD pin. HLDA is driven active in the same
clock that the Intel486 Microprocessor floats its bus.

HLDA will be driven inactive when leaving bus hold
and the Intel486 Microprocessor will resume driving
the bus. The Intel486 Microprocessor will not cease
internal activity during bus hold since the internal
cache will satisfy the majority of bus requests. HLDA
is active HIGH and remains driven during bus hold.

Backoff Input (BOFF #)

Asserting the BOFF # input forces the Intel486 Mi-
croprocessor to release control of its bus in the next
clock. The pins floated are exactly the same as in
response to HOLD. The response to BOFF # differs
from the response to HOLD in two ways: First, the
bus is floated immediately in response to BOFF #
while the Intel486 Microprocessor completes the
current bus cycle before floating its bus in response
to HOLD. Second the Intel486 does not assert
HLDA in response to BOFF #.

The processor remains in bus hold until BOFF # is
negated. Upon negation, the Intel486 Microproces-
sor restarts the bus cycle aborted when BOFF # was
asserted. To the internal execution engine the effect
of BOFF # is the same as inserting a few wait states
to the original cycle. Refer to Section 7.2.12 for a
description of bus cycle restart.

Any data returned to the processor while BOFF # is
asserted is ignored. BOFF # has higher priority than
RDY # or BRDY #. If both BOFF# and ready are
returned in the same clock, BOFF # takes effect. If
BOFF # is asserted while the bus is idle, the Intel486
Microprocessor will float its bus in the next clock.
BOFF# is active LOW and must meet setup and
hold times t1g and t1g for proper chip operation.

6.2.10 CACHE INVALIDATION

The AHOLD and EADS# inputs are used during
cache invalidation cycles. AHOLD conditions the In-

90

tel486 Microprocessors address lines, A4-A31, to
accept an address input. EADS# indicates that an
external address is actually valid on the address in-
puts. Activating EADS# will cause the Intel486 Mi-
croprocessor to read the external address bus and
perform an internal cache invalidation cycle to the
address indicated. Refer to Section 7.2.8 for cache
invalidation cycle timing.

Address Hold Request Input (AHOLD)

AHOLD is the address hold request. It allows anoth-
er bus master access to the Intel486 Microproces-
sor address bus for performing an internal cache in-
validation cycle. Asserting AHOLD will force the
Intel486 Microprocessor to stop driving its address
bus in the next clock. While AHOLD is active only
the address bus will be floated, the remainder of the
bus can remain active. For example, data can be
returned for a previously specified bus cycle when
AHOLD is active. The Intel486 Microprocessor will
not initiate another bus cycle during address hold.
Since the Intel486 Microprocessor floats its bus im-
mediately in response to AHOLD, an address hold
acknowledge is not required. If AHOLD is asserted
while a bus cycle is in progress, and no readies are
returned during the time AHOLD is asserted, the In-
tel486 will redrive the same address (that it originally
sent out) once AHOLD is negated.

AHOLD is recognized during reset. Since the entire
cache is invalidated by reset, any invalidation cycles
run during reset will be unnecessary. AHOLD is ac-
tive HIGH and is provided with a small internal pull-
down resistor. It must satisfy the setup and hold
times t1g and tg for proper chip operation. This pin
determines whether or not the built in self test fea-
tures of the Intel486 Microprocessor will be exer-
cised on assertion of RESET.

External Address Valid Input (EADS #)

EADS# indicates that a valid external address has
been driven onto the Intel486 address pins. This ad-
dress will be used to perform an internal cache inval-
idation cycle. The external address will be checked
with the current cache contents. If the address spec-
ified matches any areas in the cache, that area will
immediately be invalidated.

An invalidation cycle may be run by asserting
EADS# regardless of the state of AHOLD, HOLD
and BOFF #. EADS # is active LOW and is provided
with an internal pullup resistor. EADS# must satisfy
the setup and hold times t12 and ty3 for proper chip
operation.

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

6.2.11 CACHE CONTROL
Cache Enable Input (KEN #)

KEN# is the cache enable pin. KEN# is used to
determine whether the data being returned by the
current cycle is cacheable. When KEN# is active
and the Intel486 Microprocessor generates a cycle
that can be cached (most any memory read cycle),
the cycle will be transformed into a cache line fill
cycle.

A cache line is 16 bytes long. During the first cycle of
a cache line fill the byte-enable pins should be ig-
nored and data should be returned as if all four byte
enables were asserted. The Intel486 Microproces-
sor will run between 4 and 16 contiguous bus cycles
to fill the line depending on the bus data width se-
lected by BS8# and BS16+#. Refer to Section 7.2.3
for a description of cache line fill cycles.

The KEN# input is active LOW and is provided with
a small internal pullup resistor. It must satisfy the
setup and hold times t14 and ty5 for proper chip op-
eration.

Cache Flush Input (FLUSH #)

The FLUSH # input forces the Intel486 Microproces-
sor to flush its entire internal cache. FLUSH # is ac-
tive LOW and need only be asserted for one clock.
FLUSH# is asynchronous but setup and hold times
top and tp1 must be met for recognition on any spe-
cific clock.

FLUSH # also determines whether or not the tristate
test mode of the Intel486 Microprocessor will be in-
voked on assertion of RESET.

6.2.12 PAGE CACHEABILITY (PWT, PCD)

The PWT and PCD output signals correspond to two
user attribute bits in the page table entry. When pag-
ing is enabled, PWT and PCD correspond to bits 3
and 4 of the page table entry respectively. For cy-
cles that are not paged when paging is enabled (for
example /0 cycles) PWT and PCD correspond to
bits 3 and 4 in control register 3. When paging is
disabled, the Intel486 CPU ignores the PCD and
PWT bits and assumes they are zero for the purpose
of caching and driving PCD and PWT.

PCD is masked by the CD (cache disable) bit in con-
trol register 0 (CR0). When CD=1 (cache line fills
disabled) the Intel486 Microprocessor forces PCD
HIGH. When CD=0, PCD is driven with the value of
the page table entry/directory.

The purpose of PCD is to provide a cacheable/non-
cacheable indication on a page by page basis. The

91

Intel486 will not perform a cache fill to any page in
which bit 4 of the page table entry is set. PWT corre-
sponds to the write-back bit and can be used by an
external cache to provide this functionality. PCD and
PWT bits are assigned to be zero during real mode
or whenever paging is disabled. Refer to Sections
45.4 and 5.6 for a discussion of non-cacheable
pages.

PCD and PWT have the same timing as the cycle
definition pins (M/IO#, D/C#, W/R#). PCD and
PWT are active HIGH and are not driven during bus
hold.

6.2.13 NUMERIC ERROR REPORTING
(FERR#, IGNNE #)

To allow PC-type floating point error reporting, the
Intel486 Microprocessor provides two pins, FERR #
and IGNNE #.

Floating Point Error Output (FERR #)

The Intel486 Microprocessor asserts FERR# when-
ever an unmasked floating point error is encoun-
tered. FERR# is similar to the ERROR# pin on the
387 Math Coprocessor. FERR# can be used by ex-
ternal logic for PC-type floating point error reporting
in Intel486 Microprocessor systems. FERR# is ac-
tive LOW, and is not floated during bus hold.

In some cases, FERR# is asserted when the next
floating point instruction is encountered and in other
cases it is asserted before the next floating point
instruction is encountered depending upon the exe-
cution state of the instruction causing the exception.

The following class of floating point exceptions drive
FERR# at the time the exception occurs (i.e., before
encountering the next floating point instruction).

1. The stack fault, invalid operation, and denormal
exceptions on all transcendental instructions, in-
teger arithmetic instructions, FSQRT, FSCALE,
FPREM(1), FXTRACT, FBLD, and FBSTP.

2. Any exceptions on store instructions (including
integer store instructions).

The following class of floating point exceptions drive
FERR# only after encountering the next floating
point instruction.

1. Exceptions other than on all transcendental in-
structions, integer arithmetic instructions,
FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD,
and FBSTP.

2. Any exception on all basic arithmetic, load, com-
pare, and control instructions (i.e., all other in-
structions).

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Ignore Numeric Error Input (IGNNE #)

The Intel486 Microprocessor will ignore a numeric
error and continue executing non-control floating
point instructions when IGNNE# is asserted, but
FERR # will still be activated. When deasserted, the
Intel486 Microprocessor will freeze on a non-control
floating point instruction if a previous instruction
caused an error. IGNNE# has no effect when the
NE bit in control register 0 is set.

The IGNNE# input is active LOW and is provided
with a small internal pullup resistor. This input is
asynchronous, but must meet setup and hold times
top and tpq to insure recognition on any specific
clock.

6.2.14 BUS SIZE CONTROL (BS16+#, BS8#)

The BS16# and BS8+# inputs allow external 16- and
8-bit busses to be supported with a small number of
external components. The Intel486 CPU samples
these pins every clock. The value sampled in the
clock before ready determines the bus size. When
asserting BS16# or BS8# only 16 or 8 bits of the
data bus need be valid. If both BS16# and BS8#
are asserted, an 8-bit bus width is selected.

When BS16# or BS8# are asserted the Intel486
Microprocessor will convert a larger data request to
the appropriate number of smaller transfers. The
byte enables will also be modified appropriately for
the bus size selected.

BS16# and BS8# are active LOW and are provided
with small internal pullup resistors. BS16# and
BS8# must satisfy the setup and hold times t14 and
t15 for proper chip operation.

6.2.15 ADDRESS BIT 20 MASK (A20M#)

Asserting the A20M# input causes the Intel486 Mi-
croprocessor to mask physical address bit 20 before
performing a lookup in the internal cache and before
driving @ memory cycle to the outside world. When
A20M# is asserted, the Intel486 Microprocessor
emulates the 1 Mbyte address wraparound that oc-
curs on the 8086. A20M# is active LOW and must
be asserted only when the processor is in real
mode. The A20M# is not defined in Protected
Mode. A20M# is asynchronous but should meet
setup and hold times tpg and tp4 for recognition in
any specific clock. For correct operation of the chip,
A20M# should be sampled high 2 clocks before and
2 clocks after RESET goes low. When A20M# is
asserted synchronously, A20M# should be high
(non-active) at the clock prior to the falling edge of
RESET. A20M# exhibits a minimum 4 clock latency,
from time of assertion to masking of the A20 bit.
A20M# is ignored during cache invalidation cycles.
1/0 writes require A20M # to be asserted a minimum

92

of 2 clocks prior to RDY being returned for the 170
write. This insures recognition of the address mask
before the 486 SX Microprocessor/Intel OverDrive
Processor begins execution of the instruction follow-
ing OUT. If A20M # is asserted after the ADS# of a
data cycle, the A20 address signal is not masked
during this cycle but is masked in the next cycle.
During a prefetch (cacheable or not), if A20M# is
asserted after the first ADS#, A20 is not masked for
the duration of the prefetch; even if BS16# or BS8 #
is asserted.

6.2.16 BOUNDARY SCAN TEST SIGNALS

The following boundary scan test signals are only
available on the 50 MHz version of the Intel486
CPU.

Test Clock (TCK)

TCK is an input to the Intel486 CPU and provides
the clocking function required by the JTAG boundary
scan feature. TCK is used to clock state information
and data into and out of the component. State select
information and data are clocked into the compo-
nent on the rising edge of TCK on TMS and TDI,
respectively. Data is clocked out of the part on the
falling edge of TCK on TDO.

In addition to using TCK as a free running clock, it
may be stopped in a low, O, state, indefinitely as
described in IEEE 1149.1. While TCK is stopped in
the low state, the boundary scan latches retain their
state.

When boundary scan is not used, TCK should be
tied high or left as a NC (This is important during
power up to avoid the possibility of glitches on the
TCK which could prematurely initiate boundary scan
operations). TCK is supplied with an internal pullup
resistor.

TCK is a clock signal and is used as a reference for
sampling other JTAG signals. On the rising edge of
TCK, TMS and TDI are sampled. On the falling edge
of TCK, TDO is driven.

Test Mode Select (TMS)

TMS is decoded by the JTAG TAP (Tap Access
Port) to select the operation of the test logic, as de-
scribed in Section 8.5.4.

To guarantee deterministic behavior of the TAP con-
troller, TMS is provided with an internal pull-up resis-
tor. If boundary scan is not used, TMS may be tied
high or left unconnected. TMS is sampled on the
rising edge of TCK. TMS is used to select the inter-
nal TAP states required to load boundary scan in-

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

structions to data on TDI. For proper initialization of
the JTAG logic, TMS should be driven high, “1”, for
at least four TCK cycles following the rising edge of
RESET.

Test Data Input (TDI)

TDl is the serial input used to shift JTAG instructions
and data into the component. The shifting of instruc-
tions and data occurs during the SHIFT-IR and
SHIFT-DR controller states, respectively. These
states are selected using the TMS signal as de-
scribed in Section 8.5.4.

An internal pull-up resistor is provided on TDI to en-
sure a known logic state if an open circuit occurs on
the TDI path. Note that when “1” is continuously
shifted into the instruction register, the BYPASS
instruction is selected. TDI is sampled on the
rising edge of TCK, during the SHIFT-IR and the
SHIFT-DR states. During all other TAP controller
states, TDl is a “don’t care”.

Test Data Output (TDO)

TDO is the serial output used to shift JTAG instruc-
tions and data out of the component. The shifting of
instructions and data occurs during the SHIFT-IR
and SHIFT-DR TAP controller states, respectively.
These states are selected using the TMS signal as
described in Section 8.5.4. When not in SHIFT-IR or
SHIFT-DR state, TDO is driven to a high impedance
state to allow connecting TDO of different devices in
parallel.

TDO is driven on the falling edge of TCK during the
SHIFT-IR and SHIFT-DR TAP controller states. At
all other times TDO is driven to the high impedance
state.

6.3 Write Buffers

The Intel486 Microprocessor contains four write
buffers to enhance the performance of consecutive
writes to memory. The buffers can be filled at a rate
of one write per clock until all four buffers are filled.

When all four buffers are empty and the bus is idle, a
write request will propagate directly to the external
bus bypassing the write buffers. If the bus is not
available at the time the write is generated internally,
the write will be placed in the write buffers and prop-
agate to the bus as soon as the bus becomes avail-
able. The write is stored in the on-chip cache imme-
diately if the write is a cache hit.

Writes will be driven onto the external bus in the
same order in which they are received by the write
buffers. Under certain conditions a memory read will

93

go onto the external bus before the memory writes
pending in the buffer even though the writes oc-
curred earlier in the program execution.

A memory read will only be reordered in front of all
writes in the buffers under the following conditions: If
all writes pending in the buffers are cache hits and
the read is a cache miss. Under these conditions the
Intel486 Microprocessor will not read from an exter-
nal memory location that needs to be updated by
one of the pending writes.

Reordering of a read with the writes pending in the
buffers can only occur once before all the buffers
are emptied. Reordering read once only maintains
cache consistency. Consider the following example:

The CPU writes to location X. Location X is in the
internal cache, so it is updated there immediately.
However, the bus is busy so the write out to main
memory is buffered (see Figure 6.3(a)). At this point,
any reads to location X would be cache hits and
most up-to-date data would be read.

486 CPU Cache Write Buffer Main Memory
w
X| newdatax X[new datax X data x
Y datay
Z
Figure 6.3(a)

The next instruction causes a read to location Y.
Location Y is not in the cache (a cache miss). Since
the write in the write buffer is a cache hit, the read is
reordered. When location Y is read, it is put into the
cache. The possibility exists that location Y will re-
place location X in the cache. If this is true, location
X would no longer be cached (see Figure 6.3(b)).

486 CPU Cache Write Buffer Main Memory
Wi
Y datay X| new data x X data x
Y
V4
Figure 6.3(b)

Cache consistency has been maintained up to this
point. If a subsequent read is to location X (now a
cache miss) and it was reordered in front of the buff-
ered write to location X, stale data would be read.
This is why only 1 read is allowed to be reordered.
Once a read is reordered, all the writes in the write
buffer are flagged as cache misses to ensure that no
more reads are reordered. Since one of the condi-

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

tions to reorder a read is that all writes in the write
buffer must be cache hits, no more reordering is al-
lowed until all of those flagged writes propogate to
the bus. Similarly, if an invalidation cycle is run all
entries in the write buffer are flagged as cache miss-
es.

For multiple processor systems and/or systems us-
ing DMA techniques, such as bus snooping, locked
semaphores should be used to maintain cache con-
sistency.

6.3.1 WRITE BUFFERS AND 1/0 CYCLES

Input/Output (I/0) cycles must be handled in a dif-
ferent manner by the write buffers.

I1/0 reads are never reordered in front of buffered
memory writes. This insures that the Intel486 Micro-
processor will update all memory locations before
reading status from an 170 device.

The Intel486 Microprocessor never buffers single
1/0 writes. When processing an OUT instruction, in-
ternal execution stops until the I/0 write actually
completes on the external bus. This allows time for
the external system to drive an invalidate into the
Intel486 Microprocessor or to mask interrupts before
the processor progresses to the instruction following
OUT. REP OUTS instructions will be buffered.

I/0 device recovery time must be handled slightly
differently by the Intel486 Microprocessor than with
the 386 Microprocessor. I/0 device back-to-back
write recovery times could be guaranteed by the 386
Microprocessor by inserting a jump to the next in-
struction in the code that writes to the device. The
jump forces the 386 Microprocessor to generate a
prefetch bus cycle which can’t begin until the 1/0
write completes.

Inserting a jump to the next write will not work with
the Intel486 Microprocessor because the prefetch
could be satisfied by the on-chip cache. A read cycle
must be explicitly generated to a non-cacheable lo-
cation in memory to guarantee that a read bus cycle
is performed. This read will not be allowed to pro-
ceed to the bus until after the 1/0 write has complet-
ed because 1/0 writes are not buffered. The 1/0 de-
vice will have time to recover to accept another write
during the read cycle.

6.3.2 WRITE BUFFERS IMPLICATIONS ON
LOCKED BUS CYCLES

Locked bus cycles are used for read-modify-write
accesses to memory. During a read-modify-write ac-
cess, a memory base variable is read, modified and
then written back to the same memory location. It is
important that no other bus cycles, generated by

94

other bus masters or by the Intel486 Microprocessor
itself, be allowed on the external bus between the
read and write portion of the locked sequence.

During a locked read cycle the Intel486 Microproc-
essor will always access external memory, it will
never look for the location in the on-chip cache, but
for write cycles, data is written in the internal cache
(if cache hit) and in the external memory. All data
pending in the Intel486 Microprocessor’s write buff-
ers will be written to memory before a locked cycle is
allowed to proceed to the external bus.

The Intel486 Microprocessor will assert the LOCK #
pin after the write buffers are emptied during a
locked bus cycle. With the LOCK# pin asserted, the
microprocessor will read the data, operate on the
data and place the results in a write buffer. The con-
tents of the write buffer will then be written to exter-
nal memory. LOCK# will become inactive after the
write part of the locked cycle.

6.4 Interrupt and Non-Maskable

Interrupt Interface

The Intel486 Microprocessor provides two asyn-
chronous interrupt inputs, INTR (interrupt request)
and NMI (non-maskable interrupt input). This section
describes the hardware interface between the in-
struction execution unit and the pins. For a descrip-
tion of the algorithmic response to interrupts refer to
Section 2.7. For interrupt timings refer to Section
7.2.10.

6.4.1 INTERRUPT LOGIC

The Intel486 Microprocessor contains a two-clock
synchronizer on the interrupt line. An interrupt re-
quest will reach the internal instruction execution
unit two clocks after the INTR pin is asserted, if
proper setup is provided to the first stage of the syn-
chronizer.

There is no special logic in the interrupt path other
than the synchronizer. The INTR signal is level sen-
sitive and must remain active for the instruction exe-
cution unit to recognize it. The interrupt will not be
serviced by the Intel486 Microprocessor if the INTR
signal does not remain active.

The instruction execution unit will look at the state of
the synchronized interrupt signal at specific clocks
during the execution of instructions (if interrupts are
enabled). These specific clocks are at instruction
boundaries, or iteration boundaries in the case of
string move instructions. Interrupts will only be ac-
cepted at these boundaries.

An interrupt must be presented to the Intel486 Mi-
croprocessor INTR pin three clocks before the end
of an instruction for the interrupt to be acknowl-

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

edged. Presenting the interrupt 3 clocks before the
end of an instruction allows the interrupt to pass
through the two clock synchronizer leaving one
clock to prevent the initiation of the next sequential
instruction and to begin interrupt service. If the inter-
rupt is not received in time to prevent the next in-
struction, it will be accepted at the end of next in-
struction, assuming INTR is still held active. The in-
terrupt service microcode will start after two dead
clocks.

The longest latency between when an interrupt re-
quest is presented on the INTR pin and when the
interrupt service begins is: longest instruction used
+ the two clocks for synchronization + one clock
required to vector into the interrupt service micro-
code.

6.4.2 NMI LOGIC

The NMI pin has a synchronizer like that used on the
INTR line. Other than the synchronizer, the NMI log-
ic is different from that of the maskable interrupt.

NMI is edge triggered as opposed to the level trig-
gered INTR signal. The rising edge of the NMI signal
is used to generate the interrupt request. The NMI
input need not remain active until the interrupt is ac-
tually serviced. The NMI pin only needs to remain
active for a single clock if the required setup and
hold times are met. NMI will operate properly if it is
held active for an arbitrary number of clocks.

The NMI input must be held inactive for at least four
clocks after it is asserted to reset the edge triggered
logic. A subsequent NMI may not be generated if the
NMI is not held inactive for at least two clocks after
being asserted.

The NMI input is internally masked whenever the
NMI routine is entered. The NMI input will remain
masked until an IRET (return from interrupt) instruc-
tion is executed. Masking the NMI signal prevents
recursive NMI calls. If another NMI occurs while the
NMI is masked off, the pending NMI will be executed
after the current NMI is done. Only one NMI can be
pending while NMI is masked.

6.5 Reset and Initialization

The Intel486 Microprocessor has a built in self test
(BIST) that can be run during reset. The BIST is in-
voked if the AHOLD pin is asserted in the clock prior
to RESET going from High to Low. RESET must be
active for 15 clocks with or with no BIST being en-
abled. Refer to Section 8.0 for information on In-
tel486 Microprocessor testability.

The Intel486 Microprocessor registers have the val-
ues shown in Table 6.2 after RESET is performed.
The EAX register contains information on the suc-
cess or failure of the BIST if the self test is executed.
The DX register always contains a component iden-
tifier at the conclusion of RESET. The upper byte of
DX (DH) will contain 04 and the lower byte (DL) will
contain a stepping identifier (see Table 6-3). The
floating point registers are initialized as if the FINIT/
FNINIT (initialize processor) instruction was execut-
ed if the BIST was performed. If the BIST is not exe-
cuted, the floating point registers are unchanged.

Table 6.2. Register Values after Reset

Regster Initial Value Initial Value
(BIST) (No Bist)

EAX Zero (Pass) Undefined

ECX Undefined Undefined

EDX 0400 + Revision ID 0400+ Revision ID

EBX Undefined Undefined

ESP Undefined Undefined

EBP Undefined Undefined

ESI Undefined Undefined

EDI Undefined Undefined

EFLAGS 00000002h 00000002h

EIP OFFFOh OFFFOh

ES 0000h 0000h

Ccs FOOOh* FOOOh*

SS 0000h 0000h ‘

DS 0000h 0000h !

FS 0000h 0000h

GS 0000h 0000h

IDTR Base=0, Limit=3FFh Base=0, Limit=3FFh

CRO 60000010h 60000010h

DR7 00000000h 00000000h

CW 037Fh Unchanged

SwW 0000h Unchanged

T™W FFFFh Unchanged

FIP 00000000h Unchanged

FEA 00000000h Unchanged

FCS 0000h Unchanged

FDS 0000h Unchanged

FOP 000h Unchanged

FSTACK Undefined Unchanged

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 6-3. Intel486™ CPU Revision ID

Intel486™ CPU Component Revision

Stepping Name ID ID
B3 04 01
B4 04 01
B5 04 01
B6 04 01
Cco 04 02
C1 04 03
DO 04 04
cA2 04 10
cA3 04 10
cBo 04 11
cB1 04 11

Intel OverDrive™
Processor
Stepping Name

A2 04 32
B1 04 33

The Intel486 Microprocessor will start executing in-
structions at location FFFFFFFOH after RESET.
When the first InterSegment Jump or Call is execut-
ed, address lines A20-A31 will drop LOW for CS-rel-
ative memory cycles, and the Intel486 Microproces-
sor will only execute instructions in the lower one
Mbyte of physical memory. This allows the system
designer to use a ROM at the top of physical memo-
ry to initialize the system and take care of RESETSs.

RESET forces the Intel486 Microprocessor to termi-
nate all execution and local bus activity. No instruc-
tion or bus activity will occur as long as RESET is
active.

All entries in the cache are invalidated by RESET.

96

6.5.1 PIN STATE DURING RESET

The Intel486 Microprocessor recognizes and can re-
spond to HOLD, AHOLD, and BOFF # requests re-
gardless of the state of RESET. Thus, even though
the processor is in reset, it can still float its bus in
response to any of these requests.

While in reset, the Intel486 Microprocessor bus is in
the state shown in Figure 6.4 if the HOLD, AHOLD
and BOFF # requests are inactive. Note that the ad-
dress (A31-A2, BE3#—-BEO#) and cycle definition
(M/10#, D/C#, W/R#) pins are undefined from the
time reset is asserted up to the start of the first bus
cycle. All undefined pins (except FERR#) assume
known values at the beginning of the first bus cycle.
The first bus cycle is always a code fetch to address
FFFFFFFOH.

FERR # reflects the state of the ES (Error Summary
status) bit in the floating point unit status word. The
ES bit is initialized whenever the floating point unit
state is initialized. The floating point unit's status
word register can be initialized by BIST or by execut-
ing FINIT/FNINIT instruction. Thus, after reset and
before executing the first FINIT or FNINIT instructon,
the values of the FERR# and the numeric status
word register bits 0-7 depends on whether or not
BIST is performed. Table 6-4 shows the state of
FERR# signal after reset and before the execution
of the FINIT/FNINIT instruction.

Table 6-4
FPU Status
Pe:f:;e d FE:::# Word Register
Bits 0-7
Inactive Inactive
YES (High) (Low)

NO Undefined Undefined

(Low or High) (Low or High)

After the first FINIT or FNINIT instruction, FERR #
pin and the FPU status word register bits (0-7) will
be inactive irrrespective of the Built-In Self-Test
(BIST).

16
13S34 Buunp sajels uid "p'9 a1nbid4

NOTES:

T T, T, T, L] T T T
A S Y N e N e N
At least 15 CLK periods [e————— 217 CLKs if no self-test ——
RESET {:{ 4 o) \\ * o e ~220 ClKs if self-test ——&]
-t F‘&o"
AHOLD /// ® AN\
o XN\ @ /77 ®
FLUSH#
) ANAN ® V4
A20M# W_W
(sync) @
g /77 ® ANAN
ADS# Y74
BREQ AN\
Azq=Aq, MIO#, BLAST UNDEFINED ///
BEO-BE3#, PWT, PCD
A, Ay, PLOCK# UNDEFINED AN\
D/C#, W/R#
PCHK#,
LOCK# V774
L e w v v w
D I
HoA (®

1. RESET is an asynchronous input. too must be met only to guarantee recognition on a specific clock edge.
2a. When A20M# is driven synchronously, it must be driven high (inactive) for the CLK edge prior to the falling edge of RESET to ensure proper operation. A20M #

setup and hold times must be met.

Inputs

Outputs

240440-32

2b. When A20M# is driven asynchronously, it must be driven high (inactive) for two CLKSs prior to and two CLKs after the falling edge of RESET to ensure proper

operation.

3a. When FLUSH # is driven synchronously, it should be driven low (active) for the CLK edge prior to the falling edge of RESET to invoke the Tri-State Output Test
Mode. All outputs are guaranteed tri-stated within 10 CLKs of RESET being deasserted. FLUSH# setup and hold times must be met.
3b. When FLUSH# is driven asynchronously, it must be driven low (active) for two CLKs prior to and two CLKs after the falling edge of RESET to invoke the Tri-
State Output Test Mode. All outputs are guaranteed tri-stated within 10 CLKs of RESET being deasserted.
3c. FLUSH# must be driven high (inactive) during Build-in-Self-Test (BIST).

4. AHOLD should be driven high (active) for the CLK edge prior to the falling edge of RESET to invoke the Built-In-Self-Test (BIST). AHOLD setup and hold times

must be met.

5. Hold is recognized normally during RESET.
6. 15 CLKs RESET pulse width for warm resets. Power-up resets require RESET to be asserted for at least 1 ms after Vgc and CLK are stable.

HOSS3IO0HdOHIIN XA wr98vIsiul

AVNINIT2E e

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

7.0 BUS OPERATION

7.1 Data Transfer Mechanism

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte, word and
dword lengths may be transferred without restric-
tions on physical address alignment. Data may be
accessed at any byte boundary but two or three cy-
cles may be required for unaligned data transfers.
See Section 7.1.3 Dynamic Bus Sizing and 7.1.6 Op-
erand Alignment.

The Intel486 Microprocessor address signals are
split into two components. High-order address bits
are provided by the address lines, A2-A31. The byte
enables, BEO# -BE3#, form the low-order address
and provide linear selects for the four bytes of the
32-bit address bus.

The byte enable outputs are asserted when their as-
sociated data bus bytes are involved with the pres-
ent bus cycle, as listed in Table 7.1. Byte enable
patterns which have a negated byte enable separat-
ing two or three asserted byte enables will never
occur (see Table 7.5). All other byte enable patterns
are possible.

Table 7.1. Byte Enables and Associated
Data and Operand Bytes

Byte
Enable Associated Data Bus Signals
Signal

BEO# | DO-D7 (byte 0—least significant)
BE1# | D8-D15 (byte 1)

BE2# | D16-D23 (byte 2)

BE3# | D24-D31 (byte 3—most significant)

98

Address bits A0 and A1 of the physical operand’s
base address can be created when necessary. Use
of the byte enables to create A0 and A1 is shown in
Table 7.2. The byte enables can also be decoded to
generate BLE# (byte low enable) and BHE# (byte
high enable). These signals are needed to address
16-bit memory systems (see Section 7.1.4 Inter-
facing with 8- and 16-bit memories).

Table 7.2. Generating A0-A31 from
BEO#-BE3# and A2-A31

Intel486™ CPU Address Signals)

A3l A2 BE3# | BE2# | BE1# | BEO#
Physical Base

Address
A31| ...l A2|A1[A0
A31| ..ol A21 0|0 X X Low
JA31] L A2(0|1 X Low | High
A31) ... A2]1|0 Low | High | High
F.X: 1 1 I A2| 1| 1| Low | High | High | High

7.1.1 MEMORY AND 1/0 SPACES

Bus cycles may access physical memory space or
1/0 space. Peripheral devices in the system may ei-
ther be memory-mapped, or I/O-mapped, or both.
Physical memory addresses range from 00000000H
to FFFFFFFFH (4 gigabytes). I/0 addresses range
from 00000000H to 0000FFFFH (64 Kbytes) for pro-
grammed 1/0. See Figure 7.1.

intelo Intel486™ DX MICROPROCESSOR PRELIMINARY

FFFFFFFFH
PHYSICAL
MEMORY
4GBYTE
000OFFFFH
00000000H 00000000H
Physical Memory Space

PROGRAMMED
1/0 SPACE

64 kBYTE

] ACCESSIBLE

240440-33
1/0 Space

Figure 7.1. Physical Memory and I/0 Spaces

7.1.2 MEMORY AND 1/0 SPACE
ORGANIZATION

The Intel486 Microprocessor datapath to memory
and input/output (I/0) spaces can be 32-, 16- or
8-bits wide. The byte enable signals, BEO # -BE3 #,
allow byte granularity when addressing any memory
or 1/0 structure whether 8, 16 or 32 bits wide.

The Intel486 Microprocessor includes bus control
pins, BS16# and BS8#, which allow direct connec-
tion to 16- and 8-bit memories and 1/0O devices. Cy-
cles to 32-, 16- and 8-bit may occur in any se-
quence, since the BS8# and BS16# signals are
sampled during each bus cycle.

32-bit wide memory and |I/O spaces are organized
as arrays of physical 4-byte words. Each memory or
I1/0 4-byte word has four individually addressable
bytes at consecutive byte addresses (see Figure
7.2). The lowest addressed byte is associated with

32-Bit Wide Organization
FFFFFFFFH FFFFFFFCH

00000003H 00000000H
—_—A A A

BE3# BE2# BE1# BEO#
240440-34

16-Bit Wide Organization

FFFFFFFFH FFFFFFFEH
00000001H 00000000H
BHE# BLE#
240440-35

data signals D0-D7; the highest-addressed byte
with D24-D31. Physical 4-byte words begin at ad-
dresses divisible by four.

99

Figure 7.2. Physical Memory
and /0 Space Organization

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

16-bit memories are organized as arrays of physical
2-byte words. Physical 2-byte words begin at ad-
dresses divisible by two. The byte enables BEO# -
BE3#, must be decoded to A1, BLE# and BHE# to
address 16-bit memories (see Section 7.1.4).

To address 8-bit memories, the two low order ad-
dress bits A0 and A1, must be decoded from BEO# —
BE3#. The same logic can be used for 8- and 16-bit
memories since the decoding logic for BLE# and A0
are the same (see Section 7.1.4).

7.1.3 DYNAMIC DATA BUS SIZING

Dynamic data bus sizing is a feature allowing proc-
essor connection to 32-, 16- or 8-bit buses for mem-
ory or I/0. A processor may connect to all three bus
sizes. Transfers to or from 32-, 16- or 8-bit devices
are supported by dynamically determining the bus
width during each bus cycle. Address decoding cir-
cuitry may assert BS16# for 16-bit devices, or
BS8# for 8-bit devices during each bus cycle. BS8 #
and BS16# must be negated when addressing 32-
bit devices. An 8-bit bus width is selected if both
BS16# and BS8+# are asserted.

BS16# and BS8# force the Intel486 Microproces-
sor to run additional bus cycles to complete re-
quests larger than 16- or 8 bits. A 32-bit transfer will
be converted into two 16-bit transfers (or 3 transfers
if the data is misaligned) when BS16# is asserted.
Asserting BS8# will convert a 32-bit transfer into
four 8-bit transfers.

Extra cycles forced by BS16# or BS8# should be
viewed as independent bus cycles. BS16# or BS8 #
must be driven active during each of the extra cycles
unless the addressed device has the ability to
change the number of bytes it can return between
cycles.

The Intel486 Microprocessor will drive the byte en-
ables appropriately during extra cycles forced by
BS8# and BS16#. A2-A31 will not change if ac-
cesses are to a 32-bit aligned area. Table 7.3 shows
the set of byte enables that will be generated on the
next cycle for each of the valid possibilities of the
byte enables on the current cycle.

The dynamic bus sizing feature of the Intel486 Mi-
croprocessor is significantly different than that of the
386 Microprocessor. Unlike the 386 Microprocessor,
the Intel486 Microprocessor requires that data bytes
be driven on the addressed data pins. The simplest
example of this function is a 32-bit aligned, BS16#
read. When the Intel486 Microprocessor reads the
two high order bytes, they must be driven on the
data bus pins D16-D31. The Intel486 Microproces-
sor expects the two low order bytes on DO-D15.
The 386 Microprocessor expects both the high and
low order bytes on DO-D15. The 386 Microproces-
sor always reads or writes data on the lower 16 bits
of the data bus when BS16# is asserted.

The external system must contain buffers to enable
the Intel486 Microprocessor to read and write data
on the appropriate data bus pins. Table 7.4 shows
the data bus lines where the Intel486 Microproces-
sor expects data to be returned for each valid com-
bination of byte enables and bus sizing options.

Valid data will only be driven onto data bus pins cor-
responding to active byte enables during write cy-
cles. Other pins in the data bus will be driven but
they will not contain valid data. Unlike the 386 Micro-
processor, the Intel486 Microprocessor will not du-
plicate write data onto parts of the data bus for
which the corresponding byte enable is negated.

Table 7.3. Next Byte Enable Values for BSn# Cycles

Current Next with BS8 # Next with BS16 #
BE3# BE2# BE1# BEO# | BE3# BE2# BE1# BEO# | BE3# BE2# BE1# BEO#
1 1 1 0 n n n n n n n n
1 1 0 0 1 1 0 1 n n n n
1 0 0 0 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 1 1
1 1 0 1 n n n n n n n n
1 0 0 1 1 0 1 1 1 0 1 1
0 0 0 1 0 0 1 1 0 0 1 1
1 0 1 1 n n n n n n n n
0 0 1 1 0 1 1 1 n n n n
0 1 1 1 n n n n n n n n

“n” means that another bus cycle will not be required to satisfy the request.

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 7.4. Data Pins Read with Different Bus Sizes

BE3# BE2# BE1# BEO# w/o BS8#/BS16+# w BS8 # W BS16#
1 1 1 0 D7-DO D7-DO D7-DO0
1 1 0 0 D15-D0 D7-DO D15-D0
1 0 0 0 D23-D0 D7-DO D15-D0
0 0 0 0 D31-D0 D7-D0 D15-D0
1 1 0 1 D15-D8 D15-D8 D15-D8
1 0 0 1 D23-D8 D15-D8 D15-D8
0 0 0 1 D31-D8 D15-D8 D15-D8
1 0 1 1 D23-D16 D23-D16 D23-D16
0 0 1 1 D31-D16 D23-D16 D31-D16
0 1 1 1 D31-D24 D31-D24 D31-D24

7.1.4 INTERFACING WITH 8-, 16- AND 32-BIT
MEMORIES)

In 32-bit physical memories such as Figure 7.3, each
4-byte word begins at a byte address that is a multi-
ple of four. A2-A31 are used as a 4-byte word se-
lect. BEO# -BE3# select individual bytes within the
4-byte word. BS8+# and BS16# are negated for all
bus cycles involving the 32-bit array.

32, DATA BUS (D0-D31) R
Intel486™ 7 7| 32-BiIT
CPU | ADDRESS BUS (BEO#-BE3#,A2-A31) _ | MEMORY
Tass# BS16#
"HIGH" "HIGH"
240440-36

Figure 7.3. Intel486™ Microprocessor
with 32-Bit Memory

16- and 8-bit memories require external byte swap-
ping logic for routing data to the appropriate data
lines and logic for generating BHE#, BLE# and Af.
In systems where mixed memory widths are used,
extra address decoding logic is necessary to assert
BS16+# or BS8#.

Figure 7.4 shows the Intel486 microprocessor ad-
dress bus interface to 32-, 16- and 8-bit memories.
To address 16-bit memories the byte enables must
be decoded to produce A1, BHE# and BLE # (AO0).
For 8-bit wide memories the byte enables must be
decoded to produce A0 and A1. The same byte se-
lect logic can be used in 16- and 8-bit systems since
BLE# is exactly the same as AO (see Table 7.5).

BEO#-BE3# can be decoded as shown in Table
7.5 to generate A1, BHE# and BLE#. The byte se-
lect logic necessary to generate BHE# and BLE# is
shown in Figure 7.5.

Intel486™ Address Bus (A31-A2 BEO#-BE3#) R
Microprocessor ”} Memory
? A
BS8# BS16#
A31-A2 R
Address P "l 16-Bit
Decode - BHE#, BLE#, A1 .. Memory
>
BEO#-BE3# Byte
~”| Select Logic
AO(BLE#), A1
8-Bit
A31-A2 Memory
>
240440-37

Figure 7.4. Addressing 16- and 8-Bit Memories

101

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 7.5. Generating A1, BHE# and BLE # for Addressing 16-Bit Devices

Intel486™ CPU Signals 8, 16-Bit Bus Signals Comments
BE3# BE2# BE1+# BEO# Al BHE # BLE # (A0)

H* H* H* H* X X X x—no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L* H* L* X X X x—not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L* H* H* L* X X X x—not contiguous bytes
L* H* L* H* X X X x—not contiguous bytes
L* H* L* L* X X X x—not contiguous bytes
L L H H H L L
L* L* H* L* X X X x—not contiguous bytes
L L L H L L H
L L L L L L L

BLE # asserted when DO-D7 of 16-bit bus is active.
BHE # asserted when D8-D15 of 16-bit bus is active.
A1 low for all even words; A1 high for all odd words.

Key:
x = don’tcare
H = high voltage level
L = low voltage level

* = anon-occurring pattern of Byte Enables; either none are asserted,
or the pattern has Byte Enables asserted for non-contiguous bytes

BEO#

S Do
BE1#

240440-38

BEO#

BE14
BE3#

BHE;

240440-39

240440-40

Figure 7.5. Logic to Generate A1, BHE # and BLE # for 16-Bit Busses

Combinations of BEO# -BE3# which never occur
are those in which two or three asserted byte en-
ables are separated by one or more negated byte
enables. These combinations are “don’t care” con-
ditions in the decoder. A decoder can use the non-
occurring BEO# —BE3# combinations to its best ad-
vantage.

102

Figure 7.6 shows an Intel486 Microprocessor data
bus interface to 16- and 8-bit wide memories. Exter-
nal byte swapping logic is needed on the data lines
so that data is supplied to, and received from the
Intel486 Microprocessor on the correct data pins
(see Table 7.4).

Intel486™ DX MICROPROCESSOR

PRELIMINARY

,D0-D7 , 4 R
< 7 >
Intel486™ P D"J;’S, : » 32-8it
Microprocessor < D16~ e »] Memory
, D24-D31°, 4 ¢
b -~ N ’ ¢
BS8#
BS16# (A2-A31, BEO#~BE3#)
Byte
S\z:‘P P , 16 . 16-Bit
Logic < 7 ?| Memory
A
v A4
Address Byte . , 8 R 8-Bit
Decode Swap < 7 »l Memory
Logic
240440-74

Figure 7.6. Data Bus Interface to 16- and 8-bit Memories

7.1.5 DYNAMIC BUS SIZING DURING CACHE
LINE FILLS

BS8+# and BS16# can be driven during cache line
fills. The Intel486 Microprocessor will generate
enough 8- or 16-bit cycles to fill the cache line. This
can be up to 16 8-bit cycles.

The external system should assume that all byte en-
ables are active for the first cycle of a cache line fill.
The Intel486 Microprocessor will generate proper
byte enables for subsequent cycles in the line fill.
Table 7.6 shows the appropriate AO (BLE #), A1 and
BHE# for the various combinations of the Intel486
Microprocessor byte enables on both the first and
subsequent cycles of the cache line fill. The “*”
marks all combinations of byte enables that will be
generated by the Intel486 Microprocessor during a
cache line fill.

7.1.6 OPERAND ALIGNMENT

Physical 4-byte words begin at addresses that are
multiples of four. It is possible to transfer a logical
operand that spans more than one physical 4-byte
word of memory or 1/0 at the expense of extra cy-
cles. Examples are 4-byte operands beginning at ad-
dresses that are not evenly divisible by 4, or 2-byte
words split between two physical 4-byte words.
These are referred to as unaligned transfers.

Operand alignment and data bus size dictate when
multiple bus cycles are required. Table 7.7 describes
the transfer cycles generated for all combinations of
logical operand lengths, alignment, and data bus siz-
ing. When multiple cycles are required to transfer a
multi-byte logical operand, the highest-order bytes
are transferred first. For example, when the proces-
sor does a 4-byte unaligned read beginning at loca-
tion x11 in the 4-byte aligned space, the three high
order bytes are read in the first bus cycle. The low
byte is read in a subsequent bus cycle.

Table 7.6. Generating A0, A1 and BHE # from the Intel486™ Microprocessor Byte Enables

First Cache Fill Cycle Any Other Cycle
BE3+# BE2+# BE1+# BEO # A0 Al BHE # A0 Al BHE #
1 1 1 0 0 0 0 0 0 1
1 1 0 0 0 o] 0 0 0 0
1 0 0 0 0 0 0 0 0 0
*0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0
*0 0 0 1 0 0 0 1 0 0
1 0 1 1 0 0 0 0 1 1
*0 0 1 1 0 0 0 0 1 0
*0 1 1 1 0 0 0 1 1 0

103

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 7.7. Transfer Bus Cycles for Bytes, Words and Dwords

KEY:

b = byte transfer h = high-order portion
w = 2-byte transfer | = low-order portion
3 = 3-byte transfer m = mid-order portion
d = 4-byte transfer

The function of unaligned transfers with dynamic
bus sizing is not obvious. When the external systems
asserts BS16# or BS8# forcing extra cycles, low-
order bytes or words are transferred first (opposite
to the example above). When the Intel486 Micro-
processor requests a 4-byte read and the external
system asserts BS16#, the lower 2 bytes are read
first followed by the upper 2 bytes.

In the unaligned transfer described above, the proc-
essor requested three bytes on the first cycle. If the
external system asserted BS16# during this 3-byte
transfer, the lower word is transferred first followed
by the upper byte. In the final cycle the lower byte of
the 4-byte operand is transferred as in the 32-bit ex-
ample above.

7.2 Bus Functional Description

The Intel486 Microprocessor supports a wide variety
of bus transfers to meet the needs of high perform-
ance systems. Bus transfers can be single cycle or
multiple cycle, burst or non-burst, cacheable or non-
cacheable, 8-, 16- or 32-bit, and pseudo-locked. To
support multiprocessing systems there are cache in-
validation cycles and locked cycles.

Byte-Length of Logical Operand
1 2 4

Physical Byte Address in
Memory (Low Order Bits) XX 00 01 10 11 00 01 10 11
Transfer Cycles b w w w hb
over 32-Bit Bus Ib
Transfer Cycles over hb
16-Bit Data Bus .
' |
. = BS16# Asserted b W |he v b
Transfer Cycles over
8-Bit Data Bus
| = BS8# Asserted b hb

b

104

4-Byte Operand le I mib | mhbl hb |

T T
byte with byte with
lowest highest
address address

This section begins with basic non-cacheable non-
burst single cycle transfers. It moves on to multiple
cycle transfers and introduces the burst mode.
Cacheability is introduced in Section 7.2.3. The re-
maining sections describe locked, pseudo-locked,
invalidate, bus hold and interrupt cycles.

Bus cycles and data cycles are discussed in this
section. A bus cycle is at least two clocks long and
begins with ADS# active in the first clock and ready
active in the last clock. Data is transferred to or from
the Intel486 Microprocessor during a data cycle. A
bus cycle contains one or more data cycles.

Refer to Section 7.2.13 for a description of the bus
states shown in the timing diagrams.

7.2.1 NON-CACHEABLE NON-BURST SINGLE
CYCLE

7.2.1.1 No Wait States

The fastest non-burst bus cycle that the Intel486 Mi-
croprocessor supports is two clocks long. These cy-
cles are called 2-2 cycles because reads and writes
take two cycles each. The first 2 refers to reads and

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

the second to writes. For example, if a wait state
needs to be added to a write, the cycle would be
called 2-3.

Basic two clock read and write cycles are shown in
Figure 7.7. The Intel486 Microprocessor initiates a
cycle by asserting the address status signal (ADS #)
at the rising edge of the first clock. The ADS# out-
put indicates that a valid bus cycle definition and
address is available on the cycle definition lines and
address bus.

The non-burst ready input (RDY #) is returned by the
external system in the second clock. RDY# indi-
cates that the external system has presented valid
data on the data pins in response to a read or the
external system has accepted data in response to a
write.

The Intel486 Microprocessor samples RDY # at the
end of the second clock. The cycle is complete if
RDY # is active (LOW) when sampled. Note that
RDY # is ignored at the end of the first clock of the
bus cycle.

The burst last signal (BLAST #) is asserted (LOW)
by the Intel486 Microprocessor during the second
clock of the first cycle in all bus transfers illustrated
in Figure 7.7. This indicates that each transfer is
complete after a single cycle. The Intel486 Micro-
processor asserts BLAST # in the last cycle of a bus
transfer.

The timing of the parity check output (PCHK#) is
shown in Figure 7.7. The Intel486 Microprocessor
drives the PCHK# output one clock after ready ter-
minates a read cycle. PCHK# indicates the parity
status for the data sampled at the end of the previ-
ous clock. The PCHK# signal can be used by the
external system. The Intel486 Microprocessor does
nothing in response to the PCHK# output.

7.2.1.2 Inserting Wait States

The external system can insert wait states into the
basic 2-2 cycle by driving RDY # inactive at the end
of the second clock. RDY # must be driven inactive
to insert a wait state. Figure 7.8 illustrates a simple
non-burst, non-cacheable signal with one wait state
added. Any number of wait states can be added to
an Intel486 Microprocessor bus cycle by maintaining
RDY # inactive.

The burst ready input (BRDY #) must be driven inac-
tive on all clock edges where RDY # is driven inac-
tive for proper operation of these simple non-burst
cycles.

105

7.2.2 MULTIPLE AND BURST CYCLE BUS
TRANSFERS

Multiple cycle bus transfers can be caused by inter-
nal requests from the intel486 Microprocessor or by
the external memory system. An internal request for
a 64-bit floating point load or a 128-bit pre-fetch
must take more than one cycle. Internal requests for
unaligned data may also require multiple bus cycles.
A cache line fill requires multiple cycles to complete.
The external system can cause a multiple cycle
transfer when it can only supply 8 or 16 bits per
cycle.

Only multiple cycle transfers caused by internal re-
quests are considered in this section. Cacheable cy-
cles and 8- and 16-bit transfers are covered in Sec-
tions 7.2.3 and 7.2.5.

7.2.2.1 Burst Cycles

The Intel486 Microprocessor can accept burst cy-
cles for any bus requests that require more than a
single data cycle. During burst cycles, a new data
item is strobed into the Intel486 Microprocessor ev-
ery clock rather than every other clock as in non-
burst cycles. The fastest burst cycle requires 2
clocks for the first data item with subsequent data
items returned every clock.

The Intel486 Microprocessor is capable of bursting a
maximum of 32 bits during a write. Burst writes can
only occur if BS8# or BS16# is asserted. For exam-
ple, the Intel486 Microprocessor can burst write four
8-bit operands or two 16-bit operands in a single
burst cycle. But the Intel486 Microprocessor cannot
burst multiple 32-bit writes in a single burst cycle.

Burst cycles begin with the Intel486 Microprocessor
driving out an address and asserting ADS# in the
same manner as non-burst cycles. The Intel486 mi-
croprocessor indicates that it is willing to perform a
burst cycle by holding the burst last signal
(BLAST #) inactive in the second clock of the cycle.
The external system indicates its willingness to do a
burst cycle by returning the burst ready signal
(BRDY #) active.

The addresses of the data items in a burst cycle will
all fall within the same 16-byte aligned area (corre-
sponding to an internal Intel486 Microprocessor
cache line). A 16-byte aligned area begins at loca-
tion XXXXXXX0 and ends at location XXXXXXXF.
During a burst cycle, only BEO-3#, Ap, and Az may
change. A4—Agzq, M/10#, D/C#, and W/R# will re-
main stable throughout a burst. Given the first ad-
dress in a burst, external hardware can easily calcu-
late the address of subsequent transfers in advance.
An external memory system can be designed to
quickly fill the Intel486 microprocessor internal
cache lines.

intelw Intel486™ DX MICROPROCESSOR PRELIMINARY

1 : | : | : | : 1

ADS# i \ : / | \ ‘ , | \ . / | \ , / |

1 | | I |

1 ! | ! 1 ! ! !]

A2=-A31) ! . : . ! . ! !
10 ' ' | 1

el I S LA i '

BEO-3# \ : , ; . ; : ; |

1] L] 1 1 1 1

W/R# : \ ! ! ’ ! : \ | ! ’ ! :

| 1 1 ! 1 ' | | 1

ROV ARKKRRCKRRAAKXRORRARKO © / KCKKRARKRARRRRN. ¢ /AAAKKAARRRRAARY. | /KKK | /XKW

1 1

] ' | .] . 1 .]

| 1 ’] \ 1 , \ [, \ 1 ,
BLAST#] X | \ L ! ! |] :]

1 X]) 1 . 1 o |

1 h ! ! 1 | 1 | !

| ! /T0\ '/ \ ! /T0\ !

DATA T : { cru) — FROM CPU)} : {cpu) : FROM CPU

| ' 1 ' | ' [) [

| | 1 ! | [| | 1
PCHK# ['f [)] : [: [

I ' ! ! |) 1 l

READ WRITE READ WRITE
240440-50
Figure 7.7. Basic 2-2 Bus Cycle
Ti T T2 T2 Ti T2 T2 Ti

CLK ! ! [

I
ADS# : \ ’ [\ ’
I

A2;A31 : ! ! . ' ! !
M/I10# | ' ' 1
D/C# : x ! ! ' X ! ! '
BEO-3# I i T | i | X
| | | | !
\) 1 ! T T
W/R# : s ! | / : : |

rove OO0 0+ /AN D0 Ao

| 1] 1 | [l [}
A] | 1 |
BLAST# 1 O [\ v
; ; . , ! . '
| 1 1 1 1
1 1 1
DATA — <) < IFROMCPU | J——
| 1 1 u 1
1 1 1 1
! ' READ ! : ! WRITE ! !

240440-51

Figure 7.8. Basic 3-3 Bus Cycle
106

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Burst cycles are not limited to cache line fills. Any
multiple cycle read request by the Intel486 Micro-
processor can be converted into a burst cycle. The
Intel486 Microprocessor will only burst the number
of bytes needed to complete a transfer. For exam-
ple, eight bytes will be bursted in for a 64-bit floating
point non-cacheable read.

The external system converts a multiple cycle re-
quest into a burst cycle by returning BRDY # active
rather than RDY # (non-burst ready) in the first cycle
of a transfer. For cycles that cannot be bursted such
as interrupt acknowledge and halt, BRDY # has the
same effect as RDY#. BRDY # is ignored if both
BRDY # and RDY # are returned in the same clock.
Memory areas and peripheral devices that cannot
perform bursting must terminate cycles with RDY #.

7.2.2.2 Terminating Muitiple and
Burst Cycle Transfers

The Intel486 Microprocessor drives BLAST# inac-
tive for all but the last cycle in a multiple cycle trans-
fer. BLAST# is driven inactive in the first cycle to
inform the external system that the transfer could
take additional cycles. BLAST # is driven active in
the last cycle of the transfer indicating that the next
time BRDY# or RDY# is returned the transfer is
complete.

BLAST # is not valid in the first clock of a bus cycle.
It should be sampled only in the second and subse-
quent clocks when RDY # or BRDY # is returned.

The number of cycles in a transfer is a function of
several factors including the number of bytes the mi-
croprocessor needs to complete an internal request
(1, 2, 4, 8, or 16), the state of the bus size inputs
(BS8# and BS16#), the state of the cache enable
input (KEN#) and alignment of the data to be trans-
ferred.

When the Intel486 Microprocessor initiates a re-
quest it knows how many bytes will be transferred
and if the data is aligned. The external system must
tell the microprocessor whether the data is cache-
able (if the transfer is a read) and the width of the
bus by returning the state of the KEN#, BS8+# and
BS16+# inputs one clock before RDY # or BRDY # is
returned. The Intel486 Microprocessor determines
how many cycles a transfer will take based on its
internal information and inputs from the external sys-
tem.

BLAST # is not valid in the first clock of a bus cycle
because the Intel486 Microprocessor cannot deter-
mine the number of cycles a transfer will take until

107

the external "system returns KEN#, BS8# and
BS16#. BLAST# should only be sampled in the
second and subsequent clocks of a cycle when the
external system returns RDY # or BRDY #.

The system may terminate a burst cycle by returning
RDY # instead of BRDY#. BLAST# will remain
deasserted until the last transfer. However, any
transfers required to complete a cache line fill will
follow the burst order, e.g., if burst order was 4, 0, C,
8 and RDY # was returned at after 0, the next trans-
fers will be from C and 8.

7.2.2.3 Non-Cacheable, Non-Burst, Multiple
Cycle Transfers

Figure 7.9 illustrates a 2 cycle non-burst, non-cache-
able muiltiple cycle read. This transfer is simply a
sequence of two single cycle transfers. The Intel486
Microprocessor indicates to the external system that
this is a multiple cycle transfer by driving BLAST #
inactive during the second clock of the first cycle.
The external system returns RDY # active indicating
that it will not burst the data. The external system
also indicates that the data is not cacheable by re-
turning KEN# inactive one clock before it returns
RDY # active. When the Intel486 Microprocessor
samples RDY # active it ignores BRDY #.

Each cycle in the transfer begins when ADS# is
driven active and the cycle is complete when the
external system returns RDY # active.

The Intel486 Microprocessor indicates the last cycle
of the transfer by driving BLAST # active. The next
RDY # returned by the external system terminates
the transfer.

7.2.2.4 Non-Cacheable Burst Cycles

The external system converts a muiltiple cycle re-
quest into a burst cycle by returning BRDY # active
rather than RDY # in the first cycle of the transfer.
This is illustrated in Figure 7.10.

There are several features to note in the burst read.
ADS# is only driven active during the first cycle of
the transfer. RDY# must be driven inactive when
BRDY # is returned active.

BLAST # behaves exactly as it does in the non-burst
read. BLAST # is driven inactive in the second clock
of the first cycle of the transfer indicating more cy-
cles to follow. In the last cycle, BLAST # is driven
active telling the external memory system to end the
burst after returning the next BRDY #.

Intel486™ DX MICROPROCESSOR PRELIMINARY

] mo, T , m , 1 , 1

|

[

I

I

I

!
T
|
.

s - —
X A
BEO-3# ' : : : !
rRov# KERKKRRKXRKKXCOOCORRAKOON | /OO /AKX

ADS# : \ / : \ i /

D/C# | .

W/R#

arov# AU

S
| ! : : :
BLAST T]
o ——————E———E)
1st [')ATA 2nd .DATA ' 24044052
Figure 7.9. Non-Cacheable, Non-Burst, Multiple Cycle Transfers
wno, W , T2 , 12 , W ., T
ADS# | \ v : | |
Aa—/;lﬁgl ! X X \ :
1] 1 | |
o i S ¢
BEO=3# | : : ! |
rove XECROKRORGURRRROKRANR © \XKRKA \momommm
BrOY# KRCKKKXARRKKOOOCOOKERXNK mn\)HNMOHHWN
KEN# | l '
BLAST# H X : / E \ : / |
@
l ' ' 240440-53

Figure 7.10. Non-Cacheable Burst Cycle

108

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

7.2.3 CACHEABLE CYCLES

Any memory read can become a cache fill operation.
The external memory system can allow a read re-
quest to fill a cache line by returning KEN# active
one clock before RDY# or BRDY # during the first
cycle of the transfer on the external bus. Once
KEN# is asserted and the remaining three require-
ments described below are met, the Intel486 Micro-
processor will fetch an entire cache line regardless
of the state of KEN#. KEN# must be returned ac-
tive in the last cycle of the transfer for the data to be
written into the internal cache. The Intel486 Micro-
processor will only convert memory reads or pre-
fetches into a cache fill.

KEN # is ignored during write or 1/0 cycles. Memory
writes will only be stored in the on-chip cache if
there is a cache hit. I/0 space is never cached in
the internal cache.

To transform a read or a prefetch into a cache line
fill the following conditions must be met:

1. The KEN# pin must be asserted one clock pri-
or to RDY# or BRDY # being returned for the
first data cycle.

2. The cycle must be of the type that can be inter-
nally cached. (Locked reads, I/0O reads, and
interrupt acknowledge cycles are never cach-
ed).

3. The page table entry must have the page
cache disable bit (PCD) set to 0. To cache a
page table entry, the page directory must have
PCD=0. To cache reads or prefetches when
paging is disabled, or to cache the page direc-
tory entry, control register 3 (CR3) must have
PCD=0.

4. The cache disable (CD) bit in control register 0
(CRO) must be clear.

External hardware can determine when the Intel486
Microprocessor has transformed a read or prefetch
into a cache fill by examining the KEN#, M/IO#,
D/C#, W/R#, LOCK#, and PCD pins. These pins
convey to the system the outcome of conditions 1-3
in the above list. In addition, the Intel486 drives PCD
high whenever the CD bit in CRO is set, so that ex-
ternal hardware can evaluate condition 4.

Cacheable cycles can be burst or non-burst.

109

7.2.3.1 Byte Enables during a Cache Line Fill

For the first cycle in the line fill, the state of the byte
enables should be ignored. In a non-cacheable
memory read, the byte enables indicate the bytes
actually required by the memory or code fetch.

The Intel486 Microprocessor expects to receive val-
id data on its entire bus (32 bits) in the first cycle of a
cache line fill. Data should be returned with the as-
sumption that all the byte enable pins are driven ac-
tive. However if BS8# is asserted only one byte
need be returned on data lines DO-D7. Similarly if
BS16# is asserted two bytes should be returned on
D0-D15.

The Intel486 Microprocessor will generate the ad-
dresses and byte enables for all subsequent cycles
in the line fill. The order in which data is read during
a line fill depends on the address of the first item
read. Byte ordering is discussed in Section 7.2.4.

7.2.3.2 Non-Burst Cacheable Cycles

Figure 7.11 shows a non-burst cacheable cycle. The
cycle becomes a cache fill when the Intel486 Micro-
processor samples KEN# active at the end of the
first clock. The Intel486 Microprocessor drives
BLAST # inactive in the second clock in response to
KEN#. BLAST # is driven inactive because a cache
fill requires 3 additional cycles to complete.
BLAST# remains inactive until the last transfer in
the cache line fill. KEN# must be returned active in
the last cycle of the transfer for the data to be writ-
ten into the internal cache.

Note that this cycle would be a single bus cycle if
KEN # was not sampled active at the end of the first
clock. The subsequent three reads would not have
happened since a cache fill was not requested.

The BLAST # output is invalid in the first clock of a
cycle. BLAST# may be active during the first clock
due to earlier inputs. Ignore BLAST # until the sec-
ond clock.

During the first cycle of the cache line fill the exter-
nal system should treat the byte enables as if they
are all active. In subsequent cycles in the burst, the
Intel486 Microprocessor drives the address lines
and byte enables (see Section 7.2.4.2 for Burst and
Cache Line Fill Order).

intele, Intel486™ DX MICROPROCESSOR PRELIMINARY

o, ™, T2 , m , 1 m o, 1”7 , m , 1 , +u

A2=-A31

|
| :
M/10# L
D/C ! x ! [
wfni : T X
BEO-3# I ' 1

RoY# KARKRRKRARK UK | [VAR | [AAAAAMRKAKEAA :)00000000000000\ | /NN

BROY# - KRR AR A A KKK RRRKX KX

1
BSOS 1
[
1

#LJ__/

I
|
|
|
!

'
l
1 I 1
1 | 1
L 1 M 1
BLAST; 1 | 1
G S U W 0 g w WL
| | h 1 ' I h |
DATA — [T\ . [T\ . (N T
! \cru/ ! \cru/ ! \cPu/ ! \cru/
240440-54
Figure 7.11. Non-Burst, Cacheable Cycles
7.2.3.3 Burst Cacheable Cycles The external system informs the Intel486 Microproc-

essor that it will burst the line in by driving BRDY #
Figure 7.12 illustrates a burst mode cache fill. As in active at the end of the first cycle in the transfer.
Figure 7.11, the transfer becomes a cache line fill
when the external system returns KEN# active at Note that during a burst cycle ADS# is only driven
the end of the first clock in the cycle. with the first address.

110

Intel486™ DX MICROPROCESSOR

PRELIMINARY

no, m , 122 , 1 , T2 , T , T
CLK : '] ' 1 :
| ! : : ! !
o T\
Mo, ———
vreh N . 1 . |
W/RE ! .' I | : |
i i G N0 SN O
o ACAKARAXACARHRRRRRRRRERENR AR AR+ VARRKK/ \KAKENKR
swove OO | 200000 ¢ 0000\ | A0000 Ao
KEN# b\ [b\ / !
BLASTY X] \ /
on
PCHK | ! YD D

240440-55

Figure 7.12. Burst Cacheable Cycle

7.2.3.4 Effect of Changing KEN# during a
Cache Line Fill

KEN# can change multiple times as long as it ar-
rives at its final value in the clock before RDY # or
BRDY # is returned. This is illustrated in Figure 7.13.
Note that the timing of BLAST# follows that of
KEN# by one clock. The Intel486 samples KEN#
every clock and uses the value returned in the clock
before ready to determine if a bus cycle would be a

111

cache line fill. Similarly, it uses the value of KEN# in
the last cycle, before early RDY# to load the line
just retrieved from the memory into the cache.
KEN# is sampled every clock, it must satisfy setup
and hold time.

KEN# can also change multiple times before a burst
cycle as long as it arrives at its final value one clock
before ready is returned active.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

no, T ., T2 7 , T2 , T , T |,
CLK : . . ' \ y :
ADS# ! \ : , i i: i __i_/_:‘_
Ad=A31, | | | ﬁ: — : M
N B | | | | |
W/RY ! ! ! : l ! .
ro-34 1 S B !
rovs - KXCAVANAARRRAARRRANGARARRAY + VANKRY/ + VAKARAN ¢ /000NN A
KEN# : \ E , i \ i / | é :
BLAST# D X : / : \ | / | \ / |
DATA i o s @ @_

240440-56

Figure 7.13. Effect of Changing KEN #

7.2.4 BURST MODE DETAILS

7.2.4.1 Adding Wait States to Burst Cycles

Burst cycles need not return data on every clock.
The Intel486 Microprocessor will only strobe data
into the chip when either RDY # or BRDY # are ac-
tive.

112

Driving BRDY# and RDY# inactive adds a wait
state to the transfer. A burst cycle where two clocks
are required for every burst item is shown in Figure
7.14.

intelo Intel486T™ DX MICROPROCESSOR PRELIMINARY

n, W™ , T2 , T , T , T2 , 17 , T2 T,
] 1 1] 1

| ! ; |
T

ADS# \ /

A4=A31,

M/10#, EX;
§ D S SR S

D/C#,
X

W/R#
A2-A3,

o 00O O T OO0
ey OO0 | 000007 V000N | /00007 U000 ¢ 0000700,

BEO-3#
| | 1 | | | |

| 1
| M X . X .) X
KEN Y : : : o\ [
! ; ! ! ! ! ! . !
: | 1 1 | 1 1 1 |
BLAST# \ X | / |) | . : \ |)
' : : | | ! | .
[) |) 1 f | ' !
DATA ' : / TOU\ : / cT|9U\ X / TOU\ X @
| A A = A
240440-57
Figure 7.14. Slow Burst Cycle
7.2.4.2 Burst and Cache Line Fill Order Table 7.8. Burst Order
The burst order used by the Intel486 Microprocessor First Second Third Fourth
is shown in Table 7.8. This burst order is followed by Addr. Addr. Addr. Addr.
any burst cycle (cache or not), cache line fill (burst 0 4 8 c
or not) or code prefetch. 4 0 c 8
The microprocessor presents each request for data 8 c 0 4
in an order determined by the first address in the c 8 4 0
transfer. For example, if the first address was 104
the next three addresses in the burst will be 100, An example of burst address sequencing is shown in
10C and 108. Figure 7.15.

113

Intel486™ DX MICROPROCESSOR

PRELIMINARY

CLK

ADS# \ ' ,

A
|
|
1

A2-A31 :
I

X 104
|

--t----1--

X1oo

seov - YOOCOMCO0O0OMMNNN | 0000 | 000\ | A0000A At

rov# - ACANKAKARAARARKRRRGRRENR R+ AR KRR+ \XARAREN

! X X
- : . 5 o=
! | 1 | 1 !
BLAST# X X : / E E E \ : Z
| | : | : [
DATA ! X /\ __ /_ /7\ _ /T\
; : \eeyAcp)A\cey 2w/

240440-58

Figure 7.15. Burst Cycle Showing Order of Addresses

The sequences shown in Table 7.7 accommodate
systems with 64-bit busses as well as systems with
32-bit data busses. The sequence applies to all
bursts, regardless of whether the purpose of the
burst is to fill a cache line, do a 64-bit read, or do a
pre-fetch. If either BS8# or BS16# is returned ac-
tive, the Intel486 Microprocessor completes the
transfer of the current 32-bit word before progress-
ing to the next 32-bit word. For example, a BS16+#
burst to address 4 has the following order: 4-6-0-2-
C-E-8-A.

7.2.4.3 Interrupted Burst Cycles

Some memory systems may not be able to respond
with burst cycles in the order defined in Table 7.7.
To support these systems the Intel486 Microproces-
sor allows a burst cycle to be interrupted at any time.

114

The Intel486 Microprocessor will automatically gen-
erate another normal bus cycle after being interrupt-
ed to complete the data transfer. This is called an
interrupted burst cycle. The external system can re-
spond to an interrupted burst cycle with another
burst cycle.

The external system can interrupt a burst cycle by
returning RDY # instead of BRDY #. RDY # can be
returned after any number of data cycles terminated
with BRDY #.

An example of an interrupted burst cycle is shown in
Figure 7.16. The Intel486 Microprocessor immedi-
ately drives ADS# active to initiate a new bus cycle
after RDY # is returned active. BLAST# is driven
inactive one clock after ADS# begins the second
bus cycle indicating that the transfer is not complete.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

T L P Sl
CLK ! y y Y y y !
o T
o T T
S W
"————BH—O——O—®

240440-59

Figure 7.16. Interrupted Burst Cycle

KEN# need not be returned active in the first data
cycle of the second part of the transfer in Figure
7.16. The cycle had been converted to a cache fill in
the first part of the transfer and the Intel486 Micro-
processor expects the cache fill to be completed.
Note that the first half and second half of the trans-
fer in Figure 7.16 are each two cycle burst transfers.

The order in which the Intel486 Microprocessor re-
quests operands during an interrupted burst transfer
is determined by Table 7.7. Mixing RDY# and
BRDY# does not change the order in which oper-
and addresses are requested by the Intel486 Micro-
processor.

115

An example of the order in which the Intel486 Micro-
processor requests operands during a cycle in which
the external system mixes RDY# and BRDY # is
shown in Figure 7.17. The Intel486 Microprocessor
initially requests a transfer beginning at location 104.
The transfer becomes a cache line fill when the ex-
ternal system returns KEN # active. The first cycle of
the cache fill transfers the contents of location 104
and is terminated with RDY #. The Intel486 Micro-
processor drives out a new request (by asserting
ADS #) to address 100. If the external system termi-
nates the second cycle with BRDY #, the Intel486
Microprocessor will next request/expect address
10C. The correct order is determined by the first cy-
cle in the transfer, which may not be the first cycle in
the burst if the system mixes RDY# with BRDY #.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

CLK [/ [

|
1]
ADS# \lfu\:/
! 1
t

T2 T2

|
I
|
1
A2-A31 :
[}

1
104

X

A

'
'
!
| |
'
'
! |
|

rov 000NN AT P\ R \KRRARR
arovs OB | 0000 ¢ 000 00

|
KIOS;
|

100 ! koc:
|

KEN# P\ ! / : \ ! / :
BLAST# | X]: / 7: \ E / i i \ : {
- IR, N, Y, N,

! I 1)) e) €9

240440-60

Figure 7.17. Interrupted Burst Cycle with Unobvious Order of Addresses

7.2.5 8- AND 16-BIT CYCLES

The Intel486 Microprocessor supports both 16- and
8-bit external busses through the BS16# and BS8#
inputs. BS16# and BS8# allow the external system
to specify, on a cycle by cycle basis, whether the
addressed component can supply 8, 16 or 32 bits.
BS16# and BS8# can be used in burst cycles as
well as non-burst cycles. If both BS16# and BS8#
are returned active for any bus cycle, the Intel486
Microprocessor will respond as if only BS8# were
active.

The timing of BS16+# and BS8# is the same as that
of KEN#. BS16# and BS8# must be driven active
before the first RDY# or BRDY # is driven active.

116

Driving the BS16# and BS8# active can force the
Intel486 Microprocessor to run additional cycles to
complete what would have been only a single 32-bit
cycle. BS8# and BS16# may change the state of
BLAST# when they force subsequent cycles from
the transfer.

Figure 7.18 shows an example in which BS8#
forces the Intel486 Microprocessor to run two extra
cycles to complete a transfer. The Intel486 Micro-
processor issues a request for 24 bits of information.
The external system drives BS8# active indicating
that only eight bits of data can be supplied per cycle.
The Intel486 Microprocessor issues two extra cycles
to complete the transfer.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

ADS# \ fl\ ,I\:,I\
| | | I

: :
1
A2=A31 : : ;
"5/t i S B
. S R S S N S
BEO-3# ! X : | X | | J | | X
| | ; 1 'l 1)
RDY#

VANV ! [N | [AARORARKREAM : [N

Sy

BS8# : ./ ! i

wer T T LT T

- | LN
)&y &

240440-61

Figure 7.18. 8-Bit Bus Size Cycle

Extra cycles forced by the BS16# and BS8# should
be viewed as independent bus cycles. BS16# and
BS8# should be driven active for each additional
cycle unless the addressed device has the ability to
change the number of bytes it can return between
cycles. The Intel486 Microprocessor will drive
BLAST# inactive until the last cycle before the
transfer is complete.

Refer to Section 7.1.3 for the sequencing of ad-
dresses while BS8# or BS16+# are active.

117

BS8+# and BS16+# operate during burst cycles in ex-
actly the same manner as non-burst cycles. For ex-
ample, a single non-cacheable read could be trans-
ferred by the Intel486 Microprocessor as four 8-bit
burst data cycles. Similarly, a single 32-bit write
could be written as four 8-bit burst data cycles. An
example of a burst write is shown in Figure 7.19.
Burst writes can only occur if BS8# or BS16# is
asserted.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Ti \ T1 T2 T2 T2 , T2 . Ti
| [1 ' [|
CLK ! y y ¥ .)
| 1 1 1 | |
1 | 1 1
1 T T T
ADS# ! \ ! ' ! ! I I
| 1 1 1 |
1 1 1 1
: 1 1 ' | !
ADDR I | | | | X X
SPEC ! ! ! !
| T T T T
| | [1 I
B 1 1 . de
B0-34 i D SR G AR
[

RDY#

BRDY#

EARAXAAXAVARRRARRRRRRRERER, : VEKRRK/ 2 KRR \KARRY -+ WAXAXARR
AN & /A0 A0 0000 /0

g

BS8# | ~

! 1 [[
! 1 1 I
T T T T
BLAST# ! X ! ’ ! !
1 1 1
! 1 | '
| 1 1 |

| ! /
DATA t : \ " FROM CPU :
[1 T

240440-62

Figure 7.19. Burst Write as a Result of BS8# or BS16 #

7.2.6 LOCKED CYCLES

Locked cycles are generated in software for any in-
struction that performs a read-modify-write opera-
tion. During a read-modify-write operation the proc-
essor can read and modify a variable in external
memory and be assured that the variable is not ac-
cessed between the read and write.

Locked cycles are automatically generated during
certain bus transfers. The xchg (exchange) instruc-
tion generates a locked cycle when one of its oper-
ands is memory based. Locked cycles are generat-
ed when a segment or page table entry is updated
and during interrupt acknowledge cycles. Locked cy-
cles are also generated when the LOCK instruction
prefix is used with selected instructions.

Locked cycles are implemented in hardware with the
LOCK# pin. When LOCK# is active, the processor
is performing a read-modify-write operation and the
external bus should not be relinquished until the cy-
cle is complete. Multiple reads or writes can be
locked. A locked cycle is shown in Figure 7.20.
LOCK# goes active with the address and bus defini-
tion pins at the beginning of the first read cycle and
remains active until RDY # is returned for the last
write cycle. For unaligned 32 bits read-modify-write
operation, the LOCK# remains active for the entire
duration of the multiple cycle. It will go inactive when
RDY # is returned for the last write cycle.

118

Intel486™ DX MICROPROCESSOR

PRELIMINARY

CLK [

ADS#

A2-A31

M/10#
D/C#

BEO=-3#

W/R#

RDY#

CAAMVCKRRRAAKEKRAARKKERRIK, | /AAVARKKRRVORERA & /RN

READ

1]
| | ' !
| | T0 ! |
S e S)
1
1
LOCK# : ' !
[} \ : 1
' . L

T

WRITE
: 240440-63

Figure 7.20. Locked Bus Cycle

When LOCK# is active, the Intel486 Microprocessor
will recognize address hold and backoff but will not
recognize bus hold. it is left to the external system to
properly arbitrate a central bus when the Intel486
Microprocessor generates LOCK #.

7.2.7 PSEUDO-LOCKED CYCLES

Pseudo-locked cycles assure that no other master
will be given control of the bus during operand trans-
fers which take more than one bus cycle. Examples
include 64-bit floating point read and writes, 64-bit
descriptor loads and cache line fills.

Pseudo-locked transfers are indicated by the
PLOCK# pin. The memory operands must be
aligned for correct operation of a pseudo-locked cy-
cle.

PLOCK# need not be examined during burst reads.
A 64-bit aligned operand can be retrieved in one
burst (note: this is only valid in systems that do not
interrupt bursts).

The system must examine PLOCK# during 64-bit
writes since the Intel486 Microprocessor cannot
burst write more than 32 bits. However, burst can be
used within each 32-bit write cycle if BS8# or
BS16+# is asserted. BLAST will be deasserted in re-
sponse to BS8# or BS16#. A 64-bit write will be
driven out as two non-burst bus cycles. BLAST # is
asserted during both writes since a burst is not pos-

119

sible. PLOCK# is asserted during the first write to
indicate that another write follows. This behavior is
shown in Figure 7.21.

The first cycle of a 64-bit floating point write is the
only case in which both PLOCK# and BLAST# are
asserted. Normally PLOCK# and BLAST# are the
inverse of each other.

During all of the cycles where PLOCK # is asserted,
HOLD is not acknowledged until the cycle com-
pletes. This results in a large HOLD latency, espe-
cially when BS8+# or BS16+# is asserted. To reduce
the HOLD latency during these cycles, windows are
available between transfers to allow HOLD to be ac-
knowledged during non-cacheable, non-bursted
code prefetches. PLOCK# will be asserted since
BLAST # is negated, but it is ignored and HOLD is
recognized during the prefetch.

PLOCK# can change several times during a cycle
settling to its final value in the clock ready is re-
turned.

7.2.8 INVALIDATE CYCLES

Invalidate cycles are needed to keep the Intel486
Microprocessor’s internal cache contents consistent
with external memory. The Intel486 microprocessor
contains a mechanism for listening to writes by other
devices to external memory. When the processor
finds a write to a Section of external memory con-

Intel486™ DX MICROPROCESSOR

PRELIMINARY

—

WRITE

AZ=A31 ! i ! :
Nl X D
BEO-3# | ! 1 X
ww] 1
oo LT\ 1
rove - YKCOOCOOK0ANACANNA. ANt AN
ey L T\ L [
DATA E E |: :

FROM CPU FROM CPU

240440-64

Figure 7.21. Pseudo Lock Timing

tained in its internal cache, the processor’s internal
copy is invalidated.

Invalidations use two pins, address hold request
(AHOLD) and valid external address (EADS#).
There are two steps in an invalidation cycle. First,
the external system asserts the AHOLD input forcing
the Intel486 Microprocessor to immediately relin-
quish its address bus. Next, the external system as-
serts EADS# indicating that a valid address is on
the Intel486 Microprocessor’s address bus. EADS #
and the invalidation address, Figure 7-22 shows the
fastest possible invalidation cycle. The Intel486 cy-
cle CPU recognizes AHOLD on one CLK edge and
floats the address bus in response. To allow the ad-
dress bus to float and avoid contention, EADS# and
the invalidation address should not be driven until
the following CLK edge. The microprocessor reads
the address over its address lines. If the microproc-
essor finds this address in its internal cache, the
cache entry is invalidated. Note that the Intel486 Mi-
croprocessor’s address bus is input/output unlike
the 386 Microprocessor’s bus, which is output only.

The Intel486 Microprocessor immediately relinquish-
es its address bus in the next clock upon assertion
of AHOLD. For example, the bus could be 3 wait
states into a read cycle. If AHOLD is activated, the
Intel486 Microprocessor will immediately float its

120

address bus before ready is returned terminating the
bus cycle.

When AHOLD is asserted only the address bus is
floated, the data bus can remain active. Data can be
returned for a previously specified bus cycle during
address hold (see Figures 7.22, 7.23).

EADS # is normally asserted when an external mas-
ter drives an address onto the bus. AHOLD need not
be driven for EADS# to generate an internal invali-
date. If EADS# alone is asserted while the Intel486
Microprocessor is driving the address bus, it is pos-
sible that the invalidation address will come from the
Intel486 Microprocessor itself.

Note that it is also possible to run an invalidation
cycle by asserting EADS# when HOLD or BOFF #
is asserted.

Running an invalidate cycle prevents the Intel486
Microprocessor cache from satisfying other internal
requests, so invalidations should be run only when
necessary. The fastest possible invalidate cycle is
shown in Figure 7.22, while a more realistic invalida-
tion cycle is shown in 7.23. Both of the examples
take one clock of cache access from the rest of the
Intel486 Microprocessor.

Intel486™ DX MICROPROCESSOR PRELUMUNARV

no, ™ , T2 , ®w , w o, W , 1T , T

- OO

wo L

EADS# E ; i _E/ ; ; i ;

I s B e e U
Figure 7.22. Fast Internal Cache Invalidation Cycle

X

'
'
|
'
'
|

T0

\

ADDR),

\

1
L
[}
!
]
1
AHOLD X /

1

. 1
: .
1

EADS#

I

RO RERRAAAARAAAVARERAAAA)NHHMHHNHHNNHN AR

DATA

!

|
BREQ | / S ! \

240440-66

Figure 7.23. Typical Internal Cache Invalidation Cycle

121

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

7.2.8.1 Rate of Invalidate Cycles

The Intel486 Microprocessor can accept one invali-
date per clock except in the last clock of a line fill.
One invalidate per clock is possible as long as
EADS # is negated in ONE or BOTH of the following
cases:

1. In the clock RDY # or BRDY # is returned for
the last time.
In the clock following RDY # or BRDY # being
returned for the last time.

2.

This definition allows two system designs. Simple
designs can restrict invalidates to one every other
clock. The simple design need not track bus activity.
Alternatively, systems can request one invalidate
per clock provided that the bus is monitored.

7.2.8.2 Running Invalidate Cycles Concurrently
with Line Fills

Precautions are necessary to avoid caching stale
data in the Intel486 Microprocessor’s cache in a sys-
tem with a second level cache. An example of a
system with a second level cache is shown in Figure
7.24. An external device can be writing to main
memory over the system bus while the Intel486 Mi-
croprocessor is retrieving data from the second level
cache. The Intel486 Microprocessor will need to in-
validate a line in its internal cache if the external
device is writing to a main memory address also
contained in the Intel486 Microprocessor’s cache.

122

Intel486 ™

Microprocessor

i i Address, Data & Control Bus

Second
Level
Cache

0

System Bus

U

External
Memory

L

External
Bus Master

240440-67

Figure 7.24. System with Second Level Cache

A potential problem exists if the external device is
writing to an address in external memory, and at the
same time the Intel486 Microprocessor is reading
data from the same address in the second level
cache. The system must force an invalidation cycle
to invalidate the data that the intel486 Microproces-
sor has requested during the line fill.

If the system asserts EADS # before the first data in
the line fill is returned to the Intel486 Microproces-
sor, the system must return data consistent with the
new data in the external memory upon resumption of
the line fill after the invalidation cycle. This is illus-
trated by the asserted EADS# signal labeled 1 in
Figure 7.25.

intel. Intel486™ DX MICROPROCESSOR PRELIMINARY

Ti . T . T2 . T2 . T2 . T2 , T2 . T2 , Ti
) | ' ' | ' | |
CLK \ 1 ' ' ' ' ' |
: : ! : : ! ! '
1 L T T Ll)
ADS# | |] | ' ' | i
) _l_} | ' ' ' ')
) [' ' ' ' ' .
- ' ! : : : A .
T0
T —
! | X 1 1 X X |
I L Il L 1 L) |
AHOLD ! / : i : | | \ !
; ! ! ! ! ! . ,
! | [} ' 1 [} [}
EADS# ! : : " 2, | | |
! ' 1 ' ' |
I] l | | |

ROY mommnmomomml \oml \mol \mol \oml \mol \omm

BROY/ ommmmmm«muol \oml \om\)mo\)om\)om\)mmo

KEN#

I
1 1

X T0 T0 /70\ /70\
| : CcPyY CcPUY \cru)—\cru/

NOTES: 240440-68
1. Data returned must be consistent if its address equals the invalidation address in this clock
2. Data returned will not be cached if its address equals the invalidation address in this clock

DATA

Figure 7.25. Cache Invalidation Cycle Concurrent with Line Fill

If the system asserts EADS# at the same time or sor, the Intel486 Microprocessor can respond to
after the first data in the line fill is returned (in the HOLD by floating its bus and asserting HLDA while
same clock that the first RDY# or BRDY # is re- RESET is asserted.
turned or any subsequent clock in the line fill) the
data will be read into the Intel486 Microprocessors Note that HOLD will be recognized during un-aligned
input buffers but it will not be stored in the on-chip writes (less than or equal to 32-bits) with BLAST #
cache. This is illustrated by asserted EADS # signal being active for each write. For greater than 32-bit or
labeled 2 in Figure 7.25. The stale data will be used un-aligned write, HOLD# recognition is prevented
to satisfy the request that initiated the cache fill cy- by PLOCK# getting asserted.
cle.
The pins floated during bus hold are: BEO # -BE3 #,
PCD, PWT, W/R#, D/C#, M/IO#, LOCK#,
7.29 BUS HOLD PLOCK#, ADS#, BLAST#, D0-D31, A2-A31,

The Intel486 Microprocessor provides a bus hold, DP0-DP3.

hold acknowledge protocol using the bus hold re-

quest (HOLD) and bus hold acknowledge (HLDA) 72,10 INTERRUPT ACKNOWLEDGE

pins. Asserting the HOLD input indicates that anoth-

er bus master desires control of the Intel486 Micro- The Intel486 Microprocessor generates interrupt ac-
processor’s bus. The processor will respond by knowledge cycles in response to maskable interrupt
floating its bus and driving HLDA active when the requests generated on the interrupt request input
current bus cycle, or sequence of locked cycles is (INTR) pin. Interrupt acknowledge cycles have a
complete. An example of a HOLD/HLDA transaction unique cycle type generated on the cycle type pins.
is shown in Figure 7.26. Unlike the 386 Microproces-

123

Intel486™ DX MICROPROCESSOR

PRELIMINARY

T

CLK [[I

A2-A31 X : . : ' :

M/10# . |

o X0
W/R# T T | !

BEO-3 - | . ! . |

Rov# - KRRRRKAKRAKKRRRXRKRRKXRRAORONCION /KRR
DATA E l E \FROMCPU, E I

HOLD E | /T ! ‘E \ |

HLDA E : 5 : [

240440-69

Figure 7.26. HOLD/HLDA Cycles

An example interrupt acknowledge transaction is
shown in Figure 7.27. Interrupt acknowledge cycles
are generated in locked pairs. Data returned during
the first cycle is ignored. The interrupt vector is re-
turned during the second cycle on the lower 8 bits of
the data bus. The Intel486 Microprocessor has 256
possible interrupt vectors.

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycle is
4 (A31-A3 low, A2 high, BE3#-BE1# high, and
BEO# low). The address driven during the second
interrupt acknowledge cycle is 0 (A31-A2 low,
BE3#-BE1# high, BEO# low).

o, ™ ., T2 ., T o, T , T2 , ™
1 : | : [: 1
CLK [! ' [[
| I !) I ' I !
1 1
ADS# : : / r ! 4 cLocks ! | ! / !
| | | | | | | |
ADDR : X ! | ! ! : x ! |
] L} 1 T] L |
' [} 1 I 1
| X ! |
RDY# 1 1
1 1 1 1 1 |
| ' , 1 ' ! 1
1] 1]]] f—"'\
DATA - T \JSU/
! | ! | : ' :
1 1 ! ! | | 1 !
[I ' | | [|
LOCK# 1 ~ . [' ' 1 X | ’
I T 1 r t T ——

240440-70

Figure 7.27. Interrupt Acknowledge Cycles

124

intal.

Intel486™™ bX MICROPROCESSOR

PRELIMINARY

Each of the interrupt acknowledge cycles are termi-
nated when the external system returns RDY # or
BRDY #. Wait states can be added by withholding
RDY # or BRDY #. The Intel486 Microprocessor au-
tomatically generates four idle clocks between the
first and second cycles to allow for 8259A recovery
time.

7.2.11 SPECIAL BUS CYCLES

The Intel486 Microprocessor provides four special
bus cycles to indicate that certain instructions have
been executed, or certain conditions have occurred
internally. The special bus cycles in Table 7.9 are
defined when the bus cycle definition pins are in
the following state: M/IO# =0, D/C#=0 and
W/R# =1. During these cycles the address bus is
driven low while the data bus is undefined.

Two of the special cycles indicate halt or shutdown.
Another special cycle is generated when the In-
tel486 Microprocessor executes an INVD (invalidate
data cache) instruction and could be used to flush
an external cache. The Write Back cycle is generat-
ed when the Intel486 Microprocessor executes the
WBINVD (write-back invalidate data cache) instruc-
tion and could be used to synchronize an external
write-back cache.

The external hardware must acknowledge these
special bus cycles by returning RDY # or BRDY #.

Table 7.9. Special Bus Cycle Encoding

BE3# | BE2# | BE1# | BEO# | _SPecial
Bus Cycle
1 1 1 0 Shutdown
1 1 0 1 Flush
1 0 1 1 Halt
0 1 1 1 Write Back

7.2.11.1 Halt Indication Cycle

The Intel486 Microprocessor halts as a result of exe-
cuting a HALT instruction. Signaling its entrance into
the halt state, a halt indication cycle is performed.
The halt indication cycle is identified by the bus defi-
nition signals in special bus cycle state and a byte
address of 2. BEO# and BE2# are the only signals
distinguishing halt indication from shutdown indica-
tion, which drives an address of 0. During the halt
cycle undefined data is driven on D0-D31. The halt
indication cycle must be acknowledged by RDY # or
BRDY # asserted.

CLK [

ADS#

1

1]

1

1

'

M/l0# .
D/C# '

mo, ™M , T2 , T , T

F——(

Tib T2 . T2 \ T2 ' T2

| ' ' ' l |

| ' | | '
|

100 10C

X1o4 Xwa

BEO-3#

RDY#

BRDY#

'
'
!
A2-A31 !
|
!
|

:
X ' 100
1
T
1

1
1
[
|
|
|
[
|
T
[

NNNNM00NmMHNHm000NNHN000NHNONNNHMNNH’ ‘NH’ ‘NH’ \HN’

NHNHNHNHHMNNHNMHHHNMNNHNMNHHHMNHM)HN\)HH\)HN\

i/

| : | l |
]
KEN# Y ! :
A T S R N
BOFF# i . \ , | / ! ' X
1 1]
| : : : ! : :
BLAST# RN \—-—-—< | / l
' : i | ! [l :
| I | | : ' 1
! X X X , /T0\
DATA +
| : | | | : \E

CPU

(&)

L

240440 7

Figure 7.28. Restarted Read Cycle

125

Intel486™ DX MICROPROCESSOR

PRELIMINARY

CLK !

ADS#

ADDR
SPEC

|
|
|
L
! 100
L

|

]
1
X |
!
T
. 1
RDY#

BRDY#

A R R K AKX R AR

KKK KKREXOAKKKRRORRKKKRROORKROORRKRO. + /XXKKN

|

|

|

)]
100

!

|

X

1
| |
1 T
BOFF# | :
! 1 1
1 1 1
I | '_0—‘
DATA ' L FROM CPU
| b/

FROM CPU

240440-72

Figure 7.29. Restarted Write Cycle

A halted Intel486 Microprocessor resumes execu-
tion when INTR (if interrupts are enabled) or NMI or
RESET is asserted.

7.2.11.2 Shutdown Indication Cycle

The Intel486 Microprocessor shuts down as a result
of a protection fault while attempting to process a
double fault. Signaling its entrance into the shut-
down state, a shutdown indication cycle is per-
formed. The shutdown indication cycle is identified
by the bus definition signals in special bus cycle
state and a byte address of 0.

7.2.12 BUS CYCLE RESTART

In a multi-master system another bus master may
require the use of the bus to enable the Intel486
Microprocessor to complete its current bus request.
In this situation the Intel486 Microprocessor will
need to restart its bus cycle after the other bus mas-
ter has completed its bus transaction.

A bus cycle may be restarted if the external system
asserts the backoff (BOFF #) input. The Intel486 Mi-
croprocessor samples the BOFF # pin every clock.
The Intel486 Microprocessor will immediately (in the
next clock) float its address, data and status pins
when BOFF # is asserted (see Figure 7.28). Any bus
cycle in progress when BOFF # is asserted is abort-

126

ed and any data returned to the processor is ig-
nored. The same pins are floated in response to
BOFF # as are floated in response to HOLD. HLDA
is not generated in response to BOFF#. BOFF #
has higher priority than RDY # or BRDY #. If either
RDY # or BRDY # are returned in the same clock as
BOFF #, BOFF # takes effect.

The device asserting BOFF # is free to run any cy-
cles it wants while the Intel486 Microprocessor bus
is in its high impedance state. If backoff is requested
after the Intel486 Microprocessor has started a cy-
cle, the new master should wait for memory to return
RDY# or BRDY# before assuming control of the
bus. Waiting for ready provides a handshake to in-
sure that the memory system is ready to accept a
new cycle. If the bus is idle when BOFF # is assert-
ed, the new master can start its cycle two clocks
after issuing BOFF #.

The external memory can view BOFF # in the same
manner as BLAST #. Asserting BOFF # tells the ex-
ternal memory system that the current cycle is the
last cycle in a transfer.

The bus remains in the high impedance state until
BOFF # is negated. Upon negation, the Intel486 Mi-
croprocessor restarts its bus cycle by driving out the
address and status and asserting ADS#. The bus
cycle then continues as usual.

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Asserting BOFF# during a burst, BS8# or BS16#
cycle will force the Intel486 Microprocessor to ig-
nore data returned for that cycle only. Data from pre-
vious cycles will still be valid. For example, if
BOFF # is asserted on the third BRDY # of a burst,
the Intel486 Microprocessor assumes the data re-
turned with the first and second BRDY #’s is correct
and restarts the burst beginning with the third item.
The same rule applies to transfers broken into multi-
ple cycle by BS8# or BS16#.

Asserting BOFF# in the same clock as ADS# will
cause the Intel486 Microprocessor to float its bus in
the next clock and leave ADS# floating low. Since
ADS# is floating low, a peripheral may think that a
new bus cycle has begun even-though the cycle was

aborted. There are two possible solutions to this
problem. The first is to have all devices recognize
this condition and ignore ADS# until ready comes
back. The second approach is to use a “‘two clock”
backoff: in the first clock AHOLD is asserted, and in
the second clock BOFF # is asserted. This guaran-
tees that ADS# will not be floating low. This is only
necessary in systems where BOFF # may be assert-
ed in the same clock as ADS#.

7.2.13 BUS STATES
A bus state diagram is shown in Figure 7.30. A de-

scription of the signals used in the diagram is given
in Table 7.10.

REQUEST PENDING e
HOLD NEGATED

(RDY# ASSERTED + (BRDY# BLAST#)ASSERTED) o
(HOLD + AHOLD + NO REQUEST) o
BOFF# NEGATED

REQUEST PENDING «
(RDY# ASSERTED + (BRDY# ¢ BLAST#)ASSERTED) o
HOLD NEGATED e«
AHOLD NEGATED e
BOFF# NEGATED *

AHOLD NEGATED e
BOFF# NEGATED

T
Y BOFF# NEGATED/

BOFF# g“*
ASSERTED @

o
N BOFF#
&

3 NEGATED

AHOLD NEGATED o
BOFF# NEGATED o
(HOLD NEGATED *)

* HOLD is only factored into this state transition if Tp, was entered while a
non-cacheable, non-bursted, code prefetch was in progress.
Otherwise, ignore HOLD.

240440-73
Figure 7.30. Bus State Diagram
Table 7.10. Bus State Description
State Means

Ti Bus is idle. Address and status signals may be driven to undefined values, or
the bus may be floated to a high impedance state.

T1 First clock cycle of a bus cycle. Valid address and status are driven and
ADS # is asserted.

T2 Second and subsequent clock cycles of a bus cycle. Data is driven if the
cycle is a write, or data is expected if the cycle is a read. RDY # and BRDY #
are sampled.

T1b First clock cycle of a restarted bus cycle. Valid address and status are driven
and ADS # is asserted.

Tb Second and subsequent clock cycles of an aborted bus cycle.

127

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

7.2.14 FLOATING POINT ERROR HANDLING -

The Intel486 Microprocessor provides two options
for reporting floating point errors. The simplest
method is to raise interrupt 16 whenever an un-
masked floating point error occurs. This option may
be enabled by setting the NE bit in control register 0
(CRO).

The Intel486 Microprocessor also provides the op-
tion of allowing external hardware to determine how
floating point errors are reported. This option is nec-
essary for compatibility with the error reporting
scheme used in DOS based systems. The NE bit
must be cleared in CRO to enable user-defined error
reporting. User-defined error reporting is the default
condition because the NE bit is cleared on reset.

Two pins, floating point error (FERR#) and ignore
numeric error (IGNNE#), are provided to direct the
actions of hardware if user-defined error reporting is
used. The Intel486 Microprocessor asserts the
FERR# output to indicate that a floating point error
has occurred. FERR # corresponds to the ERROR #
pin on the 387 math coprocessor. However, there is
a difference in the behavior of the two.

In some cases FERR# is asserted when the next
floating point instruction is encountered and in other
cases it is asserted before the next floating point
instruction is encountered depending upon the exe-
cution state of the instruction causing the exception.

The following class of floating point exceptions drive
FERR# at the time the exception occurs (i.e., before
encountering the next floating point instruction).

1. The stack fault, invalid operation, and denormal
exceptions on all transcendental instructions, in-
teger arithmetic instructions, FSQRT, FSEALE,
FPREM(1), FXTRACT, FBLD, and FBSTP.

. Any exceptions on store instructions (including
integer store instructions).

The following class of floating point exceptions drive
FERR# only after encountering the next floating
point instruction.

1. Exceptions other than on all transcendental in-
structions, integer arithmetic instructions,
FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD,
and FBSTP.

. Any exception on all basic arithmetic, load, com-
pare, and control instructions (i.e., all other in-
structions).

For both sets of exceptions above, the 387 Math
Coprocessor asserts ERROR# when the error oc-
curs and does not wait for the next floating point
instruction to be encountered.

IGNNE# is an input to the Intel486 Microprocessor.

128

When the NE bit in CRO is cleared, and IGNNE # is
asserted, the Intel486 Microprocessor will ignore a
user floating point error and continue executing
floating point instructions. When IGNNE # is negat-
ed, the Intel486 Microprocessor will freeze on float-
ing point instructions which get errors (except for the
control instructions FNCLEX, FNINIT, FNSAVE,
FNSTENV, FNSTCW, FNSTSW, FNSTSW AX, FNE-
NI, FNDISI and FNSETPM). IGNNE # may be asyn-
chronous to the Intel486 clock.

In systems with user-defined error reporting, the
FERR# pin is connected to the interrupt controller.
When an unmasked floating point error occurs, an
interrupt is raised. If IGNNE# is high at the time of
this interrupt, the Intel486 Microprocessor will freeze
(disallowing execution of a subsequent floating point
instruction) until the interrupt handler is invoked. By
driving the IGNNE# pin low (when clearing the inter-
rupt request), the interrupt handler can allow execu-
tion of a floating point instruction, within the interrupt
handler, before the error condition is cleared (by
FNCLEX, FNINIT, FNSAVE or FNSTENV). If execu-
tion of a non-control floating point instruction, within
the floating point interrupt handler, is not needed,
the IGNNE# pin can be tied HIGH.

7.2.15 FLOATING POINT ERROR HANDLING IN
AT COMPATIBLE SYSTEMS

The Intel486 DX Microprocessor provides special
features to allow the implementation of an AT com-
patible numerics error reporting scheme. These fea-
tures DO NOT replace the external circuit. Logic is
still required that decodes the OUT FO instruction
and latches the FERR# signal. What follows is a
description of the use of these Intel486 DX Micro-
processor features.

The features provided by the Intel486 DX Microproc-
essor are the NE bit in the Machine Status Register,
the IGNNE # pin, and the FERR# pin.

The NE bit determines the action taken by the In-
tel486 DX Microprocessor when a numerics error is
detected. When set this bit signals that non-DOS
compatible error handling will be implemented. In
this mode the Intel486 DX Microprocessor takes a
software exception (16) if a numerics error is detect-
ed.

If the NE bit is reset the Intel486 DX Microprocessor
uses the IGNNE # pin to allow an external circuit to
control the time at which non-control numerics in-
structions are allowed to execute. Note that floating
point control instructions such as FNINIT and
FNSAVE can be executed during a floating point er-
ror condition regardless of the state of IGNNE #.

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

To process a floating point error in the DOS environ-
ment the following sequence must take place:

1. The error is detected by the Intel486 DX Micro-
processor which activates the FERR# pin.

FERR # is latched so that it can be cleared by the
OUT FO instruction.

. The latched FERR# signal activates an interrupt
at the interrupt controller. This interrupt is usually
handled on IRQ13.

. The Interrupt Service Routine (ISR) handles the
error and then clears the interrupt by executing an
OUT instruction to port FO. The address FO is de-
coded externally to clear the FERR# latch. The
IGNNE# signal is also activated by the decoder
output.

. Usually the ISR then executes an FNINIT instruc-
tion or other control instruction before restarting
the program. FNINIT clears the FERR # output.

2.

Figure 7.31 illustrates the circuit required to perform
this function. Note that this circuit has not been test-
ed. ltis included as an example of the required error
handling logic.

Note that the IGNNE# input allows non-control in-
structions to be executed prior to the time the
FERR# signal is reset by the Intel486 DX Micro-
processor. This function is implemented to allow ex-
act compatibility with the AT implementation. Most
programs reinitialize the floating point unit before
continuing after an error is detected. The floating
point unit can be reinitialized using one of the follow-
ing four instructions: FCLEX, FINIT, FSAVE,
FSTENV.

RESET

1/0 PORT FO
Address decoder

F 3

y

Processor Bus

-~

A

J, 5V
CLR J
Q D
< 94 FERR#
Q
PR
L 5V
g sv Intel486™ DX
CLR -J Microprocessor
Q D
J——
Q
—_—) PR
— 8259A 'l sv
—_— N Programmable
Interrupt IGNNE#
IRQ13 Controller
e INTR

240440-95

Figure 7.31. DOS Compatible Numerics Error Circuit

129

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

8.0 Intel486 CPU TESTABILITY

Testing the Intel486 Microprocessor can be divided
into three categories: Built-In Self Test (BIST),
Boundary Scan, and external testing. BIST performs
basic device testing on the Intel486 CPU, including
the non-random logic, control ROM (CROM), trans-
lation lookaside buffer (TLB), and on-chip cache
memory. Boundary Scan provides additional test
hooks that conform to the |IEEE Standard Test Ac-
cess Port and Boundary Scan Architecture (IEEE
Std.1149.1). The Intel486 Microprocessor also has a
test mode in which all of its outputs are tristated.
Additional testing can be performed by using the test
registers within the Intel486 CPU.

8.1 Built-In Self Test (BIST)

The BIST is initiated by asserting AHOLD (address
hold) on the falling edge of RESET. AHOLD is a
synchronous signal only. It should be asserted in the
clock prior to RESET going from High to Low to start
BIST. FLUSH# must also be asserted (driven low)
prior to the falling edge of RESET to start BIST.
FLUSH# must be deasserted (driven high) during
BIST. A20M# must be deasserted (driven high) dur-
ing the falling edge of RESET to start BIST. The
BIST takes approximately 2**20 clocks, or approxi-
mately 42 milliseconds with a 25 MHz Intel486 mi-
croprocessor. No bus cycles will be run by the In-
tel486 Microprocessor until the BIST is concluded.
Note that for the Intel486 Microprocessor the RE-
SET must be active for 15 clocks with or without
BIST being enabled for warm resets.

The results of BIST is stored in the EAX register.
The Inteld86 Microprocessor has successfully-
passed the BIST if the contents of the EAX register
are zero. If the results in EAX are not zero then the
BIST has detected a flaw in the microprocessor. The

microprocessor performs reset and begins normal
operation at the completion of the BIST.

The non-random logic, control ROM, on-chip cache
and translation lookaside buffer (TLB) are tested
during the BIST.

The cache portion of the BIST verifies that the
cache is functional and that it is possible to read and
write to the cache. The BIST manipulates test regis-
ters TR3, TR4 and TR5 while testing the cache.
These test registers are described in Section 8.2.

The cache testing algorithm writes a value to each
cache entry, reads the value back, and checks that
the correct value was read back. The algorithm may
be repeated more than once for each of the 512
cache entries using different constants.

The TLB portion of the BIST verifies that the TLB is
functional and that it is possible to read and write to
the TLB. The BIST manipulates test registers TR6
and TR7 while testing the TLB. TR6 and TR7 are
described in Section 8.3.

8.2 On-Chip Cache Testing

The on-chip cache testability hooks are designed to
be accessible during the BIST and for assembly lan-
guage testing of the cache.

The Intel486 Microprocessor contains a cache fill
buffer and a cache read buffer. For testability writes,
data must be written to the cache fill buffer before it
can be written to a location in the cache. Data must
be read from a cache location into the cache read
buffer before the microprocessor can access the
data. The cache fill and cache read buffer are both
128 bits wide.

31

DATA

TR3
Cache Data
Test Register

31

1

10 9 8 7 6 5 4 3

s

=

¢ = unused

LRU Bits Valid Bits R4
Tag Valid| (used only (used only che Status
uring reads)| during reads) est Register
31 11 10 4 3 2 1 0
TR5
Set Select Entry [Control |Cache Control
Select Test Register

Figure 8.1. Cache Test Registers

130

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

8.2.1 CACHE TESTING REGISTERS TR3, TR4
AND TR5

Figure 8.1 shows the three cache testing registers:
the Cache Data Test Register (TR3), the Cache
Status Test Register (TR4) and the Cache Control
Test Register (TR5). External access to these regis-
ters is provided through MOV reg,TREG and MOV
TREG, reg instructions.

Cache Data Test Register: TR3

The cache fill buffer and the cache read buffer can
only be accessed through TR3. Data to be written to
the cache fill buffer must first be written to TR3. Data
read from the cache read buffer must be loaded into
TR3.

TR3 is 32 bits wide while the cache fill and read
buffers are 128 bits wide. 32 bits of data must be
written to TR3 four times to fill the cache fill buffer.
32 bits of data must be read from TR3 four times to
empty the cache read buffer. The entry select bits in
TR5 determine which 32 bits of data TR3 will access
in the buffers.

Cache Status Test Register: TR4

TR4 handles tag, LRU and valid bit information dur-
ing cache tests. TR4 must be loaded with a tag and
a valid bit before a write to the cache. After a read
from a cache entry, TR4 contains the tag and valid
bit from that entry, and the LRU bits and four valid
bits from the accessed set.

Cache Control Test Register: TR5
TR5 specifies which testability operation will be per-

formed and the set and entry within the set which
will be accessed.

The seven bit set select field determines which of
the 128 sets will be accessed.

The functionality of the two entry select bits depend
on the state of the control bits. When the fill or read
buffers are being accessed, the entry select bits
point to the 32-bit location in the buffer being ac-
cessed. When a cache location is specified, the en-
try select bits point to one of the four entries in a set.
Refer to Table 8.1.

Five testability functions can be performed on the
cache. The two control bits in TR5 specify the oper-
ation to be executed. The five operations are:

1. Write cache fill buffer

. Perform a cache testability write
. Perform a cache testability read
. Read the cache read buffer

. Perform a cache flush

o~ ON

Table 8.1 shows the encoding of the two control bits
in TR5 for the cache testability functions. Table 8.1
also shows the functionality of the entry and set se-
lect bits for each control operation.

The cache tests attempt to use as much of the nor-
mal operating circuitry as possible. Therefore when
cache tests are being performed, the cache must be
disabled (the CD and NW bits in control register
must be set to 1 to disable the cache. See Section
5).

8.2.2 CACHE TESTABILITY WRITE

A testability write to the cache is a two step process.
First the cache fill buffer must be loaded with 128
bits of data and TR4 loaded with the tag and valid
bit. Next the contents of the fill buffer are written to a
cache location. Sample assembly code to do a write
is given in Figure 8.2.

Table 8.1. Cache Control Bit Encoding and Effect of
Control Bits on Entry Select and Set Select Functionality

Control Bits Operation Entrz Selﬁct Bits Set Select Bits
Bit1 | Bit0 unction
0 0 Enable { Fill Buffer Write Select 32-bit location in fill/read _
Read Buffer Read | buffer
0 Perform Cache Write Select an entry in set. Select a set to write to
0 Perform Cache Read Select an entry in set. Select a set to read from
1 1 Perform Flush Cache —_ —

131

intel.

Intel486™ DX MICROPROCESSOR PRELIMINARY

mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

wo wo we

mov

ws wo we

mov
mov

.
.
’
.
’
.
’
.
’

mov
mov

wo we weo

mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

.o wo we

mov

Sample Assembly Code
An example assembly language sequence to perform a cache write is:
; eax. ebx. ecx. edx contain the cache line to write
; edi contains the tag information to load
;s CRO already says to enable reads/write to TR5
H

£ill the cache buffer

esi,0

tr5,esi
tr3,eax
esi,4

tr5,esi
tr3,ebx
esi,8

tr5,esi
tr3,ecx
esi,Och
tr5,esi
tr3,edx

load the Cache Status Register

tr4,edi

perform the cache write

esi,l
tr5,esi

An example assembly language sequence to perform a cache read is:
data into eax, ebx, ecx, edx; status into edi

read the cache line back

esi,2
tr5,esi

read the data from

esi,0

tr5,esi
eax,trd
esi,4

tr5,esi
ebx,trd
esi,8

tr5,esi
ecx,trd
esi,Och
tr5,esi
edx,trd

read the status from TR4

edi,tr4

; set up command
;s load to TR5
; load data into cache fill buffer

; load 21-bit tag and valid bit

;s write the cache (set 0, entry 0)

;s do cache testability read (set 0, entry 0)

the read buffer

Figure 8.2 Sample Assembly Code for Cache Testing

132

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Loading the fill buffer is accomplished by first writing
to the entry select bits in TR5 and setting the control
bits in TR5 to 00. The entry select bits identify one of
four 32-bit locations in the cache fill buffer to put 32
bits of data. Following the write to TR5, TR3 is writ-
ten with 32 bits of data which are immediately
placed in the cache fill buffer. Writing to TR3 initiates
the write to the cache fill buffer. The cache fill buffer
is loaded with 128 bits of data by writing to TR5 and
TR3 four times using a different entry select location
each time.

TR4 must be loaded with the 21-bit tag and valid bit
(bit 10 in TR4) before the contents of the fill buffer
are written to a cache location.

The contents of the cache fill buffer are written to a
cache location by writing TR5 with a control field of
01 along with the set select and entry select fields.
The set select and entry select field indicate the lo-
cation in the cache to be written. The normal cache
LRU update circuitry updates the internal LRU bits
for the selected set.

Note that a cache testability write can only be done
when the cache is disabled for replaces (the CD bit
is control register 0 is reset to 1). Also note that care
must be taken when directly writing to entries in the
cache. If the entry is set to overlap an area of mem-
ory that is being used in external memory, that
cache entry could inadvertently be used instead of
the external memory. Of course, this is exactly the
type of operation that one would desire if the cache
were to be used as a high speed RAM.

8.2.3 CACHE TESTABILITY READ

A cache testability read is a two step process. First
the contents of the cache location are read into the
cache read buffer. Next the data is examined by
reading it out of the read buffer. Sample assembly
code to do a testability read is given in Figure 8.2.

Reading the contents of a cache location into the
cache read buffer is initiated by writing TR5 with the
control bits set to 10 and the desired seven-bit set
select and two-bit entry select. In response to the
write to TR5, TR4 is loaded with the 21-bit tag field
and the single valid bit from the cache entry read.
TR4 is also loaded with the three LRU bits and four
valid bits corresponding to the cache set that was
accessed. The cache read buffer is filled with the
128-bit value which was found in the data array at
the specified location.

The contents of the read buffer are examined by
performing four reads of TR3. Before reading TR3
the entry select bits in TR5 must loaded to indicate
which of the four 32-bit words in the read buffer to

133

transfer into TR3 and the control bits in TR5 must be
loaded with 00. The register read of TR3 will initiate
the transfer of the 32-bit value from the read buffer
to the specified general purpose register.

Note that it is very important that the entire 128-bit
quantity from the read buffer and also the informa-
tion from TR4 be read before any memory refer-
ences are allowed to occur. If memory operations
are allowed to happen, the contents of the read buff-
er will be corrupted. This is because the testability
operations use hardware that is used in normal
memory accesses for the Intel486 microprocessor
whether the cache is enabled or not.

8.2.4 FLUSH CACHE

The control bits in TR5 must be written with 11 to
flush the cache. None of the other bits in TR5 have
any meaning when 11 is written to the control bits.
Flushing the cache will reset the LRU bits and the
valid bits to 0, but will not change the cache tag or
data arrays.

When the cache is flushed by writing to TR5 the
special bus cycle indicating a cache flush to the ex-
ternal system is not run (see Section 7.2.11, Special
Bus Cycles). The cache should be flushed with the
instruction INVD (Invalidate Data Cache) instruction
or the WBINVD (Write-back and Invalidate Data
Cache) instruction.

8.3 Translation Lookaside Buffer
(TLB) Testing

The Intel486 Microprocessor TLB testability hooks
are similar to those in the 386 Microprocessor. The
testability hooks have been enhanced to provide
added test features and to include new features in
the Intel486 Microprocessor. The TLB testability
hooks are designed to be accessible during the
BIST and for assembly language testing of the TLB.

8.3.1 TRANSLATION LOOKASIDE BUFFER
ORGANIZATION

The Intel486 Microprocessors TLB is 4-way set as-
sociative and has space for 32 entries. The TLB is
logically split into three blocks shown in Figure 8.3.

The data block is physically split into four arrays,
each with space for eight entries. An entry in the
data block is 22 bits wide containing a 20-bit physi-
cal address and two bits for the page attributes. The
page attributes are the PCD (page cache disable) bit
and the PWT (page write-through) bit. Refer to Sec-
tion 4.5.4 for a discussion of the PCD and PWT bits.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Tag Page
17 Bits Protection
8 Tags Bits
4 Bits

Physical Page
Address Attributes
20 Bits 2 Bits 8 Entries

LRU
Bits

T

8
Entries

240440-43

Figure 8.3. TLB Organization

The tag block is also split into four arrays, one for
each of the data arrays. A tag entry is 21 bits wide
containing a 17-bit linear address and four protec-
tion bits. The protection bits are valid (V), user/su-
pervisor (U/S), read/write (R/W) and dirty (D).

The third block contains eight three bit quantities
used in the pseudo least recently used (LRU) re-
placement algorithm. These bits are called the LRU
bits. The LRU replacement algorithm used in the

TLB is the same as used by the on-chip cache. For a
description of this algorithm refer to Section 5.5.

8.3.2 TLB TEST REGISTERS TR6 AND TR7

The two TLB test registers are shown in Figure 8.4.
TR6 is the command test register and TR7 is the
data test register. External access to these registers
is provided through MOV reg, TREG and MOV
TREG;,reg instructions.

31

12 1

Linear Address

10 9 8 7 6 5 4 1 0
TR6
vV|D TLB Command
Test Register

31

11 10 9 8

Physical Address

PCD[PWT| L2 |L1| LO
LRU Bits

¢ = unused

Replacement Pointer Select (Writes)

Replacement Pointer (Writes)

Hit Indication (Lookup) Hit Location (Lookup)

Figure 8.4. TLB Test Registers

134

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Command Test Register: TR6

TR6 contains the tag information and control infor-
mation used in a TLB test. Loading TR6 with tag and
control information initiates a TLB write or lookup
test. :

TR6 contains three bit fields, a 20-bit linear address
(bits 12-31), seven bits for the TLB tag protection
bits (bits 5-11) and one bit (bit 0) to define the type
of operation to be performed on the TLB.

The 20-bit linear address forms the tag information
used in the TLB access. The lower three bits of the
linear address select which of the eight sets are ac-
cessed. The upper 17 bits of the linear address form
the tag stored in the tag array.

The seven TLB tag protection bits are described be-
low.

(e

V: The valid bit for this TLB entry
D,D#: The dirty bit for/from the TLB entry

U,U#: The user/supervisor bit for/from the TLB
entry

W,W#: The read/write bit for/from the TLB entry

Two bits are used to represent the D, U/S and R/W
bits in the TLB tag to permit the option of a forced
miss or hit during a TLB lookup operation. The
forced miss or hit will occur regardless of the state
of the actual bit in the TLB. The meaning of these
pairs of bits is given in Table 8.2.

The operation bit in TR6 determines if the TLB test
operation will be a write or a lookup. The function of
the operation bit is given in Table 8.3.

Table 8.3. TR6 Operation Bit Encoding

test write, TR7 contains the physical address and
the page attribute bits to be stored in the entry. After
a TLB test lookup hit, TR7 contains the physical ad-
dress, page attributes, LRU bits and entry location
from the access.

TR7 contains a 20-bit physical address (bits 12-31),
two bits for PCD (bit 11) and PWT (bit 10) and three
bits for the LRU bits (bits 7-9). The LRU bits in TR7
are only used during a TLB lookup test. The func-
tionality of TR7 bit 4 differs for TLB writes and look-
ups. The encoding of bit 4 is defined in Tables 8.4
and 8.5. Finally TR7 contains two bits (bits 2-3) to
specify a TLB replacement pointer or the location of
a TLB hit.

Table 8.4. Encoding of Bit 4 of TR7 on Writes

TR? Replacement Pointer
Bit4 Used on TLB Write
0 Pseudo-LRU Replacement Pointer
1 Data Test Register Bits 3:2
Table 8.5. Encoding of Bit 4 of TR7 on Lookups
TR7 Meaning after TLB
Bit 4 Lookup Operation
0 TLB Lookup Resuited in a Miss
1 TLB Lookup Resulted in a Hit

TR6 TLB Operation
Bit0 to Be Performed
0 TLB Write
1 TLB Lookup

Data Test Register: TR7

TR7 contains the information stored or read from the
data block during a TLB test operation. Before a TLB

A replacement pointer is used during a TLB write.
The pointer indicates which of the four entries in an
accessed set is to be written. The replacement
pointer can be specified to be the internal LRU bits
or bits 2-3 in TR7. The source of the replacement
pointer is specified by TR7 bit 4. The encoding of bit
4 during a write is given by Table 8.4.

Note that both testability writes and lookups affect
the state of the internal LRU bits regardless of the
replacement pointer used. All TLB write operations
(testability or normal operation) cause the written
entry to become the most recently used. For exam-
ple, during a testability write with the replacement
pointer specified by TR7 bits 2-3, the indicated en-
try is written and that entry becomes the most re-
cently used as specified by the internal LRU bits.

Table 8.2. Meaning of a Pair of TR6 Protection Bits

‘TR6 Protection Bit TR6 Protection Bit # Meaning on Meaning on
(B)- (B#) TLB Write Operation TLB Lookup Operation
0 0 Undefined Miss any TLB TAG Bit B
0 1 Write 0 to TLB TAG Bit B Match TLB TAG Bit B if 0
1 0 Write 1 to TLB TAG Bit B Match TLB TAG Bit B if 1
1 1 Undefined Match any TLB TAG Bit B

135

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

There are two TLB testing operations: write entries
into the TLB, and perform TLB lookups. One major
enhancement over TLB testing in the 386 Micro-
processor is that paging need not be disabled while
executing testability writes or lookups.

Note that any time one TLB set contains the same
linear address in more than one of its entries, look-
ing up that linear address will not result in a hit.
Therefore a single linear address should not be writ-
ten to one TLB set more than once.

8.3.3 TLB WRITE TEST

To perform a TLB write TR7 must be loaded fol-
lowed by a TR6 load. The register operations must
be performed in this order since the TLB operation is
triggered by the write to TR6.

TR7 is loaded with a 20-bit physical address and
values for PCD and PWT to be written to the data
portion of the TLB. In addition, bit 4 of TR7 must be
loaded to indicate whether to use TR7 bits 3-2 or the
internal LRU bits as the replacement pointer on the
TLB write operation. Note that the LRU bits in TR7
are not used in a write test.

TR6 must be written to initiate the TLB write opera-
tion. Bit 0 in TR6 must be reset to zero to indicate a
TLB write. The 20-bit linear address and the seven
page protection bits must also be written in TR6 to
specify the tag portion of the TLB entry. Note that
the three least significant bits of the linear address
specify which of the eight sets in the data block will
be loaded with the physical address data. Thus only
17 of the linear address bits are stored in the tag
array.

8.3.4 TLB LOOKUP TEST

To perform a TLB lookup it is only necessary to write
the proper tags and control information into TR6. Bit
0in TR6 must be set to 1 to indicate a TLB lookup.
TR6 must be loaded with a 20-bit linear address and
the seven protection bits. To force misses and
matches of the individual protection bits on TLB
lookups, set the seven protection bits as specified in
Table 8.2.

A TLB lookup operation is initiated by the write to
TR6. TR7 will indicate the result of the lookup opera-
tion following the write to TR6. The hit/miss indica-
tion can be found in TR7 bit 4 (see Table 8.5).

TR7 will contain the following information if bit 4 indi-
cated that the lookup test resulted in a hit. Bits 2-3
will indicate in which set the match occurred. The 22
most significant bits in TR7 will contain the physical
address and page attributes contained in the entry.

136

Bits 9-7 will contain the LRU bits associated with
the accessed set. The state of the LRU bits is previ-
ous to their being updated for the current lookup.

If bit 4 in TR7 indicated that the lookup test resulted
in a miss the remaining bits in TR7 are undefined.

Again it should be noted that a TLB testability lookup
operation affects the state of the LRU bits. The LRU
bits will be updated if a hit occurred. The entry which
was hit will become the most recently used.

8.4 Tristate Output Test Mode

The Intel486 Microprocessor provides the ability to
float all its outputs and bidirectional pins. This in-
cludes all pins floated during bus hold as well as
pins which are never floated in normal operation of
the chip (HLDA, BREQ, FERR# and PCHK#).
When the Intel486 microprocessor is in the tri-state
output test mode external testing can be used to test
board connections.

The tri-state test mode is invoked by driving
FLUSH# low for 2 clocks before and 2 clocks after
RESET going low. The outputs are guaranteed to tri-
state no later than 10 clocks after RESET goes low
(see Figure 6.4). The Intel486 Microprocessor re-
mains in the tristate test mode until the next RESET.

8.5 Intel486™ Microprocessor
Boundary Scan (JTAG)

The Intel486 Microprocessor (50 MHz version only)
provides additional testability features compatible
with the IEEE Standard Test Access Port and
Boundary Scan Architecture (IEEE Std.1149.1). The
test logic provided allows for testing to insure that
components function correctly, that interconnec-
tions between various components are correct, and
that various components interact correctly on the
printed circuit board.

The boundary scan test logic consists of a boundary
scan register and support logic that are accessed
through a test access port (TAP). The TAP provides
a simple serial interface that makes it possible to
test all signal traces with only a few probes.

The TAP can be controlled via a bus master. The
bus master can be either automatic test equipment
or a component (PLD) that interfaces to the four-pin
test bus.

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

8.5.1 BOUNDARY SCAN ARCHITECTURE

The boundary scan test logic contains the following
elements:

— Test access port (TAP), consisting of input pins
TMS, TCK, and TDI; and output pin TDO.

— TAP controller, which interprets the inputs on the
test mode select (TMS) line and performs the
corresponding operation. The operations per-
formed by the TAP include controlling the in-
struction and data registers within the compo-
nent.

Instruction register (IR), which accepts instruc-
tion codes shifted into the test logic on the test
data input (TDI) pin. The instruction codes are
used to select the specific test operation to be
performed or the test data register to be ac-
cessed.

Test data registers: The Intel486 Microprocessor
contains three test data registers: Bypass regis-
ter (BPR), Device ldentification register (DID),
and Boundary Scan register (BSR).

The instruction and test data registers are separate
shift-register paths connected in parallel and have a
common serial data input and a common serial data
output connected to the TAP signals, TDI and TDO,
respectively.

8.5.2 DATA REGISTERS

The Intel486 CPU contains the two required test
data registers; bypass register and boundary scan
register. In addition, they also have a device identifi-
cation register.

Each test data register is serially connected to TDI
and TDO, with TDI connected to the most significant
bit and TDO connected to the least significant bit of
the test data register. Data is shifted one stage (bit
position within the register) on each rising edge of
the test clock (TCK).

In addition the Intel486 CPU contains a runbist regis-
ter to support the RUNBIST boundary scan instruc-
tion.

8.5.2.1 Bypass Register

The Bypass Register is a one-bit shift register that
provides the minimal length path between TDI and
TDO. This path can be selected when no test opera-
tion is being performed by the component to allow
rapid movement of test data to and from other com-
ponents on the board. While the bypass register is
selected, data is transferred from TDI to TDO with-
out inversion.

8.5.2.2 Boundary Scan Register

The Boundary Scan Register is a single shift register
path containing the boundary scan cells that are
connected to all input and output pins of the Intel486
CPU. Figure 8.1 shows the logical structure of the
boundary scan register. While output cells determine
the value of the signal driven on the corresponding
pin, input cells only capture data; they do not affect
the normal operation of the device. Data is trans-
ferred without inversion from TDI to TDO through the
boundary scan register during scanning. The bound-
ary scan register can be operated by the EXTEST
and SAMPLE instructions. The boundary scan regis-
ter order is described in Section 8.5.5.

SYSTEM
LOGIC
INPUT

A 4

TCK

SYSTEM
LOGIC

240440-88

Figure 8.1. Logical Structure of Boundary Scan Register

137

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

8.5.2.3 Device Identification Register

The Device Identification Register contains the man-
ufacturer’s identification code, part number code,
and version code in the format shown in Figure 8.2.
Table 8.1 lists the codes corresponding to the In-
tel486 CPU.

8.5.2.4 Runbist Register

The Runbist Register is a one bit register used to
report the results of the Intel486 CPU BIST when it
is initiated by the RUNBIST instruction. This register
is loaded with a ““1” prior to invoking the BIST and is
loaded with “0”" upon successful completion.

8.5.3 INSTRUCTION REGISTER

The Instruction Register (IR) allows instructions to
be serially shifted into the device. The instruction
selects the particular test to be performed, the test
data register to be accessed, or both. The instruc-

tion register is four (4) bits wide. The most significant
bit is connected to TDI and the least significant bit is
connected to TDO. There are no parity bits associat-
ed with the Instruction register. Upon entering the
Capture-IR TAP controller state, the Instruction reg-
ister is loaded with the default instruction “0001”,
SAMPLE/PRELOAD. Instructions are shifted into
the instruction register on the rising edge of TCK
while the TAP controller is in the Shift-IR state.

8.5.3.1 Intel486 CPU Boundary Scan
Instruction Set

The Intel486 CPU supports all three mandatory
boundary scan instructions (BYPASS, SAMPLE/
PRELOAD, and EXTEST) along with two optional in-
structions (IDCODE and RUNBIST). Table 8.2 lists
the Intel486 CPU boundary scan instruction codes.
The instructions listed as PRIVATE cause TDO to
become enabled in the Shift-DR state and cause
“0” to be shifted out of TDO on the rising edge of
TCK. Execution of the PRIVATE instructions will not
cause hazardous operation of the Intel486 CPU.

313029 28/27 26 2524 2322 2120 19 18 17 16 15 14 13 15 1110 9 8 7 6 5 4 3 2 1/0
MANUFACTURER
VERSION PART NUMBER IDENTITY 1
240440-89
Figure 8.2. Format of Device Identification Register
Table 8.1

Component Code Version Code Part Number Code Manufacturer Identity
Intel486 CPU (Ax) 00h 0410h 0%h
Intel486 CPU (Bx) 00h 0411h 09h

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 8.2
Instruction Code Instruction Name
0000 EXTEST
0001 SAMPLE
0010 IDCODE
0011 PRIVATE
0100 PRIVATE
0101 PRIVATE
0110 PRIVATE
0111 PRIVATE
1000 RUNBIST
1001 PRIVATE
1010 PRIVATE
1011 PRIVATE
1100 PRIVATE
1101 PRIVATE
1110 PRIVATE
1111 BYPASS
EXTEST The instruction code is ““0000". The EX-
TEST instruction allows testing of cir-
cuitry external to the component pack-
age, typically board interconnects. It
does so by driving the values loaded
into the Intel486 CPU’s boundary scan
register out on the output pins corre-
sponding to each boundary scan cell
and capturing the values on Intel486
CPU input pins to be loaded into their
corresponding boundary scan register
locations. 1/0 pins are selected as input
or output, depending on the value load-
ed into their control setting locations in
the boundary scan register. Values
shifted into input latches in the bounda-
ry scan register are never used by the
internal logic of the Intel486 CPU.
NOTE:
After using the EXTEST instruction, the
Intel486 CPU must be reset before nor-
mal (non-boundary scan) use.
SAMPLE/ The instruction code is “0001”. The
PRELOAD SAMPLE/PRELOAD has two functions

that it performs. When the TAP control-
ler is in the Capture-DR state, the SAM-
PLE/PRELOAD instruction allows a
“snap-shot” of the normal operation of

139

IDCODE

BYPASS

RUNBIST

the component without interfering with
that normal operation. The instruction
causes boundary scan register cells as-
sociated with outputs to sample the val-
ue being driven by the Intel486 CPU. It
causes the cells associated with inputs
to sample the value being driven into
the Intel486 CPU. On both outputs and
inputs the sampling occurs on the rising
edge of TCK. When the TAP controller
is in the Update-DR state, the SAM-
PLE/PRELOAD instruction preloads
data to the device pins to be driven to
the board by executing the EXTEST in-
struction. Data is preloaded to the pins
from the boundary scan register on the
falling edge of TCK.

The instruction code is “0010". The ID-
CODE instruction selects the device
identification register to be connected
to TDI and TDO, allowing the device
identification code to be shifted out of
the device on TDO. Note that the de-
vice identification register is not altered
by data being shifted in on TDI.

The instruction code is “1111”. The
BYPASS instruction selects the bypass
register to be connected to TDI or TDO,
effectively bypassing the test logic on
the Intel486 microprocessor by reduc-
ing the shift length of the device to one
bit. Note than an open circuit fault in the
board level test data path will cause the
bypass register to be selected following
an instruction scan cycle due to the
pull-up resistor on the TDI input. This
has been done to prevent any unwant-
ed interference with the proper opera-
tion of the system logic.

The instruction code is “1000”. The
RUNBIST instruction selects the one (1)
bit runbist register, loads a value of “1”
into the runbist register, and connects it
to TDO. It also initiates the built-in self
test (BIST) feature of the Intel486 CPU,
which is able to detect approximately
60% of the stuck-at faults on the In-
tel486 CPU. The Intel486 CPU AC/DC
Specifications for Vg and CLK must be
met and reset must have been asserted
at least once prior to executing the
RUNBIST boundary scan instruction.
After loading the RUNBIST instruction
code in the instruction register, the TAP
controller must be placed in the Run-
Test/Idle state. BIST begins on the first
rising edge of TCK after entering the
Run-Test/Idle state. The TAP con-

Intel486™ DX MICROPROCESSOR

PRELIMINARY

troller must remain in the Run-Test/Idle
state until BIST is completed. It requires
1.2 million clock (CLK) cycles to com-
plete BIST and report the result to the
runbist register. After completing the 1.2
million clock (CLK) cycles, the value in
the runbist register should be shifted
out on TDO during the Shift-DR state. A
value of “0” being shifted out on TDO
indicates BIST successfully completed.
A value of “1” indicates a failure oc-
curred. After executing the RUNBIST in-
struction, the Intel486 CPU must be re-
set prior to normal operation.

8.5.4 TEST ACCESS PORT (TAP)
CONTROLLER

The TAP controller is a synchronous, finite state ma-
chine. It controls the sequence of operations of the
test logic. The TAP controller changes state only in
response to the following events:

1. arising edge of TCK

2. power-up.

The value of the test mode state (TMS) input signal
at a rising edge of TCK controls the sequence of the
state changes. The state diagram for the TAP con-
troller is shown in Figure 8.3. Test designers must
consider the operation of the state machine in order
to design the correct sequence of values to drive on
TMS.

8.5.4.1 Test-Logic-Reset State

In this state, the test logic is disabled so that normal
operation of the device can continue unhindered.
This is achieved by initializing the instruction register
such that the IDCODE instruction is loaded. No mat-
ter what the original state of the controller, the con-
troller enters Test-Logic-Reset state when the TMS
input is held high (1) for at least five rising edges of
TCK. The controller remains in this state while TMS
is high. The TAP controller is also forced to enter
this state at power-up.

8.5.4.2 Run-Test/Idle State

A controller state between scan operations. Once in
this state, the controller remains in this state as long

‘ Test-Logic—Reset

I

Shift-

Select-DR~

Update-

Scan

I o I
I o I

Capture-DR

DR

Pause-DR

DR

Select=IR-Scan

Capture-IR

0 0

>
>

Shift-IR

1
0

’ Pause-IR
1

1
0
1

Update-IR

1

o

0

v

240440-90

Figure 8.3. TAP Controller State Diagram

140

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

as TMS is held low. In devices supporting the
RUNBIST instruction, the BIST is performed during
this state and the result is reported in the runbist
register. For instruction not causing functions to exe-
cute during this state, no activity occurs in the test
logic. The instruction register and all test data regis-
ters retain their previous state. When TMS is high
and a rising edge is applied to TCK, the controller
moves to the Select-DR state.

8.5.4.3 Select-DR-Scan State

This is a temporary controller state. The test data
register selected by the current instruction retains its
previous state. If TMS is held low and a rising edge
is applied to TCK when in this state, the controller
moves into the Capture-DR state, and a scan se-
quence for the selected test data register is initiated.
If TMS is held high and a rising edge is applied to
TCK, the controller moves to the Select-IR-Scan
state.

The instruction does not change in this state.

8.5.4.4 Capture-DR State

In this state, the boundary scan register captures
input pin data if the current instruction is EXTEST or
SAMPLE/PRELOAD. The other test data registers,
which do not have parallel input, are not changed.

The instruction does not change in this state.

When the TAP controller is in this state and a rising
edge is applied to TCK, the controller enters the
Exit1-DR state if TMS is high or the Shift-DR state if
TMS is low.

8.5.4.5 Shift-DR State

In this controller state, the test data register con-
nected between TDI and TDO as a result of the cur-
rent instruction, shifts data one stage toward its seri-
al output on each rising edge of TCK.

The instruction does not change in this state.

When the TAP controller is in this state and a rising
edge is applied to TCK, the controller enters the
Exit1-DR state if TMS is high or remains in the Shift-
DR state if TMS is low.

8.5.4.6 Exit1-DR State
This is a temporary state. While in this state, if TMS

is held high, a rising edge applied to TCK causes the
controller to enter the Update-DR state, which termi-

141

nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controller enters
the Pause-DR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

8.5.4.7 Pause-Dr State

The pause state allows the test controller to tempo-
rarily halt the shifting of data through the test data
register in the serial path between TDI and TDO. An
example of using this state could be to allow a tester
to reload its pin memory from disk during application
of a long test sequence.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

The controller remains in this state as long as TMS
is low. When TMS goes high and a rising edge is
applied to TCK, the controller moves to the Exit2-DR
state.

8.5.4.8 Exit2-DR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controller to enter the Update-DR state, which termi-
nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controller enters
the Shift-DR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

8.5.4.9 Update-DR State

The boundary scan register is provided with a
latched parallel output to prevent changes at the
parallel output while data is shifted in response to
the EXTEST and SAMPLE/PRELOAD instructions.
When the TAP controller is in this state and the
boundary scan register is selected, data is latched
onto the parallel output of this register from the shift-
register path on the falling edge of TCK. The data
held at the latched parallel output does not change
other than in this state.

All shift-register stages in test data register selected
by the current instruction retains its previous value
during this state. The instruction does not change in
this state.

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

8.5.4.10 Select-IR-Scan State

This is a temporary controller state. The test data
register selected by the current instruction retains its
previous state. If TMS is held low and a rising edge
is applied to TCK when in this state, the controller
moves into the Capture-IR state, and a scan se-
quence for the instruction register is initiated. If TMS
is held high and a rising edge is applied to TCK, the
controller moves to the Test-Logic-Reset state.

The instruction does not change in this state.

8.5.4.11 Capture-IR State

In this controller state the shift register contained in
the instruction register loads the fixed value “0001”
on the rising edge of TCK.

The test data register selected by the current in-
struction retains it previous value during this state.
The instruction does not change in this state.

When the controller is in this state and a rising edge
is applied to TCK, the controller enters the Exit1-IR
state if TMS is held high, or the Shift-IR state if TMS
is held low.

8.5.4.12 Shift-IR State

In this state the shift register contained in the in-
struction register is connected between TDI and
TDO and shifts data one stage towards its serial out-
put on each rising edge of TCK.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

When the controller is in this state and a rising edge
is applied to TCK, the controller enters the Exit1-IR
state if TMS is held high, or remains in the Shift-IR
state if TMS is held low.

8.5.4.13 Exit1-IR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controller to enter the Update-IR state, which termi-
nates the scanning process. If TMS is held low and a

142

rising edge is applied to TCK, the controller enters
the Pause-IR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

8.5.4.14 Pause-IR State

The pause state allows the test controller to tempo-
rarily halt the shifting of data through the instruction
register.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

The controller remains in this state as long as TMS
is low. When TMS goes high and a rising edge is
applied to TCK, the controller moves to the Exit2-IR
state.

8.5.4.15 Exit2-IR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controller to enter the Update-IR state, which termi-
nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controller enters
the Shift-IR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

8.5.4.16 Update-IR State

The instruction shifted into the instruction register is
latched onto the parallel output from the shift-regis-
ter path on the falling edge of TCK. Once the new
instruction has been latched, it becomes the current
instruction.

Test data registers selected by the current instruc-
tion retain the previous value.

8.5.5 BOUNDARY SCAN REGISTER CELL
The boundary scan register contains a cell for each

pin, as well as cells for control of I/0 and tristate
pins.

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

The following is the bit order of the Intel486 CPU
boundary scan register: (from left to right and top to
bottom).

TDI — WRCTL ABUSCTL BUSCTL MISCCTL
ADS# BLAST# PLOCK# LOCK# PCHK#
BRDY # BOFF# BS16+# BS8# RDY# KEN#
HOLD AHOLD CLK HLDA WR+# BREQ BEO#
BE1# BE2# BE3# MIO# DC# PWT PCD
EADS# A20M# RESET FLUSH# INTR NMI
FERR# IGNNE# D31 D30 D29 D28 D27 D26
D25 D24 DP3 D23 D22 D21 D20 D19 D18 D17
D16 DP2 D15 D14 D13 D12 D11 D10 D9 D8
DP1 D7 D6 D5 D4 D3 D2 D1 DO DPO A31 A30
A29 A28 A27 A26 A25 A24 A23 A22 A21 A20
A19 A18 A17 A16 A15 A14 A13 A12 A11 A10
A9 A8 A7 A6 RESERVED A5 A4 A3
A2 — TDO

“RESERVED” corresponds to no connect “NC” sig-
nals on the Intel486 CPU.

143

All the *CTL cells are control cells that are used to
select the direction of bidirectional pins or tristate
output pins. If “1” is loaded into the control cell
(*CTL), the associated pin(s) are tristated or select-
ed as input. The following lists the control cells and
their corresponding pins.

1.
2.
3.

WRCTL controls the D31-0 and DP3-0 pins.
ABUSCTL controls the A31-A2 pins.

BUSCTL controls the ADS#, BLAST#,
PLOCK#, LOCK#, WR#, BEO#, BE1#, BE2#,
BE3#, MIO#, DC#, PWT, and PCD pins.

. MISCCTL controls the PCHK#, HLDA, BREQ,
and FERR# pins.

8.5.6 TAP CONTROLLER INITIALIZATION

The TAP controller is automatically initialized when a
device is powered up. In addifion, the TAP controller
can be initialized by applying a high signal level on
the TMS input for five TCK periods.

8.5.7 BOUNDARY SCAN DESCRIPTION
LANGUAGE (BSDL)

Available through Intel.

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

9.0 DEBUGGING SUPPORT

The Intel486 Microprocessor provides several fea-
tures which simplify the debugging process. The
three categories of on-chip debugging aids are:

1) the code execution breakpoint opcode (0CCH),

2) the single-step capability provided by the TF bit
in the flag register, and

3) the code and data breakpoint capability provided
by the Debug Registers DR0O-3, DR6, and DR7.

9.1 Breakpoint Instruction

A single-byte-opcode breakpoint instruction is avail-
able for use by software debuggers. The breakpoint
opcode is 0CCH, and generates an exception 3 trap
when executed. In typical use, a debugger program
can “plant” the breakpoint instruction at all desired
code execution breakpoints. The single-byte break-
point opcode is an alias for the two-byte general
software interrupt instruction, INT n, where n=3.
The only difference between INT 3 (OCCh) and INT n
is that INT 3 is never IOPL-sensitive but INT n is
IOPL-sensitive in Protected Mode and Virtual 8086
Mode.

9.2 Single-Step Trap

If the single-step flag (TF, bit 8) in the EFLAG regis-
ter is found to be set at the end of an instruction, a
single-step exception occurs. The single-step ex-
ception is auto vectored to exception number 1. Pre-
cisely, exception 1 occurs as a trap after the instruc-
tion following the instruction which set TF. In typical
practice, a debugger sets the TF bit of a flag register
image on the debugger’s stack. It then typically
transfers control to the user program and loads the
flag image with a signal instruction, the IRET instruc-
tion. The single-step trap occurs after executing one
instruction of the user program.

Since the exception 1 occurs as a trap (that is, it
occurs after the instruction has already executed),
the CS:EIP pushed onto the debugger’s stack points
to the next unexecuted instruction of the program
being debugged. An exception 1 handler, merely by
ending with an IRET instruction, can therefore effi-
ciently support single-stepping through a user pro-
gram.

9.3 Debug Registers

The Debug Registers are an advanced debugging
feature of the Intel486 Microprocessor. They allow
data access breakpoints as well as code execution
breakpoints. Since the breakpoints are indicated by

144

on-chip registers, an instruction execution break-
point can be placed in ROM code or in code shared
by several tasks, neither of which can be supported
by the INT3 breakpoint opcode.

The Intel486 Microprocessor contains six Debug
Registers, providing the ability to specify up to four
distinct breakpoints addresses, breakpoint control
options, and read breakpoint status. Initially after re-
set, breakpoints are in the disabled state. Therefore,
no breakpoints will occur unless the debug registers
are programmed. Breakpoints set up in the Debug
Registers are autovectored to exception number 1.

9.3.1 LINEAR ADDRESS BREAKPOINT
REGISTERS (DR0-DR3)

Up to four breakpoint addresses can be specified by
writing into Debug Registers DR0O-DR3, shown in
Figure 9.1. The breakpoint addresses specified are
32-bit linear addresses. Intel486 Microprocessor
hardware continuously compares the linear break-
point addresses in DRO-DR3 with the linear ad-
dresses generated by executing software (a linear
address is the result of computing the effective ad-
dress and adding the 32-bit segment base address).
Note that if paging is not enabled the linear address
equals the physical address. If paging is enabled,
the linear address is translated to a physical 32-bit
address by the on-chip paging unit. Regardless of
whether paging is enabled or not, however, the
breakpoint registers hold linear addresses.

9.3.2 DEBUG CONTROL REGISTER (DR7)

A Debug Control Register, DR7 shown in Figure 9.1,
allows several debug control functions such as en-
abling the breakpoints and setting up other control
options for the breakpoints. The fields within the De-
bug Control Register, DR7, are as follows:

LEN:i (breakpoint length specification bits)

A 2-bit LEN field exists for each of the four break-
points. LEN specifies the length of the associated
breakpoint field. The choices for data breakpoints
are: 1 byte, 2 bytes, and 4 bytes. Instruction execu-
tion breakpoints must have a length of 1 (LENi
00). Encoding of the LEN:i field is as follows:

Intel486™ DX MICROPROCESSOR

PRELIMINARY

31 16 15 0
BREAKPOINT 0 LINEAR ADDRESS DRO
BREAKPOINT 1 LINEAR ADDRESS DR1
BREAKPOINT 2 LINEAR ADDRESS DR2
BREAKPOINT 3 LINEAR ADDRESS DR3
Intgl reserved. Do not define. DR4
Intgl reserved. Do not define. DR5

. B(B|B l ~1+~/BiB|B|B
0 TSD000000,003210 DR6
LEN |R|W| LEN |R|W| LEN |R{W| LEN FKWO(‘)G0 0GLGLGLGLGL DR7
3 (33| 2 {22 1 111 0 (ofo D |E|E|{3|3]|2|2|1(1|0|0
31 16 15 0
NOTE:
0O indicates Intel reserved: Do not define; SEE SECTION 2.3.10
Figure 9.1. Debug Registers
Usage of Least DR2=00000005H; LEN2 = 00B
LENi Breakpoint Significant Bits in 31 Y
Encoding | Field Width Breakpoint Address
Register i, (i=0—3) 00000008H
00 1 byte All 32-bits used to bkpt fld2 00000004H
specify a single-byte .
breakpoint field. 00000000H
01 2 bytes A1-A31 used to specify
a two-byte, word- DR2=00000005H; LEN2 = 01B
aligned breakpoint field. 31 0
A0 in Breakpoint
Address Register is not
used. 00000008H
10 Undefined— < bkpt fld2 — |00000004H
do not use 00000000H
this encoding
11 4 bytes A2-A31 used to specify — X —
a four-byte, dword- DR2=00000005H; LEN2 = 11B
aligned breakpoint field. 31 0
AOQ and Al in
Breakpoint Address 00000008H
Register are not used.
<« Dbkptflda — 00000004H

The LEN:i field controls the size of breakpoint field i

by controlling whether all low-order linear address l ‘ ‘ 00000000H

bits in the breakpoint address register are used to

detect the breakpoint event. Therefore, all break-
point fields are aligned; 2-byte breakpoint fields be-
gin on Word boundaries, and 4-byte breakpoint
fields begin on Dword boundaries.

The following is an example of various size break-
point fields. Assume the breakpoint linear address in
DR2 is 00000005H. In that situation, the following
illustration indicates the region of the breakpoint
field for lengths of 1, 2, or 4 bytes.

145

RWi (memory access qualifier bits)

A 2-bit RW field exists for each of the four break-
points. The 2-bit RW field specifies the type of usage
which must occur in order to activate the associated
breakpoint.

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

RW Usage
Encoding Causing Breakpoint
00 Instruction execution only
01 Data writes only
10 Undefined—do not use this encoding
11 Data reads and writes only

RW encoding 00 is used to set up an instruction
execution breakpoint. RW encodings 01 or 11 are
used to set up write-only or read/write data break-
points.

Note that instruction execution breakpoints are
taken as faults (i.e., before the instruction exe-
cutes), but data breakpoints are taken as traps
(i.e., after the data transfer takes place).

Using LENi and RWi to Set Data Breakpoint i

A data breakpoint can be set up by writing the linear
address into DRi (i 0-3). For data breakpoints,
RWi can = 01 (write-only) or 11 (write/read). LEN
can = 00, 01, or 11.

If a data access entirely or partly falls within the data
breakpoint field, the data breakpoint condition has
occurred, and if the breakpoint is enabled, an excep-
tion 1 trap will occur.

Using LENi and RWi to Set Instruction Execution
Breakpoint i

An instruction execution breakpoint can be set up by
writing address of the beginning of the instruction
(including prefixes if any) into DRi (i 0-3). RWi
must = 00 and LEN must = 00 for instruction exe-
cution breakpoints.

If the instruction beginning at the breakpoint address
is about to be executed, the instruction execution
breakpoint condition has occurred, and if the break-
point is enabled, an exception 1 fault will occur be-
fore the instruction is executed.

Note that an instruction execution breakpoint ad-
dress must be equal to the beginning byte address
of an instruction (including prefixes) in order for the
instruction execution breakpoint to occur.

GD (Global Debug Register access detect)

The Debug Registers can only be accessed in Real
Mode or at privilege level 0 in Protected Mode. The
GD bit, when set, provides extra protection against
any Debug Register access even in Real Mode or at
privilege level 0 in Protected Mode. This additional
protection feature is provided to guarantee that a
software debugger can have full control over the De-

146

bug Register resources when required. The GD bit,
when set, causes an exception 1 fault if an instruc-
tion attempts to read or write any Debug Register.
The GD bit is then automatically cleared when the
exception 1 handler is invoked, allowing the excep-
tion 1 handler free access to the debug registers.

GE and LE (Exact data breakpoint match, global and
local)

The breakpoint mechanism of the Intel486 Micro-
processor differs from that of the 386. The Intel486
Microprocessor always does exact data breakpoint
matching, regardless of GE/LE bit settings. Any data
breakpoint trap will be reported exactly after comple-
tion of the instruction that caused the operand trans-
fer. Exact reporting is provided by forcing the In-
tel486 Microprocessor execution unit to wait for
completion of data operand transfers before begin-
ning execution of the next instruction.

When the Intel486 Microprocessor performs a task
switch, the LE bit is cleared. Thus, the LE bit sup-
ports fast task switching out of tasks, that have
enabled the exact data breakpoint match for their
task-local breakpoints. The LE bit is cleared by the
processor during a task switch, to avoid having ex-
act data breakpoint match enabled in the new task.
Note that exact data breakpoint match must be re-
enabled under software control.

The Intel486 Microprocessor GE bit is unaffected
during a task switch. The GE bit supports exact data
breakpoint match that is to remain enabled during all
tasks executing in the system.

Note that instruction execution breakpoints are al-
ways reported exactly.

Gi and Li (breakpoint enable, global and local)

If either Gi or Li is set then the associated breakpoint
(as defined by the linear address in DRi, the length
in LENi and the usage criteria in RWi) is enabled. If
either Gi or Li is set, and the Intel486 Microproces-
sor detects the ith breakpoint condition, then the ex-
ception 1 handler is invoked.

When the Intel486 Microprocessor performs a task
switch to a new Task State Segment (TSS), all Li
bits are cleared. Thus, the Li bits support fast task
switching out of tasks that use some task-local
breakpoint registers. The Li bits are cleared by the
processor during a task switch, to avoid spurious ex-
ceptions in the new task. Note that the breakpoints
must be re-enabled under software control.

All Intel486 Microprocessor Gi bits are unaffected
during a task switch. The Gi bits support breakpoints
that are active in all tasks executing in the system.

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

9.3.3 DEBUG STATUS REGISTER (DR6)

A Debug Status Register, DR6 shown in Figure 9.1, -

allows the exception 1 handler to easily determine
why it was invoked. Note the exception 1 handler
can be invoked as a result of one of several events:

1) DRO Breakpoint fault/trap.
2) DR1 Breakpoint fault/trap.
3) DR2 Breakpoint fault/trap.
4) DR3 Breakpoint fault/trap.
5) Single-step (TF) trap.

6) Task switch trap.

7) Fault due to attempted debug register access
when GD=1.

The Debug Status Register contains single-bit flags
for each of the possible events invoking exception 1.
Note below that some of these events are faults (ex-
ception taken before the instruction is executed),
while other events are traps (exception taken after
the debug events occurred).

The flags in DR6 are set by the hardware but never
cleared by hardware. Exception 1 handler software
should clear DR6 before returning to the user pro-
gram to avoid future confusion in identifying the
source of exception 1.

The fields within the Debug Status Register, DR6,
are as follows:

Bi (debug fault/trap due to breakpoint 0-3)

Four breakpoint indicator flags, BO-B3, correspond
one-to-one with the breakpoint registers in DRO-
DRa. A flag Bi is set when the condition described
by DRI, LENi, and RWi occurs.

If Gi or Li is set, and if the ith breakpoint is detected,
the processor will invoke the exception 1 handler.
The exception is handled as a fault if an instruction
execution breakpoint occurred, or as a trap if a data
breakpoint occurred.

147

IMPORTANT NOTE: A flag Bi is set whenever the
hardware detects a match condition on enabled
breakpoint i. Whenever a match is detected on at
least one enabled breakpoint i, the hardware imme-
diately sets all Bi bits corresponding to breakpoint
conditions matching at that instant, whether enabled
or not. Therefore, the exception 1 handler may see
that multiple Bi bits are set, but only set Bi bits corre-
sponding to enabled breakpoints (Li or Gi set) are
true indications of why the exception 1 handler was
invoked.

BD (debug fault due to attempted register access
when GD bit set)

This bit is set if the exception 1 handler was invoked
due to an instruction attempting to read or write to
the debug registers when GD bit was set. If such an
event occurs, then the GD bit is automatically
cleared when the exception 1 handler is invoked,
allowing handler access to the debug registers.

BS (debug trap due to single-step)

This bit is set if the exception 1 handler was invoked
due to the TF bit in the flag register being set (for
single-stepping).

BT (debug trap due to task switch)

This bit is set if the exception 1 handler was invoked
due to a task switch occurring to a task having a
Intel486 Microprocessor TSS with the T bit set. Note
the task switch into the new task occurs normally,
but before the first instruction of the task is execut-
ed, the exception 1 handler is invoked. With respect
to the task switch operation, the operation is consid-
ered to be a trap.

9.3.4 USE OF RESUME FLAG (RF) IN FLAG
REGISTER

The Resume Flag (RF) in the flag word can sup-
press an instruction execution breakpoint when the
exception 1 handler returns to a user program at a
user address which is also an instruction execution
breakpoint.

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

10.0 INSTRUCTION SET SUMMARY

This section describes the Intel486 Microprocessor
instruction set. Tables 10.1 through 10.3 list all in-
structions along with instruction encoding diagrams
and clock counts. Further details of the instruction
encoding are then provided in Section 10.2, which
completely describes the encoding structure and the
definition of all fields occurring within the Intel486
Microprocessor instructions.

10.1 Intel486™ Microprocessor

Instruction Encoding and Clock
Count Summary

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Tables 10.1
through 10.3 by the processor clock period (e.g.,
40 ns for a 25 MHz Intel486 Microprocessor).

For more detailed information on the encodings of
instructions, refer to Section 10.2 Instruction Encod-
ings. Section 10.2 explains the general structure of
instruction encodings, and defines exactly the en-
codings of all fields contained within the instruction.

INSTRUCTION CLOCK COUNT ASSUMPTIONS

The Intel486 Microprocessor instruction clock count
tables give clock counts assuming data and instruc-
tion accesses hit in the cache. A separate penalty
column defines clocks to add if a data access miss-
es in the cache. The combined instruction and data
cache hit rate is over 90%.

A cache miss will force the Intel486 Microprocessor
to run an external bus cycle. The Intel486 Micro-
processor 32-bit burst bus is defined as r—b—w.

Where:

r = The number of clocks in the first cycle of a
burst read or the number of clocks per data
cycle in a non-burst read.

b = The number of clocks for the second and sub-
sequent cycles in a burst read.

w = The number of clocks for a write.

The fastest bus the Intel486 microprocessor can
support is 2—1—2 assuming 0 wait states. The
clock counts in the cache miss penalty column as-
sume a 2—1—2 bus. For slower busses add r—2
clocks to the cache miss penalty for the first dword
accessed. Other factors also affect instruction clock
counts.

Instruction Clock Count Assumptions

1. The external bus is available for reads or writes
at all times. Else add clocks to reads until the
bus is available.

148

2.

10.

11.

12.

Accesses are aligned. Add three clocks to each
misaligned access.

. Cache fills complete before subsequent access-

es to the same line. If a read misses the cache
during a cache fill due to a previous read or pre-
fetch, the read must wait for the cache fill to
complete. If a read or write accesses a cache
line still being filled, it must wait for the fill to
complete.

. If an effective address is calculated, the base

register is not the destination register of the pre-
ceding instruction. If the base register is the
destination register of the preceding instruction
add 1 to the clock counts shown. Back-to-back
PUSH and POP instructions are not affected by
this rule.

. An effective address calculation uses one base

register and does not use an index register.
However, if the effective address calculation
uses an index register, 1 clock may be added to
the clock count shown.

. The target of a jump is in the cache. If not, add r

clocks for accessing the destination instruction
of a jump. If the destination instruction is not
completely contained in the first dword read,
add a maximum of 3b clocks. If the destination
instruction is not completely contained in the
first 16 byte burst, add a maximum of another
r+3b clocks.

. If no write buffer delay, w clocks are added only

in the case in which all write buffers are full.
Typically, this case rarely occurs.

. Displacement and immediate not used together.

If displacement and immediate used together, 1
clock may be added to the clock count shown.

. No invalidate cycles. Add a delay of 1 clock for

each invalidate cycle if the invalidate cycle con-
tends for the internal cache/external bus when
the Intel486 CPU needs to use it.

Page translation hits in TLB. A TLB miss will add
13, 21 or 28 clocks to the instruction depending
on whether the Accessed and/or Dirty bit in nei-
ther, one or both of the page entries needs to
be set in memory. This assumes that neither
page entry is in the data cache and a page fault
does not occur on the address translation.

No exceptions are detected during instruction
execution. Refer to Interrupt Clock Counts Ta-
ble for extra clocks if an interrupt is detected.

Instructions that read multiple consecutive data
items (i.e. task switch, POPA, etc.) and miss the
cache are assumed to start the first access on a
16-byte boundary. If not, an extra cache line fill
may be necessary which may add up to (r+3b)
clocks to the cache miss penalty.

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary

Penalty if
INSTRUCTION FORMAT Cache Hit Cache Miss Notes
INTEGER OPERATIONS
MOV = Move:
reg1 toreg2 b0001 oow Lﬁ regl regﬂ 1
reg2 toregl [1000101w I11 reg1 regzl 1
memory to reg I 1000101w |mod reg r/ml 1 2
reg to memory bo oo100w Lrnod reg r/nﬂ 1
Immediate to reg l 1100011w | 11000 reg | immediate data 1
or 1011w reg immediate data 1
. ispl t
Immediate to Memory I 1100011w I mod 000 r/m | fmp a_(iemen 1
r
Memory to Accumulator 1010000w | full displacement 1 2
Accumulator to Memory 1010001w | fulldisplacement 1
MOVSX/MOVZX = Move with Sign/Zero E
reg2 to regl | 00001111 I 1011211w[11 regl regzl 3
memory to reg I 00001111 l 1011z11w lmod reg r/ml 3 2
z Instruction
0 MOvzx
1 MOVSX
PUSH = Push
reg |11111111l11 110 regl 4
or 01010 reg 1
memory |11111111|mod110r/m| 4 1 1
immediate 011010s0 [immediate data 1
PUSHA = Push All 01100000 1
POP = Pop
reg | 10001111 |11 000 reg| 4 1
or 01011 reg 1 2
memory I 10001111 lmod 000 r/m, 5 2 1
POPA = Pop All 01100001 9 7/15 16/32
XCHG = Exchange
reg1 with reg2 l 1000011w |11 regi regzl 3 2
Accumulator with reg 10010 reg 3 2
Memory with reg l 1000011w |mod reg r/m[5 2
NOP = No Operation 10010000 1
LEA = Load EA to Register bo 001101 | mod reg r/ml
no index register 1
with index register 2

149

intelg Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)

Penalty if
INSTRUCTION FORMAT Cache Hit Cache Miss Notes

INTEGER OPERATIONS (Continued)

Instruction TIT
ADD = Add 000
ADC = Add with Carry 010
AND = Logical AND 100
OR = Logical OR 001
SUB = Subtract 101
SBB = Subtract with Borrow 011
XOR = Logical Exclusive OR 110
regi to reg2 DOTTTOOM1 1 regl regzl 1
reg2 to reg1 l 00TTTO1w |11 reg1 regzl 1
memory to register | 00TTTO1w I mod reg |'/£| 2 2
register to memory (00TTTOOW I mod reg "L“I 3 6/2 u/L
immediate to register UO 0000sw l 11 TTT reg | immediate register 1
immediate to accumulator 00TTT10w | immediate data 1
immediate to memory (100000sw l mod TTT r/m I immediate data 3 6/2 u/L
Instruction T
INC = Increment 000
DEC = Decrement 001
reg |1111111w|11 TTT regl 1
or O1TTT reg 1
memory I 1111111w Imod TTT r/m] 3 6/2 u/L
Instruction TIT
NOT = Logical Complement 010
NEG = Negate 011
reg |1111011w|11 TTT regl 1
memory | 1111011w [mod TTT r/ml 3 6/2 u/L

CMP = Compare

reg1 with reg2 I 0011100w |11 regl reg2| 1

reg2 with reg1 | 0011101w |11 reg1 regzl 1
memory with register | 0011100w | mod reg r/m‘ 2 2
register with memory I 0011101w I mod reg r/ml 2 2
immediate with register I 100000sw I 11 111 reg] immediate data 1
immediate with acc. immediate data 1
immediate with memory I 100000sw [mod 111 r/m—l immediate data 2 2
TEST = Logical Compare
reg1 and reg2 l 1000010w [1 1 regl regz—l 1
memory and register I 1000010w | mod reg r/m| 2 2
immediate and register l 1111011w]7 000 reg} immediate data 1
immediate and acc. — immediate data 1
immediate and memory l 1111011 vdﬂod 000 r/m|immediate data 2 2

150

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)

Penalty if
INSTRUCTION FORMAT Cache Hit Cache Miss Notes
INTEGER OPERATIONS (Continued)
MUL = Multiply (unsigned)
acc. with register 1111011w }11 100 reg
Multiplier-Byte 13/18 . MN/MX, 3
Word 13/26 MN/MX, 3
Dword 13742 MN/MX, 3
acc. with memory 1111011w |[mod 100 r/m
Multiplier-Byte 13/18 1 MN/MX, 3
Word 13/26 1 MN/MX, 3
Dword 13/42 1 MN/MX, 3
IMUL = Integer Multiply (signed)
acc. with register |T1 11011w {11 101 reg
Multiplier-Byte 13/18 MN/MX, 3
Word 13/26 MN/MX, 3
Dword 13/42 MN/MX, 3
acc. with memory 1111011w [mod 101 r/m
Multtiplier-Byte 13/18 MN/MX, 3
Word 13/26 MN/MX, 3
Dword 13/42 MN/MX, 3
reg1 with reg2 00001111 10101111J11 regl reg2
Multiplier-Byte 13/18 MN/MX, 3
Word 13/26 MN/MX, 3
Dword 13/42 MN/MX, 3
register with memory 00001111 10101111 |mod reg t/m
Muitiplier-Byte 13/18 1 MN/MX, 3
Word 13/26 1 MN/MX, 3
Dword 13/42 1 MN/MX, 3
reg1 with imm. to reg2 011010s1 |11 regl reg2|immediate data
Muitiplier-Byte 13/18 MN/MX, 3
Word 13/26 MN/MX, 3
Dword 13/42 MN/MX, 3
mem:. with imm. to reg. 011010s1 |mod reg r/m| immediate data
Multiplier-Byte 13/18 2 MN/MX, 3
Word 13/26 2 MN/MX, 3
Dword 13/42 2 MN/MX, 3
DIV = Divide (unsigned)
acc. by register 1111011w |11 110 reg
Divisor-Byte 16
Word 24
Dword 40
acc. by memory 1111011w |mod 110 r/m
Divisor-Byte 16
Word 24
Dword 40
IDIV = Integer Divide (signed)
acc. by register I 1111011w |11 111 r849|
Divisor-Byte 19
Word 27
Dword 43

151

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)

Penalty if

INSTRUCTION FORMAT Cache Hit Notes
Cache Miss
INTEGER OPERATIONS (Continued)
acc. by memory 1111011w|mod111r/m
Divisor-Byte 20
Word 28
Dword 44
CBW/CWD = Convert Byte to Word/
Convert WordtoDword | 10011000 3
CWD/CDQ = Convert Word to Dword/
Convert Dword to 10011001 3
Quad Word
Instruction TIT
ROL = Rotate Left 000
ROR = Rotate Right 001
RCL = Rotate through Carry Left 010
RCR = Rotate through Carry Right 011
SHL/SAL = Shift Logical/Arithmetic Left 100
SHR = Shift Logical Right 101
SAR = Shift Arithmetic Right 111
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)
regby 1 ‘ 1101000w |11 TTT regl 3
memory by 1 I 1101000w lrnod TTT r/ml 4 6
reg by CL 1101001w (11 TTT reg 3
memory by CL L1101001w |mod TTT r/ml 4 6
reg by immediate count I 1100000w | 11 TTT reg | immediate 8-bit data 2
mem by immediate count | 1100000w | mod TTT r/m | immediate 8-bit data 4 6
Through Carry (RCL and RCR)
regby 1 1101000w|11 TTT regl 3
memory by 1 | 1101000w [mod TTT r/ml 4 6
reg by CL [1101001w [11 TTT reg 8/30 MN/MX, 4
memory by CL | 1101001w |mod TTT r/ml 9/31 MN/MX, 5
reg by immediate count [1100000w | 11 TTT reg|immediate 8-bit data 8/30 MN/MX, 4
mem by immediate count | 1100000w | mod TTT r/m | immediate 8-bit data 9/31 MN/MX, &
Instruction TTT
SHLD = Shift Left Double 100
SHRD = Shift Right Double 101
register with immediate 00001111 l 10TTT100 ‘ 11 reg2 regl | imm 8-bit data 2
memory by immediate I 00001111 [10TTT100 lmod reg r/mlimma-bitdata 3 6
register by CL 00001111 |10TTT101 |11 reg2 reg1| 3
memory by CL l 00001111 ‘10TTT101 |mod reg r/ml 4 5
BSWAP = Byte Swap I 00001111 |11oo1 reg] 1
XADD = Exchange and Add
regi, reg2 L00001111 [1100000w l11 reg2 reng 3
memory, reg I 00001111 |1100000w Imod reg r/m—l 4 6/2 u/L
CMPXCHG = Compare and E
regl, reg2 | 00001111 l1011000w111 reg2 reg—1| 6
memory, reg | 00001111 |1011000w |mod reg r/ml 7/10 2 6

152

intal. Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)

Penalty If
INSTRUCTION FORMAT Cache Hit Cachemiss| Notes
CONTROL TRANSFER (within segment)
NOTE: Times are jump taken/not taken
Jece = Jump on cce
8-bit displacement | 0111tttn I 8-bit disp. l an T/NT, 23
full displacement ' 00001111 I 1000tttn l full displacement 3n T/NT, 23
NOTE: Times are jump taken/not taken
SETcccc = Set Byte on cccc (Times are cccc true/false)
reg Rooo1111 | 1001tttn 111 000 reg| 4/3
memory | 00001111 | 1001tttn |mod 000 r/m| 3/4
Mnemonic Condition tttn
cccc
o Overflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above o111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal 1100
NL/GE Not Less Than/Greater or Equal 1101
LE/NG Less Than or Equal/Greater Than 1110
NLE/G Not Less Than or Equal/Greater Than 1111
LOOP = LOOP CX Times I 11100010 | 8-bit disp. | 7/6 L/NL, 23
LOOPZ/LOOPE = Loop with | 11100001 I 8-bit disp. | 9/6 L/NL, 23
Zero/Equal
LOOPNZ/LOOPNE = Loop while | 11100000 | 8-bit disp. | 9/6 L/NL, 23
Not Zero
JCXZ = Jump on CX Zero ‘ 11100011 I 8-bit disp. J 8/5 T/NT, 23
JECXZ = Jump on ECX Zero , 11100011 I 8-bit disp. , 8/5 T/NT, 23
(Address Size Prefix Differentiates JCXZ for JECXZ)
JMP = Unconditional Jump (within segment)
Short I 11101011 | 8-bit disp. I 3 7,23
Direct 11101001 |fulldisplacement 3 7,23
Register Indirect I 11111111 | 11 100 regl 5 7,23
Memory Indirect I 11111111 | mod 100 r/ml 5 5 7
CALL = Call (within segment)
Direct 11101000 | fulldisplacement 3 7,23
Register Indirect [11111111 I 11 010 regl 5 7,23
Memory Indirect I 11111111 |mod 010 r/m, 5 5 ¢ 7
RET = Return from CALL (within segment)
11000011 5 5
Adding Immediate to SP l 11000010 I 16-bit disp. | 5 5

153

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)

Penalty if

INSTRUCTION FORMAT Cache Hit Notes
Cache Miss
CONTROL TRANSFER (within segment) (Continued)
ENTER = Enter Procedure | 1100100 O—Bbh disp., 8-bit leve|
Level =0 14
Level = 1 17
Level (L) > 1 17+3L 8
LEAVE = Leave Procedure 11001001 5 1
MULTIPLE-SEGMENT INSTRUCTIONS
MOV = Move
reg. to segment reg. l 10001110 r1 1 sreg3 reg—l 3/9 0/3 RV/P,9
memory to segment reg. r 10001110 l mod sreg3 r/ﬂ 3/9 2/5 RV/P,9
segment reg. to reg. I 10001100] 11" sreg3 reg—| 3
segment reg. to memory | 10001100 | mod sreg3 r/m] 3
PUSH = Push
segment reg. 000sreg2110 3
(ES, CS, SS, or DS)
segment reg. (FS or GS) r00001 111 |10 sreg3000 3
POP = Pop
segment reg. 000sreg2111 3/9 2/5 RV/P,9
(ES, SS, or DS)
segment reg. (FS or GS) ro 0001111 I 10 sreg3001 | 3/9 2/5 RV/P,9
LDS = Load Polnter to DS [11000101 [mod reg wm] 6/12 710 | Rv/P9
LES = Load Pointer to ES [11000100 [mod reg r/m] 6/12 7110 RV/P, 9
LFS = Load Pointer to FS [00001111 [10110100 [mod reg r/m] 6/12 7710 | RV/P,9
LGS = Load Pointer to GS I 00001111 | 10110101]mod reg r/ml 6/12 7/10 RV/P,9
LSS = Load Polnter to SS [00001111 [10110010 [mod reg w/m] 6/12 710 | RV/P9
CALL = Call
Direct intersegment 10011010 |[unsigned full offset, selector 18 2 R,7,22
to same level 20 3 P,9
thru Gate to same level 35 6 P,9
to inner level, no parameters 69 17 P,9
to inner level, x parameter (d) words 77+4X 17+n P, 11,9
to TSS 37+TS 3 P, 10,9
thru Task Gate 38+TS 3 P, 10,9
Indirect intersegment 11111111 |mod 011 r/m 17 8 R,7
to same level 20 10 P,9
thru Gate to same level 35 13 P,9
to inner level, no parameters 69 24 P,9
to inner level, x parameter (d) words 77+4X 24+n P, 11,9
to TSS 37+TS 10 P, 10,9
thru Task Gate 38+TS 10 P, 10,9
RET = Return from CALL
intersegment — .13 8 R,7
to same level 17 9 P,9
to outer level 35 12 P,9
intersegment adding r 11001010 T 16-bit disp. —I
imm. to SP 14 8 R,7
to same level 18 9 P,9
to outer level 36 12 P,9

154

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT cacheHit | FemAVH | yoreg
Cache Miss
MULTIPLE-SEGMENT INSTRUCTIONS (Continued)
JMP = Unconditional Jump
Direct intersegment 11101010 |unsigned full offset, selector 17 2 R, 7,22
to same level 19 3 P,9
thru Call Gate to same level 32 6 P,9
thru TSS 42+TS 3 P, 10,9
thru Task Gate 43+TS 3 P, 10,9
Indirect intersegment 11111111 |mod 101 /m 13 9 R, 7,9
to same level 18 10 P,9
thru Call Gate to same level 31 13 P,9
thru TSS 41+TS 10 P, 10,9
thru Task Gate 42+TS 10 P, 10,9
BIT MANIPULATION
BT = Test bit
register, immediate I 00001111 I 10111010 | 11 100 regl imm. 8-bit data 3
memory, immediate | 00001111 I 10111010 lmod 100 r/mlimm.B-bitdata 3 1
reg1, reg2 | 00001111 |1o1ooo11 l11 reg2 reg1| 3
memory, reg I 00001111 I 10100011 |mod reg r/ml 8 2
Instruction TIT
BTS = Test Bitand Set 101
BTR = Test Bit and Reset 110
BTC = Test Bit and Compliment 111
register, immediate] 00001111 | 10111010 | 11 TTT reg | imm. 8-bit data 6
memory, immediate [00001111 | 10111010 Imod TTT r/ml imm. 8-bit data 8 2/0 u/L
reg1, reg2 |00001111 | 10TTTO11 |11 reg2 reg1| 6
memory, reg | 00001111 I 10TTTO11 |mod reg r/ml 13 3n u/L
BSF = Scan Bit Forward
reg1, reg2 I 00001111 | 10111100 |11 reg2 reg1| 6/42 MN/MX, 12
memory, reg 00001111 | 10111100 |mod reg r/mI 7/43 2 MN/MX, 13
BSR = Scan Bit Reverse
regi, reg2 I 00001111 I 10111101 |11 reg2 reg1| 6/103 MN/MX, 14
memory, reg I 00001111 | 10111101 lmod reg r/ml 7/104 1 MN/MX, 15
STRING INSTRUCTIONS
CMPS = Compare Byte Word 1010011w 8 6 16
LODS = Load Byte/Word 5 2
to AL/AX/EAX
MOVS = Move Byte/Word 1010010w 7 2 16
SCAS = Scan Byte/Word 1010111w 6 2
STOS = Store Byte/Word 1010101w 5
from AL/AX/EX
XLAT = Translate String 11010111 4 2

155

inteL Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit | Peratyit | yotes
REPEATED STRING INSTRUCTIONS
Repeated by Countin CX or ECX (C = Countin CX or ECX)
REPE CMPS = Compare String 11110011 l 1010011w
(Find Non-Match)
c=0 5
c>o0 74+7¢ 16,17
REPNE CMPS = CompareString | 11110010 | 1010011w |
(Find Match)
c=0 5
c>o0 7+7¢ 16,17
REP LODS = Load String | 11110011 I 1010110w|
cC=0 5
c>0 7+4c 16,18
REP MOVS = Move String l 1111001ﬁ 1010010w|
Cc=0 5
c=1 13 1 16
c>1 12+3c 16,19
REPE SCAS = Scan String] 11110011 I 1010111w|
(Find Non-AL/AX/EAX)
c=0 5
¢c>o0 7+5¢ 20
REPNE SCAS = Scan String I 11110010 | 1010111wl
(Find AL/AX/EAX)
c=0 5
c>o 7+5¢ 20
REP STOS = Store String | 11110011 I 1010101w l
cC=0 5
c>0 7+4c
FLAG CONTROL
CLC = Clear Carry Flag 11111000 2
STC = Set Carry Flag 11111001 2
CMC = Complement Carry Flag 2
CLD = Clear Direction Flag 11111100 2
STD = Set Direction Flag 11111101 2
CLI = Clear Interrupt 11111010 5
Enable Flag
STI = Set Interrupt 11111011 5
Enable Flag
LAHF = Load AH into Flag 10011111 3
SAHF = Store AH into Flags 10011110 2
PUSHF = Push Flags 10011100 4/3 Rv/P
POPF = Pop Flags 10011101 9/6 RV/P
DECIMAL ARITHMETIC
AAA = ASCII Adjust for Add 3
AAS = ASCII Adjust for 00111111 3
Subtract
AAM = ASCII Adjust for ’ 11010100 | 00001010 | 15
Multiply

156

intel.,, Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)

Penalty if
INSTRUCTION FORMAT Cache Hit Cache Miss Notes

DECIMAL ARITHMETIC (Continued)

AAD = ASCII Adjust for | 11010101 | 00001010 | 14
Divide

DAA = Decimal Adjust for Add 00100111 2

DAS = Decimal Adjust for Subtract 00101111 2

PROCESSOR CONTROL INSTRUCTIONS

HLT = Halt 11110100 4

MOV = Move To and From Control/Debug/Test Registers

CRO from register | 00001111 | 00100010 |11 000 regl 17 2
CR2/CR3 from register IJ0001111 I 00100010 |11 eee reg—l 4

Reg from CRO-3 |30001111 | 00100000 |11 eee regl 4

DRO-3 from register | 00001111 | 00100011 I11 eee regl 10

DR6-7 from register I 00001111 | 00100011 |11 eee reg] 10
Register from DR6-7 IJ0001111 | 00100001 |11 eee regl 9

Register from DR0-3 I 00001111 I 00100001 |11 eee regI 9

TR3 from register | 00001111 | 00100110 |11 011 reg] 4

TR4-7 from register I 00001111 I 00100110 |11 eee reg—l 4

Register from TR3 I 00001111 | 00100100 |11 011 regl 3

Register from TR4-7 | 00001111 | 00100100 |11 eee reg1 4
CLTS = Clear Task Switched Flag I 00001111 | 00000110 I 7 2
INVD = Invalidate Data Cache | 00001111 I 00001000 | 4
WBINVD = Write-Back and Invalidate |J0001111 | 00001001 | 5

Data Cache

INVLPG = Invalidate TLB Entry

INVLPG memory | 00001111 | 00000001 |mod 111 r/m 12/11 H/NH
PREFIX BYTES

Address Size Prefix 01100111 1
LOCK = Bus Lock Prefix 11110000 1
Operand Size Prefix 01100110 1

Segment Override Prefix
Cs: 00101110 1

Ds: 00111110 1
ES: 00100110 1
FS: 01100100 1
GS: 01100101 1

SS: 00110110 1

157

inl‘eL Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)

Penalty it

INSTRUCTION FORMAT Cache Hit Cache Miss Notes
PROTECTION CONTROL
ARPL = Adjust Requested Privilege Level

From register | 01100011 |11 regl reggl 9

From memory I 01100011 |mod reg r/ml 9
LAR = Load Access Rights

From register | 00001111 | 00000010 |11 reg1 regg2| 1" 3

From memory | 00001111 I 00000010Tmod reg r/ml 1" 5

LGDT = Load Global Descriptor

Table register | 00001111 I 00000001 lmod 010 r/mI 12 5
LIDT = Load Interrupt Descriptor

Table register l 00001111 | 00000001]mod 011 r/ml 12 5
LLDT = Load Local Descriptor

Table register from reg. | 00001111 | 00000000T11 010 reg] 11 3

Table register from mem. I 00001111 I 00000000 |mod 010 r/ml 1 6
LMSW = Load Machine Status Word

From register |00001111 | 00000001 I11 110 reg 13

From memory | 00001111 | 00000001 |mod 110 r/4m| 13 1
LSL = Load Segment Limit

From register | 00001111 I 00000011 I11 reg1 regzl 10 3

From memory |i0001111 | 00000011 Imod reg r/ml 10 6
LTR = Load Task Register

From Register [00001111 | 00000000 |11 011 regl 20

From Memory I 00001111 | 00000000 lmod 011 r/ml 20
SGDT = Store Global Descriptor Table

| 00001111 | 00000001 |mod 000 ml 10

SIDT = Store Interrupt Descriptor Table

| 00001111 | 00000001 |mod 001 r/mI 10

SLDT = Store Local Descriptor Table

To register L00001111 I 00000000 111 000 regl 2

To memory | 00001111 | 00000000 |mod 000 r/ml 3
SMSW = Store Machine Status Word

To register | 00001111 | 00000001 |11 100 regl 2

To memory | 00001111 | 00000001 Irnod 100 r/ml 3
STR = Store Task Register

To register [oooonn | 00000000 |11 001 reg—l 2

To memory I 00001111 | 00000000 |mod 001 r/ml 3
VERR = Verify Read Access

Register Loooo1111 | 00000000 |11 100 r/m| 1 3

Memory | 00001111 | 00000000 |mod 100 r/ml 1 7
VERW = Verify Write Access

To register | 00001111 | 00000000 |11 101 regl 11 3
_ To memory L00001111 I OOOOOOOOTmod 101 r/m| 1" 7

158

Intel486™ DX MICROPROCESSOR

intgl.

PRELIMINARY

Table 10.1. Intel486™ Microprocessor Integer Clock Count Summary (Continued)

Penalty if
INSTRUCTION FORMAT Cache Hit Cache Miss Notes
INTERRUPT INSTRUCTIONS
INT n = Interrupt Type n r1 1001101 | type INT+4/0 RV/P, 21
INT 3 = Interrupt Type 3 INT+0 21
INTO = Interrupt 4 it
Overflow Flag Set
Taken INT+2 21
Not Taken 3 21
BOUND = Interrupt 5 if Detect l 01100010 | mod reg r/n'T'
Value Out Range
Ifin range 7 7 21
If out of range INT+24 7 21
IRET = Interrupt Return
Real Mode/Virtual Mode 15 8
Protected Mode
To same level 20 1" 9
To outer level 36 19 9
To nested task (EFLAGS.NT = 1) TS+32 4 9,10
External Interrupt INT+11 21
NMI = Non-Maskable Interrupt INT+3 21
Page Fault INT+24 21
VMB86 Exceptions
CLI INT+8 21
STI INT+8 21
INTn INT+9
PUSHF INT+9 21
POPF INT+8 21
IRET INT+9
IN
Fixed Port INT+50 21
Variable Port INT+51 21
out
Fixed Port INT+50 21
Variable Port INT+51 21
INS INT+50 21
OuTS INT+50 21
REP INS INT+51 . 21
REP OUTS INT+51 21
Task Switch Clock Counts Table
Value for TS
Method
Cache Hit Miss Penalty
VM/Intel486 CPU/286 TSS To Intel486 CPU TSS 162 55
VM/Intel486 CPU/286 TSS To 286 TSS 143 31
VM/Intel486 CPU/286 TSS To VM TSS 140 37

159

intgl. Intel486T™ DX MICROPROCESSOR PRELIMINARY

Interrupt Clock Counts Table
Method Value for INT
Cache Hit Miss Penalty Notes
Real Mode 26 2
Protected Mode
Interrupt/Trap gate, same level 44 6 9
Interrupt/Trap gate, different level 71 17 9
Task Gate 37 + TS 3 9,10
Virtual Mode
Interrupt/Trap gate, different level 82 17
Task gate 37+ TS 3 10
Abbreviations Definition .
16/32 16/32 bit modes '’
u/L unlocked/locked
MN/MX minimum/maximum
L/NL loop/no loop
RV/P real and virtual mode/protected mode
R real mode
P protected mode
T/NT taken/not taken
H/NH hit/no hit

NOTES:
1. Assuming that the operand address and stack address fall in different cache sets.
2. Always locked, no cache hit case.
3. Clocks = 10 + max(loga(/m|),n)
m = multiplier value (min clocks for m=0)
n = 3/5for tm
4. Clocks = {quotient(count/operand length)}*7+9
= 8 if count < operand length (8/16/32)
5. Clocks = {quotient(count/operand length)}*7+9
= 9 if count < operand length (8/16/32)
6. Equal/not equal cases (penalty is the same regardless of lock).
7. Assuming that addresses for memory read (for indirection), stack push/pop, and branch fall in different cache sets.
8. Penalty for cache miss: add 6 clocks for every 16 bytes copied to new stack frame.
9. Add 11 clocks for each unaccessed descriptor load.
10. Refer to task switch clock counts table for value of TS.
11. Add 4 extra clocks to the cache miss penalty for each 16 bytes.
For notes 12-13: (b = 0-3, non-zero byte number);
(i = 0-1, non-zero nibble number);
(n = 0-3, non bit number in nibble);
8+4 (b+1) + 3(i+1) + 3(n+1)
6 if second operand = 0
13. Clocks = 9+4(b+1) + 3(i+1) + 3(n+1)
= 7 if second operand = 0
For notes 14-15: (n = bit position 0-31)
14. Clocks = 7 + 3(32—n)
6 if second operand = 0
15. Clocks = 8 + 3(32—n)
7 if second operand = 0
16. Assuming that the two string addresses fall in different cache sets.
17. Cache miss penalty: add 6 clocks for every 16 bytes compared. Entire penalty on first compare.
18. Cache miss penalty: add 2 clocks for every 16 bytes of data. Entire penalty on first load.
19. Cache miss penalty: add 4 clocks for every 16 bytes moved.
(1 clock for the first operation and 3 for the second)
20. Cache miss penalty: add 4 clocks for every 16 bytes scanned.
(2 clocks each for first and second operations)
21. Refer to interrupt clock counts table for value of INT
22. Clock count includes one clock for using both displacement and immediate.
23. Refer to assumption 6 in the case of a cache miss.

12. Clocks

160

intelo Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 10.2. Intel486™ Microprocessor 1/0 Instructions Clock Count Summary

Protected | Protected
Mode Mode VI;::I :s Notes
(CPL<IOPL){(CPL>IOPL)

Real
INSTRUCTION FORMAT Mode

1/0 INSTRUCTIONS

IN = Input from:

Fixed Port I 1110010w [port number I 14 9 29 27

Variable Port 1110110w 14 8 28 27

OUT = Output to:

Fixed Port | 1110011w I port number l 16 1 31 29
Variable Port 16 10 30 29
INS = Input Byte/Word 0110110w 17 10 32 30
from DX Port
OUTS = Output Byte/Word 17 10 32 30 1
to DX Port
REP INS = Input String I 11110011 | 0110110w I 16+8¢c 10+8c 30+8¢ 29+8¢ 2
REP OUTS = Output String l 11110011 l 0110111wJ 17+5¢c 11+5¢ 31+5¢ 30+5¢ 3

NOTES:

1. Two clock cache miss penalty in all cases.

2. ¢ = count in CX or ECX.

3. Cache miss penalty in all modes: Add 2 clocks for every 16 bytes. Entire penalty on second operation.

161

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 10.3. Intel486™ Microprocessor Floating Point Clock Count Summary

Concurrent
Cache Hit Penalty if Execution
INSTRUCTION FORMAT Avg (Lower | Cache Miss Avg (Lower | Notes
Range... Range...
Upper Range) Upper Range)
DATA TRANSFER
FLD = Real Load to ST(0)
32-bit memory | 11011 001 | mod 000 r/m] s-i-b/disp. I 3 2
64-bit memory I 11011 101 | mod 000 r/ml s-i-b/disp. | 3 3
80-bit memory l 11011 011 lmod 101 r/ml s-i-b/disp. | 6 4
ST() |11011 001[11000 ST(i)| 4
FILD = Integer Load to ST(0)
16-bit memory | 11011 111 Imod 000 r/ml s-i-b/disp.] 14.5(13-16) 2 4
32-bit memory I 11011 011 | mod 000 r/ml s-i-b/disp.] 11.5(9-12) 2 4(2-4)
64-bit memory l 11011 111 | mod 101 r/ml s-i-b/disp. | 16.8(10-18) 3 7.8(2-8)
FBLD = BCD Load to ST(0) | 11011 111 I mod 100 r/ml s-i-b/disp. I 75(70-103) 4 7.7(2-8)
FST = Store Real from ST(0)
32-bit memory [11011 001[mod 010 wm| sibrdisp. | 7 1
64-bit memory l 11011 101 | mod 010 r/ml s-i-b/disp. | 8 2
ST() |11011 1o1|11o10 ST(i)I 3
FSTP = Store Real from ST(0) and Pop
32-bit memory l 11011 001 l mod 011 r/ml s-i-b/disp. | 7 1
64-bit memory | 11011 101 Imod 011 r/ml s-i-b/disp. I 8 2
80-bit memory | 11011 011 | mod 111 r/ml s-i-b/disp. I 6
ST()]11011 101|11oo1 ST(i)I 3
FIST = Store Integer from ST(0)
16-bit memory I 11011 111 | mod 010 r/ml s-i-b/disp. | 33.4(29-34)
32-bit memory | 11011 011 I mod 010 r/ml s-i-b/disp. | 32.4(28-34)
FISTP = Store Integer from ST(0) and Pop
16-bit memory | 11011 111 l mod 011 r/m| s-i-b/disp. I 33.4(29-34)
32-bit memory [11011 o11][mod 011 wm| sibraisp. | | 33.4(20-34)
64-bit memory | 11011 111 I mod 111 r/ml s-i-b/disp. l 33.4(29-34)
FBSTP = Store BCD from | 11011 111] mod 110 r/m] s-i-b/disp. | 175(172-176)
ST(0) and Pop
FXCH = Exchange ST(0) and ST(i) | 11011 001 I 11001 ST(i)I 4
COMPARISON INSTRUCTIONS
FCOM = Compare ST(0) with Real
32-bit memory | 11011 000| mod 010 r/m| s-i-b/disp. | 4 2 1
64-bit memory I 11011 1 00| mod 010 r/ml s-i-b/disp. I 4 3 1
ST() |11011 000|11010 ST(i)| 4 1
FCOMP = Compare ST(0) with Real and Pop
32-bit memory | 11011 000 l mod 011 r/ml s-i-b/disp. l 4 2 1
64-bit memory I 11011 100 | mod 011 rlml s-i-b/disp. [4 3 1
STG) |11011 000|11011 Sm 4 1

162

intelo Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 10.3. Intel486™ Microprocessor Floating Point Clock Count Summary (Continued)

Concurrent
Cache Hit
Penalty If Execution
INSTRUCTION FORMAT Avg (Lower | Cache Miss | Avg(Lower | Notes
Range... Range...
Upper Range) Upper Range)
COMPARISON INSTRUCTIONS (Continued)
FCOMPP = Compare ST(0) with I11011 110|1101 1001| 5 1
ST(1) and Pop Twice
FICOM = Compare ST(0) with Integer
16-bit memory | 11011 11 Ol mod 010 r/ml s-i-b/disp. | 18(16-20) 2 1
32-bit memory | 11011 01 0| mod 010 r/ml s-i-b/disp. | 16.5(15-17) 2 1
FICOMP = Compare ST(0) with Integer
16-bit memory I 11011 11 o| mod 011 r/ml s-i-b/disp. I 18(16-20) 2 1
32-bit memory I 11011 01 0| mod 011 r/mI s-i-b/disp. I 16.5(15-17) 2 1
FTST = Compare ST(0) with 0.0 I11011 001|1110 0100| 4 1
FUCOM = Unordered compare I 11011 101 | 11100 ST(i)l 4 1
ST(0) with ST(l)
FUCOMP = Unordered compare I 11011 101 | 11101 ST(i)I 4 1
ST(0) with ST(i) and Pop
FUCOMPP = Unordered compare L1 1011 01 OI 1110 1001 [5 1
ST(0) with ST(i) and Pop Twice
FXAM = Examine ST(0) I11011 001|1110 0101| 8
CONSTANTS
FLDZ = Load +0.0 Into ST(0) I11011 001|1110 1110| 4
FLD1 = Load + 1.0 Into ST(0) |11011 001|1110 1000| 4
FLDPI = Load 7 Into ST(0) |11o11 oo1|111o 1011| 8 2
FLDL2T = Load log(10) into ST(0) |11o11 oo1|111o 1oo1| 8 2
FLDL2E = Load loga(e) into ST(0) |11o11 oo1|111o 1010] 8 2
FLDLG2 = Load logo(2) Into ST(0) |1 1011 oo1|111o 11oo| 8 2
FLDLN2 = Load loge(2) into ST(0) L1 1011 001 | 1110 11 Oj 8 2
ARITHMETIC
FADD = Add Real with ST(0)
ST(0) «— ST(0) + 32-bit memory | 11011 00 0| mod 000 r/ml s-i-b/disp. | 10(8-20) 2 7(5-17)
ST(0) «— ST(0) + 64-bit memory L1 1011100 | mod 000 r/m | s-i-b/disp. I 10(8-20) 3 7(5-17)
ST(d) «— ST(0) + ST() I 11011 d 00| 11000 ST(i)J 10(8-20) 7(5-17)
FADDP = Add real with ST(0) and I 11011 11 OI 11000 ST(i)l 10(8-20) 7(5-17)
Pop (ST(l) «— ST(0) + ST(I))
FSUB = Subtract real from ST(0)
ST(0) «— ST(0) — 32-bit memory L1 1011 000 l mod 100 r/mI s-i-b/disp. I 10(8-20) 2 7(5-17)
ST(0) «— ST(0) — 64-bit memory I 11011 10 OI mod 100 r/i ﬂ s-i-b/disp. I 10(8-20) 3 7(5-17)
ST(d) « ST(0) — ST [11011 doo1110d sT0)] 10(8-20) 7(5-17)
FSUBP = Subtract real from ST(0) L1 1011 11 0| 11101 ST(i)l 10(8-20) 7(5-17)
and Pop (ST(i) «— ST(0) — ST(i))

163

intelm Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 10.3. Intel486™ Microprocessor Floating Point Clock Count Summary (Continued)

Concurrent
Cache Hit
Penalty if Execution
INSTRUCTION FORMAT Avg(Lower | CacheMiss | Avg(Lower | Notes
Range... Range...
Upper Range) Upper Range)
ARITHMETIC (Continued)
FSUBR = Subtract real reversed (Subtract ST(0) from real)
ST(0) «<— 32-bit memory — ST(0) 11011 00 Ol mod 101 r/mI s-i-b/disp. 10(8-20) 2 7(5-17)
ST(0) < 64-bitmemory — ST©) [11011 100 mod 101 w/m| sibsdisp. | | 10@-20) 3 7(6-17)
ST(d) «— ST(i) — ST(0) I 11011 do00f1110d ST(i)—l 10(8-20) 7(5-17)
FSUBRP = Subtract real reversed I 11011 11 0{ 11100 ST(i)l 10(8-20) 7(5-17)
and Pop (ST(l) < ST(i) — ST(0))
FMUL = Multiply real with ST(0)
ST(0) «— ST(0) X 32-bit memory I 11011 000 | mod 001 r/m l s-i-b/disp. I 11 2 8
ST(0) «— ST(0) X 64-bit memory I 11011 100 | mod 001 r/ml s-i-b/disp. ‘ 14 3 1
ST(d) «— ST(0) X ST(i) |11011 d00|11001 ST(i)| 16 13
FMULP = Muitiply ST(0) with ST(i) L1 1011 11 Ol 11001 ST(i)I 16 13
and Pop (ST(i) «— ST(0) X ST(i))
FDIV = Divide ST(0) by Real
ST(0) «— ST(0)/32-bit memory I 11011 000 | mod 110 r/mI s-i-b/disp. l 73 2 70 3
ST(0) «— ST(0)/64-bit memory [1 1011 10 0] mod 110 r/mr s-i-b/disp. l 73 3 70 3
ST(d) «— ST(0)/ST(i) l 11011 d00| 1111d STm 73 70 3
FDIVP = Divide ST(0) by ST(i) and I 11011 11 Ol 11111 ST(i)l 73 70 3
Pop (ST(i) «— ST(0)/ST(i))
FDIVR = Divide real reversed (Real/ST(0))
ST(0) «— 32-bit memory/ST(0) L11 011 00 0} mod 111 r/ml s-i-b/disp. | 73 2 70 3
ST(0) «— 64-bit memory/ST(0) I1 1011 100 [mod 111 r/ml s-i-b/disp. | 73 3 70 3
ST(d) «<— ST(i)/ST(0) 11011 doO OI 1111d ST(i)l 73 70 3
FDIVRP = Divide real reversed and I 11011 11 0| 11110 ST(i)l 73 70 3
Pop (ST(i) «<— ST(i)/ST(0))
FIADD = Add Integer to ST(0)
ST(0) «— ST(0) + 16-bit memory [1 1011 110 | mod 000 r/m l s-i-b/disp. | 24(20-35) 2 7(5-17)
ST(0) «— ST(0) + 32-bit memory | 11011 01 0| mod 000 r/m‘ s-i-b/disp. | 22.5(19-32) 2 7(5-17)
FISUB = Subtract Integer from ST(0)
ST(0) «— ST(0) — 16-bit memory ' 11011 110 I mod 100 r/;r s-i-b/disp. —l 24(20-35) 2 7(5-17)
ST(0) «— ST(0) — 32-bit memory [11011010 | mod 100 r/m| s-i-b/disp. | 22.5(19-32) 2 7(6-17)
FISUBR = Integer Subtract Reversed
ST(0) < 16-bit memory — ST(0) i 11011 11 O‘ mod 101 r/ml s-i-b/disp. ‘ 24(20-35) 2 7(5-17)
ST(0) «— 32-bit memory — ST(0) | 11011 010 | mod 101 r/m s-i-b/disp. | 22.5(19-32) 2 7(5-17)
FIMUL = Multiply Integer with ST(0)
ST(0) «<— ST(0) X 16-bit memory b 1011 11 0| mod 001 r/ml s-i-b/disp. I 25(23-27) 2 8
ST(0) «<— ST(0) X 32-bit memory I 11011 010 I mod 001 r/ml s-i-b/disp. I 23.5(22-24) 2 8
FIDIV = Integer Divide
ST(0) «— ST(0)/16-bit memory I 11011 11 OI mod 110 r/ml s-i-b/disp. I 87(85-89) 2 70 3
ST(0) < ST(0)/32-bit memory | 11011 01 ol mod 110 r/m| s-i-b/disp. | 85.5(84-86) 2 70 3

164

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 10.3. Intel486™ Microprocessor Floating Point Clock Count Summary (Continued)

Concurrent
Cache Hit
Penalty If Execution
INSTRUCTION FORMAT Avg (Lower Cache Miss Avg (Lower | Notes
Range... Range...
Upper Range) Upper Range)
ARITHMETIC (Continued)
FIDIVR = Integer Divide Reversed
ST(0) «— 16-bit memory/ST(0) I 11011 11 OI mod 111 r/ml s-i-b/disp.] 87(85-89) 2 70 3
ST(0) < 32-bit memory/ST(0) 11011 010 I mod 111 r/mI s-i-b/disp. I 85.5(84-86) 2 70 3
FSQRT = Square Root I 11011 001 ‘1 111 101 0| 85.5(83-87) 70
FSCALE = Scale ST(0) by ST(1) |T1 011 001 I 1111 1101 | 31(30-32) 2
FXTRACT = Extract components | 11011 001 | 1111 01 00| 19(16-20) 4(2-4)
of ST(0)
FPREM = Partlal Reminder I 11011 001 | 1111 10 00| 84(70-138) 2(2-8)
FPREM1 = Partial Reminder (IEEE) | 11011 001 [1111 0101 | 94.5(72~-167) 5.5(2-18)
FRNDINT = Round ST(0) to integer | 11011 001 l 1111 1100 | 29.1(21-30) 7.4(2-8)
FABS = Absolute value of ST(0) |11011 001!1110 0001| 3
FCHS = Change sign of ST(0) IT1011 001'1110 0000| 6
TRANSCENDENTAL
FCOS = Cosine of ST(0) | 11011 001 I 1111 1111 l 241(193-279) 2 6,7
FPTAN = Partial tangent of ST(0) I 11011 001 l 1111 001 Ol 244(200-273) 70 6,7
FPATAN = Partial arctangent I 11011 001 | 1111 0011 l 289(218-303) 5(2-17) 6
FSIN = Sine of ST(0) |1 1011 001|1 111 11 10| 241(193-279) 2 6,7
FSINCOS = Sine and cosine of ST(0) l 11011 001 I 1111 1011 291(243-329) 2 6,7
F2xM1 = 25T — 4 [11011 o01]1111 o000 242(140-279) 2 6
FYL2X = ST(1) X logy(ST(0)) F 1011 001[1111 0001 311(196-329) 13 6
FYL2XP1 = ST(1) X log2(ST(0) + 1.0) |1 1011 001 [1111 1001 l 313(171-326) 13 6
PROCESSOR CONTROL
FINIT = Initialize FPU |11011 01111110 0011J 17 4
FSTSW AX = Store status word [11011 111[1110 OOOOI 3 5
into AX
FSTSW = Store status word IT1 011 101jmod 111 r/m‘ s-i-b/disp. I 3 5
into memory
FLDCW = Load control word | 11011 o001 l mod 101 r/ﬂL s-i-b/disp. | 4 2
FSTCW = Store control word [1 1011 001 I mod 111 r/m[s-i-b/disp. | 3 5
FCLEX = Clear exceptions | 11011 011 Il1 10 0 OQI 7 4
FSTENV = Store environment I1 1011 001jmod 110 r/m| s-i-b/disp. |
Real and Virtual modes 16-bit Address 67 4
Real and Virtual modes 32-bit Address 67 4
Protected mode 16-bit Address 56 4
Protected mode 32-bit Address 56 4
FLDENV = Load 11011 001]|mod 100 rlﬂ s-i-b/disp.
Real and Virtual modes 16-bit Address 44 2
Real and Virtual modes 32-bit Address 44 2
Protected mode 16-bit Address 34 2
Protected mode 32-bit Address 34 2

165

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 10.3. Intel486™ Microprocessor Floating Point Clock Count Summary (Continued)

Concurrent
Cache Hit
Penalty if Execution
INSTRUCTION FORMAT Avg (Lower | CacheMiss | Avg(Lower | Notes
Range... Range...
Upper Range) Upper Range)

PROCESSOR CONTROL (Continued)
FSAVE = Save state 11011 101|mod 110 r/m s-i-b/disp.

Real and Virtual modes 16-bit Address 154 4

Real and Virtual modes 32-bit Address 154 4

Protected mode 16-bit Address 143 4

Protected mode 32-bit Address 143 4
FRSTOR = Restore state [1 1011 101|{mod 100 r/m s-i-b/

Real and Virtual modes 16-bit Address 131 23

Real and Virtual modes 32-bit Address 131 27

Protected mode 16-bit Address 120 23

Protected mode 32-bit Address 120 27
FINCSTP = Increment Stack Pointer |11011 001]1111 0111| 3
FDECSTP=DecrementStackPolnter|11011 001[1111 0110I 3
FFREE = Free ST(i) l11011 101]11000 STG)] 3
FNOP = No operations [11011 007[1101 oom 3
WAIT = Waltunt FPU ready

(Minimum/Maximum) 1/3

NOTES:

1. If operand is O clock counts = 27.
2. If operand is O clock counts = 28.
3. If CW.PC indicates 24 bit precision then subtract 38 clocks.

If CW.PC indicates 53 bit precision then subtract 11 clocks.

4. If there is a numeric error pending from a previous instruction add 17 clocks.
5. If there is a numeric error pending from a previous instruction add 18 clocks.
6. The INT pin is polled several times while this instruction is executing to assure short interrupt latency.

7. If ABS(operand) is greater than /4 then add n clocks. Where n = (operand/(m/4)).

166

intgl. Intel486™ DX MICROPROCESSOR PRELIMINARY

10.2 Instruction Encoding addressing byte, the scale-index-base byte, follows
the mod r/m byte to fully specify the addressing

mode.
10.2.1 OVERVIEW
Addressing modes can include a displacement im-
mediately following the mod r/m byte, or scaled in-
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits.

All instruction encodings are subsets of the general
instruction format shown in Figure 10.1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the “mod r/m”
byte and “scaled index” byte, a displacement if re-

quired, and an immediate data field if required. If the instruction specifies an immediate operand,

the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always

Within the primary opcode or opcodes, smaller en- the last field of the instruction.

coding fields may be defined. These fields vary ac-
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex-
tension.

Figure 10.1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the r/m field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc-
tions, sometimes within the opcode bytes them-
selves. Table 10.4 is a complete list of all fields ap-
pearing in the Intel486 Microprocessor instruction
set. Further ahead, following Table 10.4, are de-
tailed tables for each field.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod r/m
byte, specifies the address mode to be used. Certain
encodings of the mod r/m byte indicate a second

[TTTTTTTT TTTTTTTT|{modTTTr/m| ssindexbase |d32|16|8|nonedata32|16|8|none

(0v7 (LJGSYSZOJiG 5v320J\ 5 R 5 y
opcode “mod r/m” “s-i-b” address immediate
(one or two bytes) w byte byte Y displacement data
(T represents an Y (4, 2, 1 bytes (4, 2, 1 bytes
opcode bit.) register and address or none) or none)

mode specifier

Figure 10.1. General Instruction Format

Table 10.4. Fields within Intel486™ Microprocessor Instructions

Field Name Description Number of Bits
w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 1
d Specifies Direction of Data Operation 1
S Specifies if an Immediate Data Field Must be Sign-Extended 1
reg General Register Specifier - 3
mod r/m Address Mode Specifier (Effective Address can be a General Register) 2 for mod;
3forr/m

ss Scale Factor for Scaled Index Address Mode 2
index General Register to be used as Index Register 3
base General Register to be used as Base Register 3
sreg2 Segment Register Specifier for CS, SS, DS, ES 2
sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3
tttn For Conditional Instructions, Specifies a Condition Asserted

or a Condition Negated 4

NOTE:
Tables 10.1-10.3 show encoding of individual instructions.

167

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

10.2.2 32-BIT EXTENSIONS OF THE
INSTRUCTION SET

With the Intel486 Microprocessor, the 8086/80186/
80286 instruction set is extended in two orthogonal
directions: 32-bit forms of all 16-bit instructions are
added to support the 32-bit data types, and 32-bit
addressing modes are made available for all instruc-
tions referencing memory. This orthogonal instruc-
tion set extension is accomplished having a Default
(D) bit in the code segment descriptor, and by hav-
ing 2 prefixes to the instruction set.

Whether the instruction defaults to operations of 16
bits or 32 bits depends on the setting of the D bit in
the code segment descriptor, which gives the de-
fault length (either 32 bits or 16 bits) for both oper-
ands and effective addresses when executing that
code segment. In the Real Address Mode or Virtual
8086 Mode, no code segment descriptors are used,
but a D value of 0 is assumed internally by the In-
tel486 Microprocessor when operating in those
modes (for 16-bit default sizes compatible with the
8086/80186/80286).

Two prefixes, the Operand Size Prefix and the Effec-
tive Address Size Prefix, allow overriding individually

the Default selection of operand size and effective

address size. These prefixes may precede any op-
code bytes and affect only the instruction they pre-
cede. If necessary, one or both of the prefixes may
be placed before the opcode bytes. The presence of
the Operand Size Prefix and the Effective Address
Prefix will toggle the operand size or the effective
address size, respectively, to the value “opposite”
from the Default setting. For example, if the default
operand size is for 32-bit data operations, then pres-
ence of the Operand Size Prefix toggles the instruc-
tion to 16-bit data operation. As another example, if
the default effective address size is 16 bits, pres-
ence of the Effective Address Size prefix toggles the
instruction to use 32-bit effective address computa-
tions.

These 32-bit extensions are available in all Intel486
Microprocessor modes, including the Real Address
Mode or the Virtual 8086 Mode. In these modes the
default is always 16 bits, so prefixes are needed to
specify 32-bit operands or addresses. For instruc-
tions with more than one prefix, the order of prefixes
is unimportant.

Unless specified otherwise, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

168

10.2.3 ENCODING OF INTEGER
INSTRUCTION FIELDS

Within the instruction are several fields indicating
register selection, addressing mode and so on. The
exact encodings of these fields are defined immedi-
ately ahead.

10.2.3.1 Encoding of Operand Length (w) Field

For any given instruction performing a data opera-
tion, the instruction is executing as a 32-bit operation
or a 16-bit operation. Within the constraints of the
operation size, the w field encodes the operand size
as either one byte or the full operation size, as
shown in the table below.

Operand Size Operand Size
w Field During 16-Bit During 32-Bit
Data Operations | Data Operations
0 8 Bits 8 Bits
1 16 Bits 32 Bits

10.2.3.2 Encoding of the General

Register (reg) Field

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the “mod r/m” byte, or as the r/m

field of the “mod r/m” byte.

Encoding of reg Field When w Field
is not Present in Instruction

Register Selected | Register Selected
reg Field During 16-Bit During 32-Bit
Data Operations | Data Operations
000 AX EAX
001 CX ECX
010 DX EDX
011 BX EBX
100 SP ESP
101 BP EBP
110 S| ESI
111 DI EDI

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Encoding of reg Field When w Field

3-Bit sreg3 Field

is Present in Instruction 5.Bit Segment
Register Specified by reg Field sreq3 ll=iel d Register
During 16-Bit Data Operations: 9 Selected
reg Function of w Field 000 ES
- _ 001 (o1}
(whenw = 0) (whenw = 1) 010 ss
000 AL AX 011 DS
001 CL CX 100 FS
010 DL DX 101 GS
011 BL BX 110 do not use
100 AH SP 111 do not use
101 CH BP
110 DH Si
111 BH DI 10.2.3.4 Encoding of Address Mode
Except for special instructions, such as PUSH or
Register Specified by reg Field POP, where the addressing mode is pre-determined,
During 32-Bit Data Operations the addressing mode for the current instruction is
- - specified by addressing bytes following the primary
reg Function of w Field o/pcocli:)e.t The dprimary aglgr?ssirf\g dlzjyte is thef“mod
- - r/m” byte, and a second byte of addressing informa-
(whenw = 0) (whenw = 1) tion, the “s-i-b” (scale-index-base) byte, can be
000 AL EAX specified.
001 CL ECX
010 DL EDX The s-i-b byte (scale-index-base byte) is specified
011 BL EBX when using 32-bit addressing mode and the “mod
100 AH ESP r/m” byte has r/m = 100 and mod = 00, 01 or 10.
101 CH EBP When the sib byte is present, the 3?-bit addressing
110 DH ES| mode is a function of the mod, ss, index, and base
fields.
111 BH EDI

10.2.3.3 Encoding of the Segment
Register (sreg) Field

The sreg field in certain instructions is a 2-bit field
allowing one of the four 80286 segment registers to
be specified. The sreg field in other instructions is a
3-bit field, allowing the Intel486 Microprocessor FS
and GS segment registers to be specified.

2-Bit sreg2 Field

2-Bit pogmen
' Register
sreg2 Field Selected
01 CS
10 SS -
1 DS

169

The primary addressing byte, the “mod r/m” byte,
also contains three bits (shown as TTT in Figure
10.1) sometimes used as an extension of the pri-
mary opcode. The three bits, however, may also be
used as a register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit ad-
dressing uses 16-bit address components to calcu-
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef-
fective address. When 16-bit addressing is used, the
“mod r/m” byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit addressing is used, the
“mod r/m” byte is interpreted as a 32-bit addressing
mode specifier.

Tables on the following three pages define all en-
codings of all 16-bit addressing modes and 32-bit
addressing modes.

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Encoding of 16-bit Address Mode with “mod r/m” Byte

mod r/m Effective Address mod r/m Effective Address
00 000 DS:[BX+SI] 10 000 DS:[BX+ Si+d16]
00 001 DS:[BX+Dl] 10 001 DS:[BX+DI+d16]
00010 SS:[BP+8SlI] 10010 SS:[BP+ SI+d16]
00011 SS:[BP+DI] 10011 SS:[BP+DI+d16]
00 100 Ds:[sI] 10 100 DS:[SI+d16]
00 101 Ds:[DI] 10 101 DS:[DI+d16]
00110 DS:d16 10110 SS:[BP+d16]
00 111 Ds:[BX] 10111 DS:[BX+d16]
01 000 DS:[BX+ SI+d8] 11 000 register—see below
01 001 DS:[BX+ DI+ ds] 11 001 register—see below
01010 SS:[BP+SI+ds] 11010 register—see below
01011 SS:[BP+DI+d8] 11011 register—see below
01100 DS:[SI+d8] 11100 register—see below
01101 DS:[Di+d8] 11101 register—see below
01110 SS:[BP+d8] 11110 register—see below
01111 DS:[BX+d8] 11111 register—see below
Register Specified by r/m Register Specified by r/m
During 16-Bit Data Operations During 32-Bit Data Operations
mod r/m Function of w Field mod r/m Function of w Field
(when w=0) (whenw =1) (when w=0) (whenw =1)
11 000 AL AX 11 000 AL EAX
11 001 CL CX 11 001 CL ECX
11010 DL DX 11010 DL EDX
11011 BL " BX 11011 BL EBX
11100 AH SP 11100 AH ESP
11101 CH BP 11101 CH EBP
11110 DH Sl 11110 DH ESI
11111 BH DI 11111 BH EDI

170

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Encoding of 32-bit Address Mode with “mod r/m” byte (no “s-i-b” byte present):

mod r/m Effective Address mod r/m Effective Address
00 000 Ds:[EAX] 10 000 DS:[EAX+d32]

00 001 Ds:[ECX] 10 001 DS:[ECX+d32]
00010 DS:[EDX] 10010 DS:[EDX +d32]
00011 DS:[EBX] 10011 DS:[EBX+d32]

00 100 s-i-b is present 10100 s-i-b is present

00 101 DS:d32 10101 SS:[EBP+d32]

00 110 Ds:[ESI] 10110 DS:[ESI+d32]

00 111 DS:[EDI] 10 111 DS:[EDI+d32]
01000 DS:[EAX+d8] 11 000 register—see below
01001 DS:[ECX+d8] 11 001 register—see below
01010 DS:[EDX+d8] 11010 register—see below
01011 DS:[EBX+d8] 11011 register—see below
01100 s-i-b is present 11100 register—see below
01101 SS:[EBP+d8] 11101 register—see below
01110 DS:[ESI+d8] 11110 register—see below
01111 DS:[EDI+d8] 11111 register—see below

Register Specified by reg or r/m
during 16-Bit Data Operations:

Register Specified by reg or r/m
during 32-Bit Data Operations:

Function of w field Function of w field
mod r/m mod r/m
(when w=0) (whenw=1) (when w=0) (whenw=1)

11 000 AL AX 11000 AL EAX
11 001 CL CX 11 001 CL ECX
11 010 DL DX 11010 DL EDX
11011 BL BX 11011 BL EBX
11100 AH SP 11100 AH ESP
11101 CH BP 11101 CH EBP
11 110 DH Si 11110 DH ESI
11111 BH DI 11111 BH EDI

171

intal.

Intel486™ DX MICROPROCESSOR PRELIMINARY

Encoding of 32-bit Address Mode (“mod r/m” byte and “s-i-b” byte present):

mod base Effective Address ss Scale Factor
00 000 DS:[EAX+ (scaled index)] 00 x1
00 001 DS:[ECX + (scaled index)] 01 X2
00010 DS:[EDX + (scaled index)] 10 x4
00011 DS:[EBX+ (scaled index)] 11 x8
00100 SS:[ESP + (scaled index)]
00101 DS:[d32 + (scaled index)]
00110 DS:[ESI + (scaled index)] index Index Register
00111 DS:[EDI+ (scaled index)] 000 EAX

001 ECX
01000 DS:[EAX+ (scaled index) +d8] 010) EDX
01 001 DS:[ECX+ (scaled index) + d8] 011 EBX
01010 DS:[EDX + (scaled index) + d8] 100 no index reg**
01011 DS:[EBX + (scaled index) + d8] 101 EBP
01100 SS:[ESP + (scaled index) + d8] 110 ESI
01101 SS:[EBP + (scaled index) + d8] 111 EDI
01110 DS:[ESI + (scaled index) +d8]
01111 DS:[EDI + (scaled index) + d8] **IMPORTANT NOTE:

When index field is 100, indicating “‘no index register,” then
. i 1 00. If i is 100 ani not
10000 | DSIEAK (scaled inden)+ 2] Sausl 00, the effectve address fs undefined,
10010 DS:[EDX + (scaled index) + d32]
10011 DS:[EBX+ (scaled index) + d32]
10 100 SS:[ESP + (scaled index) + d32]
10 101 SS:[EBP + (scaled index) + d32]
10110 DS:[ESI + (scaled index) + d32]
10111 DS:[EDI + (scaled index) + d32]
NOTE:

Mod field in “mod r/m” byte; ss, index, base fields in

“s-i-b” byte.

172

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

10.2.3.5 Encoding of Operation
Direction (d) Field

In many two-operand instructions the d field is pres-
ent to indicate which operand is considered the
source and which is the destination.

d Direction of Operation

0 | Register/Memory <- - Register
“reg” Field Indicates Source Operand;
“mod r/m” or “mod ss index base” Indicates

Destination Operand

1 | Register <-- Register/Memory
“reg” Field Indicates Destination Operand;
“mod r/m” or “mod ss index base” Indicates

Source Operand

10.2.3.6 Encoding of Sign-Extend (s) Field

The s field occurs primarily to instructions with im-
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16-bit or 32-bit destination.

Effect on Effect on
] Immediate Immediate
Data8 Data 16|32
0 None None
1 Sign-Extend Data8 to Fill None
16-Bit or 32-Bit Destination

10.2.3.7 Encoding of Conditional
Test (tttn) Field

For the conditional instructions (conditional jumps
and set on condition), tttn is encoded with n indicat-
ing to use the condition (n=0) or its negation (n=1),
and ttt giving the condition to test.

173

Mnemonic Condition tttn
(e) Overflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal | 1100
NL/GE Not Less Than/Greater or Equal | 1101
LE/NG Less Than or Equal/Greater Than | 1110
NLE/G Not Less or Equal/Greater Than | 1111

10.2.3.8 Encoding of Control or Debug
or Test Register (eee) Field

For the loading and storing of the Control, Debug
and Test registers.

When Interpreted as Control Register Field

eee Code Reg Name
000 CRO
010 CR2
011 CR3

Do not use any other encoding

When Interpreted as Debug Register Field

eee Code Reg Name
000 DRO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR7

Do not use any other encoding

When Interpreted as Test Register Field

eee Code Reg Name
011 TR3
100 TR4
101 TR5
110 TR6
111 TR7

Do not use any other encoding

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Instruction Optional
First Byte Second Byte Fields

1 11011 OPA 1 mod 1 OPB r/m s-i-b disp
2 11011 MF OPA mod OPB r/m s-i-b disp
3 11011 d P OPA 1 1 OPB ST(i)
4 11011 0 1 1 1 1 oP
5 11011 1 1 1 opP

15-11 10 9 8 7 6 5 4 3 210

" 10.2.4 ENCODING OF FLOATING POINT
INSTRUCTION FIELDS

Instructions for the FPU assume one of the five
forms shown in the following table. In all cases, in-
structions are at least two bytes long and begin with
the bit pattern 11011B.

OP = Instruction opcode, possible split into two
fields OPA and OPB

MF = Memory Format
00—32-bit real
01—32-bit integer
10—64-bit real
11—16-bit integer

P = Pop
0—Do not pop stack
1—Pop stack after operation

174

d = Destination
0—Destination is ST(0)
1—Destination is ST(i)

R XOR d = 0—Destination (op) Source
R XOR d = 1—Source (op) Destination

ST()) = Register stack element /
000 = Stack top

001 = Second stack element
L]

[
L]
111 = Eighth stack element

mod (Mode field) and r/m (Register/Memory specifi-
er) have the same interpretation as the correspond-
ing fields of the integer instructions.

s-i-b (Scale Index Base) byte and disp (displace-
ment) are optionally present in instructions that have
mod and r/m fields. Their presence depends on the
values of mod and r/m, as for integer instructions.

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

11.0 DIFFERENCES BETWEEN THE

Intel486™ MICROPROCESSOR
AND THE 386™™
MICROPROCESSOR PLUS THE
387™ MATH COPROCESSOR
EXTENSION

The differences between the Intel486 Microproces-
sor and the 386 Microprocessor are due to perform-
ance enhancements. The differences between the
microprocessors are listed below.

1.

2.

Instruction clock counts have been reduced to
achieve higher performance. See Section 10.

The Intel486 Microprocessor bus is significantly
faster than the 386 Microprocessor bus. Differ-
ences include a 1X clock, parity support, burst
cycles, cacheable cycles, cache invalidate cycles
and 8-bit bus support. The Hardware Interface
and Bus Operation Sections (Sections 6 and 7) of
the data sheet should be carefully read to under-
stand the Intel486 Microprocessor bus function-
ality.

. To support the on-chip cache new bits have been

added to control register 0 (CD and NW) (Section
2.1.2.1), new pins have been added to the bus
(Section 6) and new bus cycle types have been
added (Section 7). The on-chip cache needs to
be enabled after reset by clearing the CD and
NW bit in CRO.

. The complete 387 math coprocessor instruction

set and register set have been added. No |/0
cycles are performed during Floating Point in-
structions. The instruction and data pointers are
set to 0 after FINIT/FSAVE. Interrupt 9 can no
longer occur, interrupt 13 occurs instead.

. The Intel486 Microprocessor supports new float-

ing point error reporting modes to guarantee
DOS compatibility. These new modes required a
new bit in control register 0 (NE) (Section 2.1.2.1)
and new pins (FERR# and IGNNE#) (Section
6.2.13 and 7.2.14).

. In some cases FERR # is asserted when the next

floating point instruction is encountered and in
other cases it is asserted before the next floating
point instruction is encountered, depending upon

175

10.

11.

12

13.

14.

the execution state the instruction causing ex-
ception (see Sections 6.2.13 and 7.2.14). For
both of these cases, the 387 Math Coprocessor
asserts ERROR# when the error occurs and
does not wait for the next floating point instruc-
tion to be encountered.

. Six new instructions have been added:

Byte Swap (BSWAP)
Exchange-and-Add (XADD)

Compare and Exchange (CMPXCHG)
Invalidate Data Cache (INVD)

Write-back and Invalidate
(WBINVD)

Invalidate TLB Entry (INVLPG)

Data Cache

. There are two new bits defined in control regis-

ter 3, the page table entries and page directory
entries (PCD and PWT) (Section 4.5.2.5).

. A new page protection feature has been added.

This feature required a new bit in control register
0 (WP) (Section 2.1.2.1 and 4.5.3).

A new Alignment Check feature has been add-
ed. This feature required a new bit in the flags
register (AC) (Section 2.1.1.3) and a new bit in
control register 0 (AM) (Section 2.1.2.1).

The replacement algorithm for the translation
lookaside buffer has been changed from a ran-
dom algorithm to a pseudo least recently used
algorithm like that used by the on-chip cache.
See Section 5.5 for a description of the algo-
rithm.

Three new testability registers, TR3, TR4 and
TRS5, have been added for testing the on-chip
cache. TLB testability has been enhanced. See
Section 8.

The prefetch queue has been increased from 16
bytes to 32 bytes. A jump always needs to exe-
cute after modifying code to guarantee correct
execution of the new instruction.

After reset, the ID in the upper byte of the DX
register is 04. The contents of the base regis-
ters including the floating point registers may be
different after reset.

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

12.0 OVERDRIVE PROCESSOR
SOCKET

Inclusion of the OverDrive Processor Socket in sys-
tems based on Intel4d86 DX Microprocessors pro-
vides the end-user with an easy and cost-effective
way to increase system performance. The paradigm
of simply installing an additional component into an
empty OverDrive Processor Socket to achieve en-
hanced system performance is familiar to the mil-
lions of end-users and dealers who have purchased
Intel Math CoProcessor upgrades to boost system
floating point performance. The OverDrive Proces-
sor provides an overall performance increase for
systems based on Intel486 DX Microprocessors.

As a new system architectural feature, the provision
of the OverDrive Processor Socket as a means for
PC users to take advantage of the ever more rapid
advances in software and hardware technology will
help to maintain the competitiveness of X86 PC-
compatible systems over other architectures into the
future.

The majority of upgrade installations which take ad-
vantage of the OverDrive Processor Socket will be
performed by end-users and resellers. Therefore, it
is important that the design be “end-user easy”, and
that the amount of training and technical expertise
required to install the OverDrive Processor be mini-
mized. Upgrade installation instructions should be
clearly described in the system user’s manual. In ad-
dition, by making installation simple and foolproof,
PC manufacturers can reduce the risk of system
damage, warranty claims and service calls. Feed-
back from Intel’s Math CoProcessor customers high-
lights three main characteristics of end-user easy
designs: accessible OverDrive Processor Socket lo-
cation, clear indication of component orientation,
and minimization of insertion force.

OverDrive Processor Socket Location: The Over-
Drive Processor Socket for Intel486 DX and Intel486
SX Microprocessor based systems is an empty
socket which can be located on either the mother-
board or modular CPU card. The OverDrive Proces-
sor Socket should be easily accessible for installa-
tion and readily visible when the PC case is re-
moved. The OverDrive Processor Socket should not
be located in a position that requires removal of any
other hardware (such as hard disk drives) in order to
install the OverDrive Processor. Since Math CoProc-
essor sockets are typically found near the CPU
socket on the motherboard, similarly locating the
OverDrive Processor Socket near the CPU further
adds to the ease of installation.

176

Component Orientation: The most common mis-
take made by end-users and resellers when install-
ing Math CoProcessor upgrades is incorrect orienta-
tion of the chip. This can result in irreversible dam-
age to the chip and/or the PC. To solve this prob-
lem, Intel has designed the OverDrive Processor
with a 169 pin Pin Grid Array (PGA) pinout, with the
169th pin as a non-electrical “key pin” used to en-
sure proper orientation of the OverDrive Processor
by the PC user. The OverDrive Processor Socket
should, therefore, be a 169 pin PGA socket compati-
ble with the OverDrive Processor pinout.(1) In addi-
tion, the location of the key pin should be clearly
marked on the motherboard or CPU card, for exam-
ple by silk screening.

Insertion Force: The third major concern voiced by
end-users refers to how much pressure should be
exerted on the chip and PC board for proper installa-
tion without damage. This becomes even more of a
concern with the larger 169 pin components which
require up to 150 pounds of pressure for insertion
into a standard screw machine socket. This level of
pressure can easily result in cracked traces and
stress to solder joints. To minimize the risk of sys-
tem damage, it is recommended that a Zero Inser-
tion Force (ZIF) socket be used for the OverDrive
Processor Socket. Designing with a ZIF socket elimi-
nates the need to design in additional structural sup-
port to prevent flexing of the PC board during instal-
lation, and results in improved end-user and reseller
product satisfaction due to easy ‘“drop-in” installa-
tion.

12.1 OverDrive Processor Overview

The Intel OverDrive Processor is essentially an en-
hanced Intel486 Microprocessor. There are three
functional differences between the Intel OverDrive
Processor and Intel486 Microprocessors. First, the
Intel OverDrive Processor has an internal clock dou-
bling circuit which decreases the time required to
execute instructions. Second, the Intel OverDrive
Processor does not support the JTAG boundary
scan test feature (available with the PQFP version of
the Intel486 DX Microprocessor). Third, the Intel
OverDrive Processor has a different CPU revision
identification than the Intel486 DX CPU. These three
differences are described in the following sections
according to how they effect the CPU functionality.

12.1.1 HARDWARE INTERFACE

The Intel OverDrive Processor bus has been de-
signed to be identical with the Intel486 Microproces-
sor bus. Although the external clock is internally
doubled and data and instructions are manipulated
in the CPU core at twice the external frequency, the
external bus is functionally identical with the Intel486
CPU.

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

The four boundary scan test signals (TCK, Test
clock; TMS, Test Mode select; TDI, Test Data Input;
TDO, Test Data Output), defined for the PQFP ' Intel
486 SX CPU, are not specified for the Intel Over-
Drive Processor.

The UP# (Upgrade Present) signal, which is defined
as an input for the PQFP Intel486 CPU, is an output
signal on the Intel OverDrive Processor. The UP#
pin on the Intel OverDrive Processor provides a logi-
cal low output signal which can be used to enable
logic to recognize and configure the system for the
Intel OverDrive Processor.

The DX register always contains the component
identifier at the conclusion of RESET. The Intel
OverDrive Processor has a different revision identifi-
er in the DL register than the Intel486 DX Microproc-
essor. When the OverDrive Processor is installed in
a system the component identifier is supplied by the
OverDrive Processor, rather than the original CPU.
The stepping identification portion of the component
identification will change with different revisions of
the OverDrive Processor. The designer should only
assume that the component identification for the
OverDrive Processor will be 043xH, where X’ is the
stepping identifier.

12.1.2 TESTABILITY

As detailed in Section 13.1.1, the Intel OverDrive
Processor does not support the JTAG boundary
“scan testability feature.

12.1.3 INSTRUCTION SET SUMMARY

The Intel OverDrive Processor supports all Intel486
extensions to the 8086/80186/80286 instruction
set. In general, instructions will execute faster on the
Intel OverDrive Processor than the Intel486 Micro-
processor. Specifically, an instruction that only uses
memory from the on-chip cache executes at the full
core clock rate while all bus accesses execute at the
bus clock rate. To calculate the elapsed time of an
instruction, the number of clock counts for that in-
struction must be multiplied by the clock period for
the system. The instruction set clock count summary
tables from Section 10.0 can be used for the Over-
Drive Processor witth the following modifications:

— Clock counts for a cache hit: This value repre-
sents the number of internal CPU core clocks for
an instruction that requires no external bus ac-
cesses or the base core clocks for an instruction
requiring external bus accesses.

Penalty clock counts for a cache miss: This value
represents the worst-case approximation of the
additional number of external clock counts that
are required for an instruction which must access

177

the external bus for data (a cache miss). This num-
ber must be multiplied by 2 to convert it to an equal
number of internal CPU core clock counts and add-
ed to the base core clocks to compute the total
number of core clocks for this instruction.

The actual number of core clocks for an instruction
with a cache miss may be less than the base clock
counts (from the cache hit column) plus the penalty
clock counts (2 times the cache miss column num-
ber). The clock counts in the cache miss penalty
column can be a cumulative value of external bus
clocks (for data reads) and internal clocks for manip-
ulating the data which has been loaded from the ex-
ternal bus. The number of clocks which are related
to external bus accesses are correctly represented
in terms of internal core clocks by multiplying by two.
However, the clock counts related to internal data
manipulation should not be multiplied by two. There-
fore the total number of CPU core clock counts for
an instruction with a cache miss represents a worst-
case approximation.

To calculate the execution time for an OverDrive
Processor instruction, multiply the total CPU core
clock counts by the core clock period. For example,
in a 25 MHz system the core clock period is 50 ns
(1/50 MHz).

Additionally, the assumptions specified below
should be understood in order to estimate instruc-
tion execution time.

A cache miss will force the OverDrive Processor to
run an external bus cycle. The Intel486 DX micro-
processor 32-bit burst bus is defined as r—b—w.

Where:

The number of bus clocks in the first cycle of a
burst read or the number of clocks per data
cycle is a non-burst read.

r=

b = The number of bus clocks for the second and
subsequent cycles in a burst read.
w = The number of bus clocks for a write.

The fastest bus the OverDrive Processor can sup-
port is 2—1—2 assuming O wait states. The clock
counts in the cache miss penalty column assume a
2—1—2 bus. For slower busses add r—2 clocks to
the cache miss penalty for the first dword accessed.
Other factors also affect instruction clock counts.

Instruction Clock Count Assumptions

1. The external bus is available for reads or writes at
all times. Else add bus clocks to reads until the
bus is available

2. Accesses are aligned. Add three core clocks to
each misaligned access.

Intel486™ DX MICROPROCESSOR PRELIMINARY

intel.

3. Cache fills complete before subsequent accesses

8. Displacement and immediate not used together.

to the same line. If a read misses the cache dur-
ing a cache fill due to a previous read or prefetch,
the read must wait for the cache fill to complete. If
a read or write accesses a cache line still being
filled, it must wait for the fill to complete.

4. If an effective address is calculated, the base reg-

ister is not the distination register of the preceding
instruction. If the base register is the destination
register of the preceding instruction add 1 to the
core clock counts shown. Back-to-back PUSH
and POP instructions are not affected by this rule.

5. An effective address calculation uses one base
register and does not use an index register.
However, if the effective address calculation
uses an index register. 1 core clock may be add-
ed to the clock shown.

6. The target of a jump is in the cache. If not, add r
clocks for accessing the destination instruction
of a jump. If the destination instruction is not
completely contained in the first dword read, add
a maximum of 3b bus clocks. If the destination
instruction is not completely contained in the first
16 byte burst, add a maximum of another r+3b
bus clocks.

. If no write buffer delay, w bus clocks are added
only in the case in which all write buffers are full.

178

10.

11.

12

If displacement and immediate used together, 1
core clock may be added to the core clock count
shown.

. No invalidate cycles. Add a delay of 1 bus clock

for each invalidate cycle if the invalidate cycle
contends for the internal cache/external bus
when the OverDrive Processor needs to use it.

Page translation hits in TLB. A TLB miss will add
13, 21 or 28 bus clocks + 1 possible core clock
to the instruction depending on whether the Ac-
cessed and/or Dirty bit in neither, one or both of
the page entries needs to be set in memory. This
assumes that neither page entry is in the data
cache and a page fault does not occur on the
address translation.

No exceptions are detected during instruction
execution. Refer to interrupt core Clock Counts
Table for extra clocks if an interrupt is detected.

Instructions that read multiple consecutive data
items (i.e., task switch, POPA, etc.) and miss the
cache are assumed to start the first access on a
16-byte boundary. If not, an extra cache line fill
may be necessary which may add up to (r+3b)
bus clocks to the cache miss penalty.

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

12.2 Intel OverDrive™ Processor
Circuit Design

Figure 12.1 shows the interface circuit for the
intel486 DX CPU and the OverDrive Processor sock-
et. This circuit allows Intel486 DX CPU-based sys-
tems to be upgraded with the OverDrive Processor.

12.2.1 UPGRADE CIRCUIT FOR PGA INTEL486
DX BASED SYSTEMS

The Intel OverDrive Processor Socket Circuit for In-
tel486 DX CPU based systems allows the Intel486
DX CPU complete control of the system when the
Intel OverDrive Processor Socket is unpopulated.
The HLDA signal from the Intel OverDrive Processor
Socket should be tied low through a resistor while
the UP# and FERR# signals from the Intel Over-
Drive Processor Socket should be tied high through
a resistor to insure that the Intel486 DX CPU func-
tions correctly when an Intel OverDrive Processor
Socket component is not installed.

When the Intel OverDrive Processor is installed, the
Upgrade Present output, UP# pin, causes the
FLUSH# and BOFF # signals to be driven active to
the Intel486 DX CPU. When the Intel486 DX CPU

samples FLUSH# active during reset, the Intel486
DX CPU enters tri-state output test mode after reset,
which causes the Intel486 DX CPU to float all of its
output signals. To float most of the Intel486 DX
CPU’s output pins before the end of reset, BOFF #
is also driven active to the Intel486 DX CPU. BOFF #
immediately causes all output signals to float except
PCHK#, BREQ, HLDA and FERR #.

In addition to floating the Intel486 DX CPU’s outputs,
the intel486 DX CPU’'s HLDA and FERR# signals
must be gated to prevent potential bus contention
with the Intel OverDrive Processor's HLDA and
FERR# signals during reset. During reset the In-
tel486 DX CPU may not recognize HOLD active be-
cause BOFF# is driven active to the Intel486 DX
CPU by the Intel OverDrive Processor. If the Intel486
DX CPU does not recognize HOLD active, it will not
drive HLDA active. However, the Intel OverDrive
Processor will recognize HOLD active and drive
HLDA. By gating the HLDA signals from the Intel486
DX CPU and Intel OverDrive Processor Socket, bus
contention is avoided if HOLD is driven active during
reset. Because the state of FERR# is undefined
during reset, bus contention is also avoided by gat-
ing FERR #.

* CLK

CTRL

ADDR
DATA

DATA ADDR CTRL
1> cLk HLDA |—

_‘iﬂ

HLDA

DATA ADDR CTRL

OVERDRIVE™ UP# [O-
PROCESSOR

BOFF# O=

IGNNE# FERR# HOLD

FLUSH# o-——-r_‘:D__c FLUSH# R
Intel PGA

> CLK HLDA

i486™DX —
BOFF#

IGNNE# FERR# HOLD

T] .

HOLD

FERR#

L1
1 *
b
S. <. <
SR IR IR DC
| R
IGNNE# Ve BOFF# FLUSH#

240440-96

Figure 12.1. Intel OverDrive™ Socket Circuit Diagram for PGA Inte!486™ DX CPU Based Systems

179

intal. Intel486™ DX MICROPROCESSOR PRELIMINARY

12.3 Socket Layout Table 12.1. OverDrive Processor, 169-Pin, PGA
Package Dimensions with Heat Sink Attached

This section discusses three aspects for the Over- - — N
Drive Processor Socket: size, upgradability, and ven- Dimension (Inches) | Minimum | Maximum
dors. A. Heat Sink Width 1.520 1.550

B. PGA Package 1.735 1.765
12.3.1 PHYSICAL DIMENSIONS Width
The OverDrive Processor Socket for Intel486 DX mi- C. Heat Sink Edge 0.065 0.155
croprocessor-based systems is equivalent to a stan- Gap
dard 165-lead PGA package. D. HeatSink Height | 0.212 0.260
The OverDrive Processor will be provided with a E. Adhesive 0.008 0.012
heat sink attached (see Figure 12-2), to dissipate Thickness
heat. F. Package Height 0.140 0.180
The maximum and minimum dimensions of the from Stand-Offs
OverDrive Processor package with the heat sink are G. Total Height from 0.360 0.452
shown in Table 12-1. Stand-Offs to Top

of Heat Sink

I . —’!C‘—

OVERDRIVE PROCESSOR
OMNI-DIRECTIONAL HEAT SINK D G

E
ADHESIVE ‘

UPGRADE PROCESSOR, 169 PIN, PGA PACKAGE T

T3 = l
1

Figure 12.2. Intel OverDrive™ Processor, 169-Pin, PGA Package with Heat Sink Attached

240440-98

180

intal. Intel486™ DX MICROPROCESSOR PRELIMINARY
SEATING
D PLANE
o, A=
S1—> — A3* ~
L
¢R‘E~,f5 CNOXOXORONONOROXORONORORONOROXOKO)]
N [CXORCXOROXOROROXOROJOROXOJOROXOKO) f
OJOXCNONORORORORONONORONOROROXOKO)] o
| @O0 (ONOXO)
©00 ©0® SEATING
@O0 — (ONOXO) PLANE
©O0 (ONOXO) @B (ALL PINS)
@O0 / \ @6
@O0 CNONON
@00 006 [
PIN C3 @06 (CNGXO] SWAGGED
Neoo N S @O0 oo
S (OJOXO]
(ORCYOJO)] (ONONO)
(OJON © JONORONONONONONONONOROXOYCKG]
[CROXONONONONORONCRONONONORONONOKO]
I 0000000000000 06 060
2.29 SWAGGED ———x A
T.52 REF- (4PINL) oASE , l—
45° CHAMFER P
(INDEX CORNER) PLANE
240440-99
Family: Ceramic Pin Grid Array Package
Symbol Millimeters Inches
Min Max Notes Min Max Notes
A 3.56 4.57 0.140 0.180
Aq 0.64 1.14 SOLID LID 0.025 0.045 SOLIDLID
Ao 2.8 3.5 SOLIDLID 0.110 0.140 SOLID LID
A3 1.14 1.40 0.045 0.055
B 0.43 0.51 0.017 0.020
D 44,07 44.83 1.735 1.765
Dy 40.51 40.77 1.595 1.605
e 2.29 2.79 0.090 0.110
L 2.54 3.30 0.100 | 0.130
169 169
Sq 1.52 2.54 0.060 0.100
ISSUE IWS REVX 7/15/88

Figure 12.3. Intel OverDrivefM Processor, 169-Lead Ceramic PGA Package Dimensions

181

intelo Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 12.2. Intel OverDrive™ Processor Ceramic PGA Package Dimension Symbols

l:;::;;r Description of Dimensions
A Distance from seating plane to highest point of body
Aq Distance between seating plane and base plane (lid)
Ao Distance from base plane to highest point of body
Az Distance from seating plane to bottom of body
B Diameter of terminal lead pin
D Largest overall package dimension of length
D4 A body length dimension, outer lead center to outer lead center
eq Linear spacing between true lead position centerlines
L Distance from seating plane to end of lead
S Other body dimension, outer lead center to edge of body

NOTES:

1. Controlling dimension: millimeter.

2. Dimension *“e4” (*“e”) is non-cumulative.

3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch.
4. Dimensions “B”, “B4” and “C” are nominal.

5. Details of Pin 1 identifier are optional.

77]0.004
0.030 —>| }«—
0.120 X 45° —\ l«— 0.970 0.283 12X 0.060 £0.010 —l
guouiDuooogoy]
Ogooooooopoq o
gpoonononofnAd t ::%\,
o ifals g
od fulin 1100‘H14—\:I
6063-T5 0g H 0O
oq hod 0.970 [ZT0.004 g 1.540
oq ifels =
A pog Hag A 2X 0.080 #0. oos 2X 0.040 REF
oq 0 oo A {
BE ooooodd 11X 0.060 +0.006
ooooogonooo 0.285 ‘ } f é’ }
agoonononononnonon 1
| |« 12x 0.063 T T
13X 0.060 0.157 +£0.010 —»] L
‘ 1536 l«— 0.079 REF
0.250
0.015 £0.010
0.222
ngggggggggnn F
SECTION A—A
240440-A0
Dimensions are in inches

Figure 12.4. Intel OverDrive™ Processor Heat Sink Dimensions

182

inl‘elo Intel486™ DX MICROPROCESSOR

PRELIMINARY

12.3.2 “END USER EASY” UPGRADABILITY

PC buyers value easy and safe upgrade installation. PC manufacturers can make the Intel OverDrive Proces-
sor installation in the Intel OverDrive Processor Socket simple and foolproof for the end user and reseller by
implementing the suggestions listed in Table 12-3.

Table 12.3. Socket and Layout Considerations

“End User Easy”
Feature

Implementation

Visible OverDrive Processor Socket

The Intel OverDrive Processor Socket should be easily visible when
the PC’s cover is removed. Label the Intel OverDrive Processor Socket
and the location of pin 1 by silk screening this information on the PC
board.

Accessible Overdrive Processor
Socket

Make the Intel OverDrive Processor Socket easily accessible to the
end user (i.e., do not place the Intel OverDrive Processor Socket under
a disk drive). If a Low Insertion Force (LIF) or screw machine socket is
used, position the Intel OverDrive Processor Socket on the PC board
such that there is ample clearance around the socket.

Foolproof Chip Orientation

Intel packages all Intel OverDrive Processors in a 169-pin, PGA
package. The 169th pin is called the “key” pin and insures that the
Intel OverDrive Processor fits into a 169-pin socket in only the correct
orientation. Supplying a 169-pin socket as the Intel OverDrive
Processor Socket eliminates the possibility of end users or resellers
damaging the PC board or Intel OverDrive Processor by powering up
the system with the Intel OverDrive Processor incorrectly oriented.

Zero Insertion Force
Upgrade Socket

The high pin count of the Intel OverDrive Processor makes the
insertion force required for installation in a screw machine PGA socket
excessive for end users or resellers. Even most Low Insertion Force
(LIF) sockets often require more than 60 Ibs. of insertion force. A Zero
Insertion Force (ZIF) socket insures that the chip insertion force does
not damage the PC board. If the ZIF socket has a handle, be sure to
allow enough clearance for the socket handle. If a LIF or screw
machine socket is used, additional PC board support is recommended.

“Plug and Play”

Jumper or switch changes should not be needed to electrically
configure the system for the Intel OverDrive Processor.

Thorough Documentation

Describe the Intel OverDrive Processor's installation procedure in the
PC’s User’s Manual.

183

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

12.3.3 ZIF and LIF SOCKET VENDORS

The following lists provide examples of sockets
which can be used as the Intel OverDrive Socket for
Intel486 DX CPU based systems.

NOTE:
This is not a comprehensive list. Intel has not test-
ed the sockets listed below and cannot guarantee
that these sockets will meet every PC manufactur-
er’s specific requirements.

Zero Insertion Force Upgrade Sockets and
Vendors:

1. AMP Inc.
P.O. Box 3608
Harrisburg, PA 17105-3608
Tel: (800) 522-6752
Part Number: 55287-3
Contact: Rick Simonic, New Product Manager
(717) 561-6143

. Aries Electronics
P.O. Box 130
Frenchtown, NJ 08825
Tel: (908) 996-6841
Part Number: 169-PRS17012-10
Contact: Frank Folmsbee, Marketing Manager
(908) 996-6841

. JAE
599 N. Mathilda Ave., Suite 8
Sunnyvale, CA 94086
Tel: (408) 733-0493
Part Number: PCPS-169-002
Contact: Bob Gerleman, Western Sales Manager
(408) 733-0493

. Thomas and Betts
200 Executive Center Drive
P.O. Box 24901
Greenville, SC 29616-2401
Tel: (803) 676-2900
Part Number: PGA169A17-S-1AC
Contact: Scott Roland,
Product Marketing Manager
(803) 676-2910

. Yamaichi Electronics
1420 Koll Circle, Suite B
San Jose, CA 95112
Tel: (408) 452-0797
Part Number: NP111-16911-G4
Contact: Jim Bennett, Sales Manager
(408) 452-0797

184

Low Insertion Force Sockets and Vendors:

1. AMP Inc.
P.O. Box 3608
Harrisburg, PA 17105-3608
Tel: (800) 522-6752
Part Number:
(Premium Base Material) 55589-5
(Standard Base Material) 916227-3

. Thomas and Betts
200 Executive Center Drive
P.O. Box 24901
Greenville, SC 29616-2401
Tel: (803) 676-2900
Part Number: LPG169A17-S-1AC

12.4 Thermal Management

The OverDrive Processor Socket must be designed
to dissipate the heat generated by the OverDrive
Processor. In the following Sections the airflow re-
quired over the OverDrive Processor Socket is cal-
culated for a hypothetical system design.

12.4.1 THERMAL CALCULATIONS FOR
HYPOTHETICAL SYSTEM

The maximum temperature specification for the
OverDrive Processor is 85°C (with heat sink at-
tached). Therefore, the temperature of the heat sink
surface (Tg) cannot exceed 85°C under the worst
case specified operating conditions for the system.
The variables which affect the heat sink temperature
include ambient temperature inside the system box
(Ta), Vce, and Igc. An equation for the approximate
OverDrive Processor temperature (Tg) is:

Ts = Ta + Power * 0ga where Power = Vgg * Igc
In the above equation, the variables under worst
case conditions are specified as follows:

Ts: Specified as 85°C for the OverDrive Processor
(See Figure 12-5).

Ta: Specified by the PC manufacturer for the
worst case system operating conditions.

Vce: Specified for the OverDrive Processor as 5V.

lcc: Specified for the OverDrive Processor and re-
lated to clock frequency.

Osa: Osp = 6ya — Oys.

044 and 6,g are specified in Table 13-4.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Thermocouple

/

Name Plate
‘m{h Heq‘ Sink

Adhesive

Y | ALl //%_m Package

240440-A1

Figure 12.5. Heat Sink Measurement (0.005” Dia. Thermocouple) on the Center of Heat Sink with a 90°
Angle Adhesive Bond Through a Hole Drilled Through the Center of the Name Plate.

The OverDrive Processor for Intel486 DX CPU-
based systems will be provided with a heat sink. The
0,5 and 0 values for the OverDrive Processor with
a heat sink are shown in Table 12-4. The maximum
Ta values for the 25 MHz and 33 MHz OverDrive
Processor are shown in Table 12-5. The maximum
Ta values shown in Table 12-5 were calculated us-
ing Ts = 85°C, Vg = 5V, the maximum Igg values,

and the 6,4 and 0,5 values shown in Table 12-4.

Table 12.4. Thermal Resistance
(°C/W) 645 and 64

OverDrive 04s Airflow (ft/min, LFM)

with Heat Sink

2.5°C/W| 0* | 200 |400|600

800

84a (°C/W) 14.0{10.0|7.5| 6.2

5.7

NOTE:

*The thermal resistance from the junction to ambient (6,a)
in static air is actually a linear function of power dissipation.
The value shown in the table (14.0 °C/W) represents the

worst case expected value.

Table 12.5. Maximum Tp for 25 MHz and
33 MHz OverDrive Processor

OverDrive Linear Airflow (ft/min)
Processor
with Heat | ¢
- CLK
sink | aaiisy | © | 200 | 400 | 600 | 800
Ta 25 (30| 49 | 61 | 67 | 70
(C) 33 |16| 40 | 55 | 63 | 66

185

12.4.2 HEAT SINKS

The OverDrive Processor is shipped with a heat sink
attached. Because of the heat sink, it is vital that
vertical clearance is provided for the OverDrive
Processor Socket. The height of the package and
the heat sink is shown in Table 12-1 in Section
12.2.1.

12.5 BIOS and Software

The following should be considered when designing
the Upgrade Socket for a Intel486 DX2 microproces-
sor-based system.

12.5.1 INTEL OVERDRIVE PROCESSOR
DETECTION

The component identifier and stepping/revision
identifier for the Intel OverDrive Processor is read-
able in the DH and DL registers respectively, imme-
diately after RESET, where

DH
DL

= 15h
= 30h-3Fh

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

As it is difficult to differentiate betwee the Intel486
DX CPU and the Intel OverDrive Processor in soft-
ware, it is recommended that the BIOS save the
contents of the DX register, immediately after RE-
SET, so that this information can be used later, if
required, to identify an Intel OverDrive Processor in
the system.

12.5.2 TIMING DEPENDENT LOOPS

The Intel OverDrive Processor executes instructions
at twice the frequency of the input clock. Thus soft-
ware (or instuction based) timing loops will execute
faster on the Intel OverDrive Processor than on the
Intel486 DX or Intel486 SX CPU (at the same input
clock frequency). Instructions such as NOP, LOOP,
and jMP $ + 2, have been used by BiOS to imple-
ment timing loops that are required, for example, to
enforce recovery time between consecutive access-

es for 1/0 devices. These instruction based, timing
loop implementations may require modification for
systems intended to be upgradable with the Intel
OverDrive Processor.

In order to avoid any incompatibilities, it is recom-
mended that timing requirements be iimplemented in
hardware rather than in software. This provides
transparency and also does not require any change

in BIOS or 1/0 device drivers in the future when

186

moving to higher processor clock speeds. As an ex-
ample, a timing routine may be implemented as fol-
lows: The software performs a dummy I/O instruc-
tion to an unused I/0 port. The hardware for the bus
controller logic recognizes this I/0 instruction and
delays the termination of the 1/0 cycle to the CPU
by keeping RDY # or BRDY # deasserted for the ap-
propriate amount of time.

intelo Intel486™ DX MICROPROCESSOR PRELIMINARY

12.6 OverDrive Processor Socket Pinout

B ¢C D E F G H J K L M N P Q R S

A

1 / p20 D19 D11 DI Vss Pt Vss Vss Vec Vss Vss Vss D2 D0 A31 A28 A27 | 1
o 0O 0 0 o o o o oo o o o o

2] p22 p21 018 Dp13 Ve D8 Vec D3 D5 Vec D6 Ve D1 A29 Vss A25 A26 | 2
0O 0 0O 0O O 0O 0O 0O 0O 0O 0o 0O 0o o o o

3| N Vss clk D17 D10 DIS D12 DP2 D16 DI4 D7 D4 DPO A30 A17 Vec A23 | 3
0O 0 0O o 0O 0O 0o o 0o 0o oo o o o o

4| 023 Vss Voo KEY A19 Vss NC | 4
O O O O O O O

5 Pz Vss Ve A21 A18 A14 | 5§
O O O o O O

6 | Dp24 op25 D27 a2¢ Ve Vss | 6
o O O (@]

71 Vss Vec D26 A22 A15 A12 | 7
O O O o O O

8 D29 D31 D28 Aa200 Vec Vss | 8
o O O ™ (@]

9| vss Ve 030 Intel OVERDRIVE™ PROCESSOR ats Ve Vs | 9
o O O PIN SIDE VIEW 6 o O

10 NC NC NC A13 Ve Vss | 10
o O O o O

11 Vss Vec NC A9 Vec Vss |11
O O O o O

12 NC NC NC A5 A1l Vss | 12
o O O o O

13| FeRR# NG NC A7 A8 A0 |13
O O O O O O

14 NC UP# NC A2 Vec Vss | 14
O O O O O O

15 | IGNNE# NMI FLUSH# A20M# HOLD KEN# NC BRDY# BE2# BEO# PWT D/C# LOCK# HLDA BREQ A3 A6 | 15
0 0O o o 0O 0O o o oo oo o o o o o

16 | ™R N Reser Bss# Vec RoY# Vec Vec BEt# Voo Vee Ve M/io# Vec PLock# BLAsT# A4 | 16
0O 0 0O o O o 0o o oo 0o oo o o o o

17 | AHop Eeaps# Bsie# BOFF# Vss BE3# Vss Vss pecD Vss Vss Vss W/R# Vss PCHK# NC ADs# | 17
0 0O 0 0O 0O 0O 0O o oo o o o o o o o

A B C D E F G H J K L M N P Q R S

240440-A2

Figure 12.6 Intel OverDrive™ Processor Socket Pinout for Intel486™ DX CPU System (Pin Side View)

187

ini'e|® Intel486™ DX MICROPROCESSOR PRELIMINARY

S R @ P N M L K J H G F E D C B A

1 A27 A28 A3t D0 D2 Vss Vss Vss Vec Vss Vss opt Vss D9 D11 D19 th\ 1
0 0O O O 0O O 0O O o o 0o o o o o o o
2| A26 aA25 VYss A29 b1 Vec 06 Ve D5 D3 Vec D8 Ve D13 D18 D21 D22 | 2
0 0 0O 0o 0O 0O 0O 0O o o 0o o o o o o
3| A23 Vec a17 A30 DPO D4 D7 D14 D16 DP2 D12 D15 D10 D17 CK VYss N | 3
o 0 o 0o 0O o 0O o o o o o o o
4 NC Vss At9 KEY Vec Vss D23 | 4
o O o O
51 A4 A18 A21 Vee Vss OP3 | §
o O O o
6| VYss VYoo a24 D27 D25 D24 | 6
o
71 a2z a5 a2 026 Vec Vss | 7
o O
8| Vss Ve A20 D28 D31 D29 | 8
0O O O o O
9 ‘gs VOCC Aés Intel OVERDRIVE™ PROCESSOR [gO VS: "55 9
v v TOP SIDE VIEW
10 ss Voo A13 Ne N Ne |10
o O o O
11] Vss Vec a9 Ne Veo Vss | 11
O] O
12| VYss At1 as NC Nc Ne |12
o O O o O O
13| a0 A8 a7 NC NC FERR#| 13
o O O o O O
14] VYss Voo A2 Ne ur Ne | 14
o O O o O O
15 A6 A3 BREQ HLDA LOCK# D/C# PWT BEO# BE2# BRDY# NC KEN# HOLD A20M# FLUSH# NMI IGNNE#| 15
0 0O o o O 0o o o oo o o o o o o o
16 A4 BLAsT# PLock# Vec M/lo# Vec Vec Vec BEt# Voo Vec ROY# Voo BSB# RESET NC INTR | 16
0O 0 o o o o oo oo oo 0o o o o o
17 | abs# N pcHk# Vss w/R# Vss Vss Vss pcD Vss Vss BE3# Vss BOFF# BS16# EADS# AHOLD | 17
0O 0 0O o 0O 0O 0o 0O oo 0 0o o o o o o

S R @ P N M L K J H G F E D C B A
240440-A3

Figure 12.7. Intel OverDrive™ Processor Socket Pinout for Intel486™ DX CPU System (Top Side View)

188

intelo Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 12.6. Pin Cross Reference by Pin Name

Address Data Control N/C Vece Vss
Ao Ql4 Do P1 A20M # D15 A10 B7 A7
Ag R15 D4 N2 ADS# S$17 Al12 B9 A9
Ay S16 D2 N1 AHOLD A17 Al4 B11 A1
As Q12 D3 H2 BEO# K15 B12 C4 B3
As S15 Dy M3 BE1# J16 B13 C5 B4
Az Q13 Ds J2 BE2# J15 c10 E2 B5
Ag R13 De L2 BE3# F17 C13 E16 E1
Ag Qi1 D7 L3 BLAST # R16 G15 G2 E17
Aqo S13 Dg F2 BOFF # D17 R17 G16 G1
Aqq R12 Dg D1 BRDY # H15 S4 H16 G17
Aq2 S7 Do E3 BREQ# Q15 A3 N} HA
Aq3 Q10 D4 C1 BS8# D16 B10 K2 H17
Aqg S5 D12 G3 BS16# C17 B16 K16 K1
Ais R7 Di3 D2 CLK C3 Ci11 L16 K17
Ats Q9 D14 K3 D/C# M15 Ci12 M2 L1
A7 Q3 Dis F3 DPO N3 C14 M16 L17
A1 R5 D1s J3 DP1 F1 P16 M1
Aqg Q4 . Dy7 D3 DP2 H3 R3 M17
Ago Qs Disg c2 DP3 A5 R6 P17
Aoq Q5 D49 B1 EADS# B17 R8 Q2
Aoz Q7 Doo Al FERR# A13 R9 R4
Ag3 S3 Do B2 FLUSH# Ci5 R10 S6
Aoy Q6 Doo A2 HLDA P15 R11 S8
Ags R2 Do3 A4 HOLD E15 R14 S9
Agg S2 Doy A6 IGNNE # A15 S10
Aoz St Dos B6 INTR Al16 Si1
Agg R1 Dog Cc7 KEN # F15 S12
Agg P2 Da7 Cé LOCK# N15 S14
Asp P3 Dog c8 M/IO# N16
Agzq Q1 Dag A8 NMI B15
D30 C9 PCD J17
D3y B8 PCHK # Q17
PWT L15
PLOCK # Q16
RDY # F16
RESET C16
UP# B14
W/R# N17
KEY D4

189

in'l'elo Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 12-7. Intel OverDrive™ Processor Socket Pin Description

Symbol l Type | Name and Function
Intel486 DX2 CPU INTERFACE
UP# (0] The Upgrade Present pin is used to signal the Intel486 DX microprocessor to float its

outputs and get-off the bus. It is active low and is never floated. UP # is driven low at
power-up and remains active for the entire duration of the Upgrade Processor

operation.
KEY PIN
KEY The Key pin is an electrically non-functional pin which is used to ensure correct
orientation for 169-pin upgrade products.
12.7 D.C./A.C. Specifications OverDrive Processor is compatible to the maximum

ratings and A.C. Specifications of the Intel486 DX
The electrical specifications in this section represent Microprocessor. Table 12-8 provides the D.C. Oper-
the electrical interface of the Upgrade Processor for ating Conditions for the OverDrive Processor.
a Intel486 DX microprocessor-based system. The

Table 12-8. Intel OverDrive™ Processor Socket D.C. Parametric Values(1)

Symbol Parameter Min Max Unit Notes
ViL Input Low Voltage -0.3 +0.8 \"
ViH Input High Voltage 2.0 Voe + 0.3 \"
VoL Output Low Voltage 0.45 v (Note 2)
VoH Output High Voltage 24 v (Note 3)
lcc Power Supply Current
CLK = 25 MHz 950 mA (Note 4)
CLK = 33 MHz 1200
I Input Leakage Current +15 HA (Note 5)
I Input Leakage Current 200 pA (Note 6)
L Input Leakage Current —400 rA (Note 7)
Lo Output Leakage Current , +15 pA
CiN Input Capacitance 13 pF Fc = 1 MHz(®)
Co 1/0 or Output Capacitance 17 pF Fc = 1 MHz(®)
CoLk CLK Capacitance 15 pF Fc = 1 MHz(®)
NOTES:

1. Functional operating range: Voc = 5V; Tg = 0°C to +85°C.
2. This parameter is measured at:

— Address, Data, BEn 4.0 mA

— Definition, Control 5.0 mA
3. This parameter is measured at:

— Address, Data, BEn —1.0mA

— Definition, Control —0.9mA

4, Typical supply current:
775 mA @ CLK = 25 MHz
975 mA @ CLK = 33 MHz
5. This parameter is for inputs without pullups or pulldowns and 0 < VN < V.
6. This parameter is for inputs with pulldowns and V| = 2.4V.
7. This parameter is for inputs with pullups and V| = 0.45V.
8. Not 100% tested.

190

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

13.0 ELECTRICAL DATA

The following sections describe recommended elec-
trical connections for the Intel486 Microprocessor,
and its electrical specifications.

13.1 Power and Grounding

13.1.1 POWER CONNECTIONS

The Intel486 Microprocessor is implemented in
CHMOS |V technology and has modest power re-
quirements. However, its high clock frequency out-
put buffers can cause power surges as multiple out-
put buffers drive new signal levels simultaneously.
For clean on-chip power distribution at high frequen-
cy, 24 Vg and 28 Vgg pins feed the Intel486 Micro-
processor.

Power and ground connections must be made to all
external Vgc and GND pins of the Intel486 Micro-
processor. On the circuit board, all Vgc pins must be
connected on a Vgg plane. All Vgg pins must be
likewise connected on a GND plane.

13.1.2 POWER DECOUPLING
RECOMMENDATIONS

Liberal decoupling capacitance should be placed
near the Intel486 Microprocessor. The Intel486 Mi-
croprocessor driving its 32-bit parallel address and
data busses at high frequencies can cause transient
power surges, particularly when driving large capaci-
tive loads.

191

Low inductance capacitors and interconnects are
recommended for best high frequency electrical per-
formance. Inductance can be reduced by shortening
circuit board traces between the Intel486 Microproc-
essor and decoupling capacitors as much as possi-
ble. Capacitors specifically for PGA packages are
also commercially available.

13.1.3 OTHER CONNECTION
RECOMMENDATIONS

N.C. pins should always remain unconnected.

For reliable operation, always connect unused in-
puts to an appropriate signal level. Active LOW in-
puts should be connected to Vg through a pullup
resistor. Pullups in the range of 20 KQ are recom-
mended. Active HIGH inputs should be connected to
GND.

13.2 Maximum Ratings

Table 13.1 is a stress rating only, and functional op-
eration at the maximums is not guaranteed. Function
operating conditions are given in 13.3 D.C. Specifi-
cations and 13.4 A.C. Specifications.

Extended exposure to the Maximum Ratings may af-
fect device reliability. Furthermore, aithough the
Intel486 Microprocessor contains protective circuitry
to resist damage from static electric discharge, al-
ways take precautions to avoid high static voltages
or electric fields.

intel. Intel486™ DX MICROPROCESSOR PRELIMINARY
Table 13.1. Absolute Maximum Ratings Voltage on Any Pin with
Respect to Ground.......... —0.5to Vgg + 0.5V

Case Temperature under Bias ... —65°C to + 110°C Supply Voltage with

Storage Temperature —65°Cto +150°C RespecttoVss

13.3 D.C. Specifications
Functional Operating Range: Vgg = 5V £5%; Tcasg = 0°C to +85°C

........ —0.5Vto +6.5V

Table 13.2. Intel486™ DX Microprocessor DC Parametric Values (for PGA Package)

Symbol Parameter Min Max Unit Notes
ViL Input Low Voltage -0.3 +0.8 \"
ViH Input High Voltage 2.0 Vce +0.3 \
VoL Output Low Voltage 0.45 \ (Note 1)
VoH Output High Voltage 24 v (Note 2)
lcc Power Supply Current (50 MHz) mA (Note 3)
Power Supply Current (33 MHz)
Power Supply Current (25 MHz)
I Input Leakage Current RA (Note 4)
i1 Input Leakage Current HA (Note 5)
i Input Leakage Current rA (Note 6)
Lo Output Leakage Current RA
CIN Input Capacitance)
(25 MHz and 33 MHz) pF Fc = 1 MHz (Note 7)
(50 MHz) pF Fc = 1 MHz (Note 7)
Co 170 or Output Capacitance
(25 MHz and 33 MHz) 20 pF Fc = 1 MHz (Note 7)
(50 MHz) 17 pF Fc = 1 MHz (Note 7)
CoLk CLK Capacitance
(25 MHz and 33 MHz 20 pF Fc = 1 MHz (Note 7)
(50 MHz) 15 pF Fc = 1 MHz (Note 7)
NOTES:

1. This parameter is measured at:

Address, Data, BEn 4.0 mA

Definition, Control 5.0 mA
2. This parameter is measured at:

Address, Data, BEn —1.0 mA

Definition, Control —0.9 mA
3. Typical supply current:

550 mA @ 25 MHz

700 mA @ 33 MHz

800 mA @ 50 MHz
4. This parameter is for inputs without internal pullups or pulldowns and 0 < V|y < Vge.
5. This parameter is for inputs with internal pulldowns and V| = 2.4V.
6. This parameter is for inputs with internal pullups and Vy = 0.45V.
7. Not 100% tested.

192

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

13.4 A.C. Specifications

The A.C. specifications, given in Table 13.3, consist
of output delays, input setup requirements and input
hold requirements. All A.C. specifications are rela-
tive to the rising edge of the CLK signal.

A.C. specifications measurement is defined by Fig-
ures 13.1-13.7. All timings are referenced to 1.5V
unless otherwise specified. Inputs must be driven to
the voltage levels indicated by Figure 13.3 when

193

A.C. specifications are measured. Intel486 Micro-
processor output delays are specified with minimum
and maximum limits, measured as shown. The mini-
mum Intel486 Microprocessor delay times are hold
times provided to external circuitry. Intel486 Micro-
processor input setup and hold times are specified
as minimums, defining the smallest acceptable sam-
pling window. Within the sampling window, a syn-
chronous input signal must be stable for correct
Intel486 Microprocessor operation.

intal. Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 13.3. 25 MHz Intel486™ Microprocessor A.C. Characteristics (PGA)
Vec = 5V £5%; Tcase = 0°C to +85°C; C. = 50 pF unless otherwise specified

Symbol Parameter Min | Max | Unit Figure Notes
Frequency 8 25 MHz 1X CLK to Intel486

Y CLK Period 40 125 ns 13.1

ta CLK Period Stability 0.1% A Adjacent Clocks

to CLK High Time 14 ns 13.1 at2v(1)

t3 CLK Low Time 14 ns 13.1 at0.8v(1)

1 CLK Fall Time 4 ns 13.1 (2v — 0.8v)(1)

ts CLK Rise Time 4 ns 0.8V — 2V)(1)

ts A2-A31, PWT, PCD, BEO-3#, 3 22 ¢ ns
M/IO#,D/C#, W/R#, ADS#,

LOCK#, FERR#, BREQ, HLDA
Valid Delay

t7 A2-A31, PWT, PCD, BEO-3#,
M/10#, D/C#,W/R#, ADS#,
LOCK # Float Delay

13.6 (Note 1)

tg PCHK# Valid Delay 134

tga BLAST #, PLOCK # Valid 13.5

tg BLAST#, PLOCK# Flo 13.6 (Note 1)

tio D0-D31, DP0-3 Write Dz) 2 ns 135
Delay @

t11 D0-D31, DP0x3 Write Data] ns 13.6 (Note 1)
Delay g ’

t12 EADS # Setup Time 8 ns 13.2

t13 EADS# Hold Time 3 ns 13.2

tg KEN#, BS16%BS8# Setup Time 8 ns 13.2

t15 KEN#, BS16#, BS8# Hold Time 3 ns 13.2

tie RDY #, BRDY # Setup Time 8 ns 133

t47 RDY #, BRDY # Hold Time 3 ns 13.3

tis HOLD, AHOLD, BOFF # Setup Time | 10 ns 13.2

t19 HOLD, AHOLD, BOFF # Hold Time 3 ns 13.2

too RESET, FLUSH#, A20M#, NMI, 10 ns 13.2
INTR, IGNNE # Setup Time

toq RESET, FLUSH#, A20M#, NMI, 3 ns 13.2
INTR, IGNNE # Hold Time

too D0-D31, DP0-3, A4-A31 Read 5 ns 13.2,13.3
Setup Time

to3 D0-D31, DP0-3, A4-A31 Read 3 ns 13.2,13.3
Hold Time

NOTE:

1. Not 100% tested. Guaranteed by design characterization.

194

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 13.4. 33 MHz Intel486™ Microprocessor A.C. Characteristics (PGA)
Vec = 5V £5%; Tcase = 0°C to +85°C; C. = 50 pF unless otherwise specified

Symbol Parameter Min | Max [Unit Figure Notes
Frequency 8 33 MHz 1X CLK to Intel486
t CLK Period 30 125 ns 13.1
YHa CLK Period Stability 0.1% A Adjacent Clocks
to CLK High Time 11 ns 13.1 at2v(1)
t3 CLK Low Time 11 ns 13.1 at0.8Vv(1)
ta CLK Fall Time ns 13.1 (2v — 0.8v)(1)
ts CLK Rise Time ns 13. 0.8V — 2V)(1)
te A2-A31, PWT, PCD, BEO-3#, 3 16 {* ns i
M/I0#,D/C#, W/R#, ADS#,
LOCK#, FERR#, BREQ, HLDA
Valid Delay
t7 A2-A31, PWT, PCD, BEO-3 #, 13.6 (Note 1)
M/IO#,D/C#,W/R#, ADS#,
LOCK# Float Delay
tg PCHK# Valid Delay 13.4
tga BLAST #, PLOCK# Valid Del 13.5
tg BLAST #, PLOCK# Flo ns 13.6 (Note 1)
t10 ns 13.5
t11 ns 13.6 (Note 1)
ty2 5 ns 13.2
t13 EADS# Hold Time N 3 ns 13.2
t14 KEN#, BS16#,BS8# Setup Time | 5 ns 13.2
t15 KEN#, BS;(, BS8# Hold Time 3 ns 13.2
te RDY #, BRDY # Setup Time 5 ns 13.3
t7 RDY #, BRDY # Hold Time 3 ns 13.3
T HOLD, AHOLD, Setup Time 6 ns 13.2
t18a BOFF # Setup Time 8 ns 13.2
t1g HOLD, AHOLD, BOFF # Hold Time 3 ns 13.2
t20 RESET, FLUSH #, A20M #, NMI, 5 ns 13.2
INTR, IGNNE # Setup Time
t21 RESET, FLUSH#, A20M #, NMI, 3 ns 13.2°
INTR, IGNNE # Hold Time
too D0-D31, DP0-3, A4-A31 Read 5 ns 13.2,13.3
Setup Time
to3 D0-D31, DP0-3, A4-A31 Read 3 ns 13.2,13.3
Hold Time
NOTE:

1. Not 100% tested. Guaranteed by design characterization.

195

intgl. Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 13.5. 50 MHz Intel486™ Microprocessor A.C. Specifications
Vee = 5V £5%; Tcase = 0°C to +85°C; C = See Note 2

Symbol Parameter Min | Max | Unit Figure Notes
Frequency 16 50 | MHz 1X CLK to Intel486

t CLK Period 20 | 62.5 ns 13.1

Ha CLK Period Stability 0.1% Adjacent Clocks

to CLK High Time 7 ns 13.1 at2v(1)

ts CLK Low Time 7 ns 131 at0.8v(1)

ts CLK Fall Time 2 ns 13.1 . | (2.0v-0.8V)()

ts CLK Rise Time 2 ns ‘ %QO.BV—Z.OV)U)

te A2-A31, PWT, PCD, BE0O-3#, M/IO#, ‘
D/C#,W/R#, ADS#, LOCK#,

FERR#, BREQ, HLDA Valid Delay

t; A2-A31, PWT, PCD, BEO-3#, M/IO#, (Note 1)
D/C#, W/R#, ADS#, LOCK#,
FERR #, BREQ Float Delay
tg PCHK# Valid Delay
tga BLAST #, PLOCK # Valid Delay \
to BLAST #, PLOCK# Float Dela) (Note 1)
to D0-D31, DPO-3 Write Da
t14 D0-D31, DPO-3 Ma (Note 1)
t1 EADS# Setup Time|,
ta EADS# Hold Time
t1a KEN#, BS16#, BS8 #
s KEN#, BS16#, BSB #Hold Time® .
ts RDY #, BRDY4# Setup Time
t17 f lold Time
t18 E etup Time
t18a BOFF # Setup Time
tg HOLD, AHOLD, BOFF# Hold Time
too RESET, FLUSH#, A20M#, NMI, INTR,
IGNNE # Setup Time
to1 RESET, FLUSH#, A20M#, NMI, INTR, | 2 ns 13.2
IGNNE # Hold Time
too D0-D31, DPQ-3, A4-A31 Read Data 4 ns | 13.2,13.3
Setup Time
tog D0-D31, DP0-3, A4-A31 Read Data 2 ns | 13.2,13.3
Hold Time
NOTES:

1. Not 100% tested. Guaranteed by design characterization.

2. Specifications assume C|_ = 0 pF. I/0 Buffer model must be used to determine delays due to loading (trace and compo-
nent). First Order I/0 buffer models for the Intel486 CPU are available. Contact Intel for the latest release.

3. All timings are referenced at 1.5V (as illustrated in the listed figures) unless otherwise noted.

196

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 13.6. 50 MHz Intel486™ Microprocessor A.C. Characteristics for Boundary Scan Test Signals

Veg = 5V £5%; Tcase = 0°C to +85°C; C = 50 pF. All Inputs and Outputs are TTL Level

Symbol Parameter Min Max Unit Figure Notes
tog TCK Frequency 25 MHz 1x Clock
tos TCK Period 40 ns (Note 2)
tos TCK High Time 10 ns @ 2.0V
to7 TCK Low Time 10 ns @ 0.8V
tog TCK Rise Time ns (Note 1)
29 TCK Fall Time ns (Note 1)
t30 TDI, TMS Setup Time ns 13.7 (Note 3)
tgq TDI, TMS Hold Time ns 13.7 (Note 3)
32 TDO Valid Delay 25 ns 13.7 (Note 3)
ta3 TDO Float Delay TBD ns
t34 All Outputs (Non-Test) Valid Delay 3 25 ns 13.7 (Note 3)
t3s All Outputs (Non-Test) Float Delay 36 ns 13.7 (Notes 3, 5)
t3s All Inputs (Non-Test) Setup Time ns 13.7 (Note 3)
ta7 All Inputs (Non-Test) Hold Time ns 13.7 (Note 3)
NOTES:

1. Rise/Fall times are measured between 0.8V and 2.0V. Rise/Fall times can be relaxed by 1 ns per 10 ns increase in TCK

period.

2. TCK period = CLK period.

3. Parameter measured from TCK.
4. Boundary Scan A.C. Specifications in the above table are target values. They have not been characterized. Therefore
they are subject to change. ,
5. Not 100% tested. Guaranteed by design characterization.

197

Intel486™ DX MICROPROCESSOR

PRELIMINARY

t1

240440-45

Figure 13.1. CLK Waveforms

Tx

Tx

CLK I: J

<

e

N
N

/

EADS# |: NN

BS8#, B'S(1EZ§ I: &\\

Z I~

BOFF#, Al:‘gll.-g, [k\\\\

A

RESET, FLUSH#,

A20M#, IGNNE#,

NN

|

INTR, NMI

(e
§

A4=A31 AN
(READ) \\\\\\
240440-46
Figure 13.2. Input Setup and Hold Timing
Ty Tx Tx
o [N\
© 17
RDY#, BRDY# [AN N— 1.5V
N\
DO-D31
1.5V
DPO-DP3 [\
240440-47

Figure 13.3. Input Setup and Hold Timing

198

Intel486™ DX MICROPROCESSOR PRELIMINARY

Tx Tx Tx
CLK [[_-_]
BRDY#, RDY# I: A\ §
oroors | DONK___ A0 R\
'M'LN’|MAX
pont [&m\ [vauo XN
240440-82
Figure 13.4. PCHK # Valid Delay Timing
Tx Tx Tx Tx
CLK I: £\ \ \
A2-A31, PWT, PCD, |
BEO-3#, M/10#, MIN &AX
Logég#FVéég: g:ss:, vALD 1 XN\ VALID n+1
HLDA to e MAX
DO-D31, ?;:I'Tg I: vaD n XN VALID n+1
@ MIN MAX
BLAST#, PLOCK# |: vauiD n RN VALID n+1
240440-83
Figure 13.5. Output Valid Delay Timing
Tx Tx
CLK I:
A2-A31, PWT, PCD,
BEO-3#, M/I0#,
D/C#, W/R#, ADS#, I:
LOCK#, FERR#, BREQ,
HLDA
D0-D31, DPO-3,
(WRITE) |:
BLAST#, PLOCK# [
24044084

Figure 13.6. Maximum Float Delay Timing

199

inteL Intel486™ DX MICROPROCESSOR PRELIMINARY

fe——125

- _/_HO-:: 131 L_/
}xx

KXXXXKXXXXKXXR XXX

34 [e— 35—

Output
signae 200C0C0000QQOX X o

t36—>1=—1t37
Input
Signals

Figure 13.7. Test Signal Timing Diagram

00

240440-91

13.4.1 TYPICAL OUTPUT VALID DELAY VERSUS LOAD CAPACITANCE UNDER WORST CASE
CONDITIONS FOR THE 25 MHz AND 33 MHz MHz Intel486 CPU

TYPICAL OUTPUT DELAY (ns)

75 100

C, (picofarads)

NOTE: 240440-75
This graph will not be linear outside of the C|_ range shown.

nom=nominal value given in A.C. Characteristics table.

125 150

200

intel. Intel486™ DX MICROPROCESSOR PRELIMINARY

13.4.2 TYPICAL OUTPUT VALID DELAY VERSUS LOAD CAPACITANCE UNDER WORST CASE
CONDITIONS FOR THE 25 MHz and 33 MHz Intel486 CPU

A B C D E F G H J K L M N P Q R S
1 / O o o o O O o o o o o o O O o0 o0 O 1
D20 D11 Vss Vss Vee Vsg D2 A31 A27
D19 D9 DP1 Vss Vss Vss DO A28
2 0O o o o o o o O O O O O o o o o0 o 2
D22 D18 Vee cc D5 D6 D1 Vss A26
D21 D13 D8 D3 Vee Vee A29 A25
3 O O O o O O O O O O O O O o o o o© 3
CLKSEL CLK2 D10 D12 D16 D7 DPO A17 A23
Vss D17 D15 DP2 D14 D4 A30 Vee
4 O O O o o O 4
D23 Vee Al9 NC
Vss Vss
5 O O O O O O 5
DP3 Vee A21 Al4
Vss A18
6 O O O o O o©o 6
D24 D27 A24 Vss
D25 Vee
7 O O O o O © 7
Vss D26 A22 A12
Vee A15
8 O O O O O O 8
029 . D28 LOW POWER A20 Vs
cC
91 °© ©° 9 168—-PIN PGA PINOUT S © 2 9
SS SS
Vee Intel486™ DX CPU Vee
10 O O O o O o© 10
e PIN SIDE VIEW ATS Vs
e ooR &0 |
SS e Ve
12 O O O o O o© 12
NC NC A5 Vss
NC A1
13 O O O o O O 13
NC NC A7 A10
NC A8
14 O O O o o0 O 14
NC FERR# A2 Vs
NC Vee
15 0O o o o o o O o O O O o o o0 © o 15
IGNNE# FLUSH# HOLD NC BE2# PWT LOCK# BREQ A6
NMI A20M# KEN# BRDY# BEO# D/C# HLDA A3
16 O 0O O O 0O 0O O O O O o o0 o o o o0 o 16
INTR RESET Vee Vee BE1# Vee M/10# PLOCK# A4
NC BS8# RDY# Vee Vee Vee Vee BLAST#

17 o o o o o o o O o O o O o O o 0 O 17
AHOLD BS16# Vss Vss PCD Vss W/R# PCHK# ADS#
EADS# BOFF # BE3# Vss Vss Vss ss NC
A B C D E F G H J K L M N P Q R S

240440-A6
NOTE:
This graph will not be linear outside of the C|_ range shown.
nom= nominal value given in A.C. Characteristics table.

201

intal. Intel486™ DX MICROPROCESSOR PRELIMINARY

13.4.3.a TYPICAL LOADING DELAY VERSUS CAPACITIVE LOADING UNDER WORST-CASE
CONDITIONS FOR A HIGH TO LOW TRANSITION ON THE 50 MHz Intel486 CPU

Loading Delay (ns)

Capacitive Loading (pF)

240440-92

13.4.3.b TYPICAL LOADING DELAY VERSUS CAPACITIVE LOADING UNDER WORST-CASE
CONDITIONS FOR A LOW TO HIGH TRANSITION ON THE 50 MHz Intel486 CPU

DqeececscemcemacemcscecnacescsmesmeseamsesSsSsNssssSmsssesssessmssaSesassa=a
S L L T T L LT T
4_[..
3T S T L L T L E L ET TR RE PP PP
Badeece-ceemcemcececcaacmrcaccccacamcccccoscac-piffecscacsanacacacaanaana
254 -caaeenas T R R T L TP
/2 s LT T L R L TR Sy
T R R L L P PP R PP P PP PP PP PP PP

Loading Delay (ns)

T -y U

0.5 = === o e e e e eeeeeeeeeeeeeeeeeeaeeeeeeeaan

Capacitive Loading (pF)

240440-93

202

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

13.4.4 TYPICAL OUTPUT RISE TIME VERSUS
LOAD CAPACITANCE UNDER WORST-
CASE CONDITIONS

7
6
5
4
3
2

RISE TIME (ns) 0.8V=2.0V

75 100
C_ (picofarads)

125 150

NOTE: 240440-76
This graph will not be linear outside of the C|_ range
shown.

13.5 Designing for ICD-486
(Advance Information)

The ICD-486 (In-Circuit Debugger) is a hardware as-
sisted debugger for the Intel486 CPU. To use the
ICD-486, the Intel486 CPU component must be re-
moved from its socket replaced with the ICD-486
module. Because of the high operating frequency of
Intel486 CPU systems, there is no buffering of sig-
nals between the Intel486 CPU in the ICD-486 and
the target system. A direct result of the non-buffered
interconnect is that the ICD-486 shares the address
and data bus of the target system. In order for the
ICD-486 to function properly (without the Optional
Isolation Board installed), the design of the target
system must meet the following restrictions:

1. The bus controller must only enable data trans-
ceivers onto the data bus during valid read cycles
of the Intel486 CPU, other local devices, or other
bus masters.

. Before another bus master drives the local proc-
essor address bus, the other bus master must
gain access to the address bus through the use
of HOLD-HLDA, AHOLD, or BOFF #.

In addition to the above restrictions, the ICD-486 has
several electrical and mechanical characteristics
that should be taken into consideration when de-
signing the Intel486 CPU system.

Capacitive Loading: ICD-486 adds up to 30 pF to the
CLK signal, and up to 20 pF to each of the other
Intel486 CPU signals.

203

DC Loading: ICD-486 adds +15 pA loading to the
CLK and data bus signals and =5 pA loading to the
address and control signals.

Power Requirements: For noise immunity and
CMOS latch-up protection the ICD-486 is powered
by the target system through the power and ground
pins of the Intel486 CPU socket. The circuitry on the
ICD-486 draws up to 1.3A excluding the Intel486
CPU Icc.

No Connects: Pins specified as N.C. in the Intel486
CPU pin description must be left unconnected. Con-
nection of any of these pins to power, ground, or any
other signal may cause the processor or the ICD-
486 to malfunction.

Intel486 CPU Location and Orientation: The ICD-486
may require lateral clearance. Figure 13.4 shows the
clearance requirements of the ICD-486.

Optional Isolation Board (OIB)

Due to its unbuffered design, the ICD-486 is suscep-
tible to errors on the target system’s bus. The OIB
installs between the ICD-486 and Intel486 CPU
socket in the target system and allows the ICD-486
to function in systems with faults (i.e., shorted sig-
nals). After electrical verification the OIB may be re-
moved. The OIB has the following electrical and me-
chanical characteristics:

Buffer Characteristics: The OIB buffers the address
and data busses as well as the byte enables, ADS #,
W/R#, M/IO#, BLAST#, and HLDA. The buffers
are advanced CMOS devices and have the following
DC drive specifications: lon —15 mA, loL
64 mA. The propagation delay of each buffer is 5 ns
max driving a 50 pF load. To guarantee proper oper-
ation with the OIB, the clock period should be in-
creased by the round trip buffer delay (10 ns) unless
the target system design already has enough timing
margin.

Unbuffered Signals: Signals not listed above as buff-
ered are passed through the OIB and will have addi-
tional capacitive loading due to the connectors and
circuit board of up to 10 pF.

Power Requirements: The OIB is also powered by
the target system through the Intel4d86 CPU socket
and requires 0.5A in addition to the ICD-486 and In-
tel486 CPU requirements.

OIB Clearance Requirements: The OIB requires an
extra 0.55" of vertical clearance in the target system
above the Intel486 CPU socket.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

4.0"

1.2"

1.0"" MAX
240440-48

6.5"

-—10.4"«

PN T)

FEErrrrrrrvrrrered

Serial CABLE

Serial CABLE

Figure 13.4a. ICD-486™ Probe Dimensions
204

502
suojsuawig 2qo.d wi98b-adl "ap'el ainbiy

ICD Probe with OIB Installed

{ Serial CABLE
1.0" MAX
. |
oiB
ICD Probe with LAI Installed
6.5"
| 31
l ~=0.4"
{ Serial CABLE '
1.2"
PIN 1 N [
4.0" 4

|

240440-41

Loglc Analyzer Interface (LAI) /

240440-42

HOSS3IO0HdOHIIN XA wi98YIdu|

AIYNINITEE

902
suolsuawiq 8qoid w198¥-adl o€l ainbig

Processor Module Board Dimensions

[« 0.25"

-PINY
1]

45"

240440-44

| 'O.SS"

Processor Module Assembly Dimensions

Top View

17.5"

240440-77

Processor
module

Processor Module Assembly Dimensions

Side View

274"

3.6"——=

r 24"

PIN 1

—2.2"

240440-78

Processor Module Assembly Dimensions
Side View, OIB Installed

Processor Module
Optional Isolation
Board

R e S D

1.75"

Processor Module

240440-80

240440-79

HOSS3IJ0HdOHIIW XA wi98PIdwuI

AYNINITEYE

intgl. Intel486™ DX MICROPROCESSOR PRELIMINARY

14.0 MECHANICAL DATA

SEATING
D PLANE —|
D, — A~
Sy— As"l_’*:—

%‘ég.-”’ ONOXONORONOXOXOXOROROROXOROXOXOXO] !]
_@@@@@@@@@@@@@@@@@ T
IOJOXONORONONORONONORORONORORONONO] o

Fleoo @00
[0XOXO] [OXOXO]

@00 —_— CYoXo) S
©eo ONCRO) @B (ALL PINS)
@006 / \ @06
@O0 ©@e®|D
0006 ©6 06 P
PIN C3 [ONOXO)] @006 SWAGGED

Neoo N S @00 NN
ONCXC) ©@Oe0e
[CR:XO] (COJOXO;
(X)) ° KOO XOXOXOROROJOXOROROROYOKO)
(OXONONORONOXOXOXONOROXONONOROXCOKO)

L__\@@)@@@@@@@@@@@@@ |

2.29 REF. SWAGGED 4 Ay

1.52 PIN sase] A2

45° CHAMFER (4PL) PLANE

(INDEX CORNER)
240440-49
Family: Ceramic Pin Grid Array Package
Symbol Millimeters Inches
Min Max Notes Min Max Notes
A 3.56 457 0.140 | 0.180
Aq 0.64 114 | SOLIDLID | 0.025 | 0.045 | SOLIDLID
As 2.8 35 | SOLIDLID | 0.110 | 0.140 | SOLIDLID
A3 1.14 1.40 0.045 | 0.055
B 0.43 0.51 0.017 | 0.020
D 44,07 | 44.83 1.735 | 1.765
Dy 4051 | 40.77 1595 | 1.605
ey 2.29 2.79 0.090 | 0.110
L 2.54 3.30 0.100 | 0.130
168 168
S 152 | 254 0.060 | 0.100
ISSUE | IWS REVX 7/15/88

Figure 14.1. 168 Lead Ceramic PGA Package Dimensions

207

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 14.1 Ceramic PGA Package Dimension Symbols

Ls?::;;r Description of Dimensions
A Distance from seating plane to highest point of body
Aq Distance between seating plane and base plane (lid)
Az Distance from base plane to highest point of body
As Distance from seating plane to bottom of body
B Diameter of terminal lead pin
D Largest overall package dimension of length
D4 A body length dimension, outer lead center to outer lead center
eq Linear spacing between true lead position centerlines
L Distance from seating plane to end of lead
S4 Other body dimension, outer lead center to edge of body

NOTES:
1. Controlling dimension: millimeter.
2. Dimension “eq” (*‘€”) is non-cumulative.

3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch.

4. Dimensions “B"”, “B1"” and “C” are nominal.
5. Details of Pin 1 identifier are optional.

14.1 Package Thermal Specifications

The Intel486 Microprocessor is specified for opera-
tion when Tg (the case temperature) is within the
range of 0°C-85°C. Tg may be measured in any en-
vironment to determine whether the Intel486 micro-
processor is within specified operating range. The
case temperature should be measured at the center
of the top surface opposite the pins.

The ambient temperature (T4) is guaranteed as long
as T¢ is not violated. The ambient temperature can
be calculated from 8¢ and 6,44 from the following
equations.

Ty=Tc+P*0,c
Ta=Ty—P*04a
Tc=Ta+ P*[04a — 64cl

where Ty, Ta, Tc = Junction, Ambient and Case
Temperature respectively. 6,c, 0jo = Junction-to-
Case and Junction-to-Ambient Thermal Resistance,
respectively.

P = Maximum Power Consumption

The values for 6,4 and 8 ¢ are given in Table 14.2
for the 1.75 sq. in., 168-pin, ceramic PGA.

Table 14.3 shows the T allowable (without exceed-
ing Tg) at various airflows and operating frequencies

(forw)-

Note that T is greatly improved by attaching “fins”
or a “heat sink” to the package. P (the maximum
power consumption) is calculated by using the maxi-
mum Igc at 5V as tabulated in the DC Characteris-
tics of Section 13.

Table 14.2.a. Thermal Resistance (°C/W) 6¢ and 644 for the 25 MHz and 33 MHz Intel486 CPU

044 vs Airflow—ft/min (m/sec)
bac 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)
Without Heat Sink 1.5 17 14.5 12,56 11.0 10.0 9.5
With Heat Sink* 2.0 13 8.0 6.0 5.0 45 4.25

*0.350"” high unidirectional heat sink (Al alloy 6063, 40 mil fin width, 155 mil

center-to-center fin spacing).

208

intel,. Intel486™ DX MICROPROCESSOR PRELIMINARY

Table 14.2.b. Thermal Resistance (°C/W) 6,¢c and 0 4a for the 50 MHz Intel486 CPU

04a vs Airflow—ft/min (m/sec)
6uc 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)
Without Heat Sink 1.5 16.5 14.0 12.0 10.5 9.5 9.0
With Heat Sink* 2.0 12.0 7.0 5.0 4.0 3.5 3.25

*0.350" high unidirectional heat sink (Al 6063-T5, 40 mil fin width, 155 mil center to center fin spacing).

Heat Sink Dimensions

0.040"—-| l—— —-|o.1|5"|-— t-— 0.290" —-| |

—F

0.350"

0.100"

1.53"

240440-81
Table 14.3. Maximum Tp at Various Airflows In°C
Airflow-ft/min (m/sec)

folk 0 200 400 600 800 1000

(MHz) (0) (1.01) (2.03) (3.04) (4.06) (5.07)
Ta with Heat Sink 25.0 47 64 71 75 76 77
33.3 36 58 67 72 74 75

50 35 60 70 75 775 78.75
Ta without Heat Sink 25.0 31 40 47 52 55 57
33.3 15 27 36 42 47 49

50 10 22.5 32,5 40 45 47.5

209

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

15.0 LOW POWER INTEL486™ DX
MICROPROCESSOR

¢ Lower Power Dissipation
— Dynamic Frequency Scalability
— loc(max) Reduced to 150 mA at 2 MHz
— Improved Vg Rating (+10%)

* 168-Lead Pin Grid Array Package for Intel486 DX
Microprocessor

* High Performance Design
— 25 MHz Operation for Intel486™ DX
— 64 MByte/Sec Burst Bus
— CHMOS IV Process Technology

— Dynamic Bus Sizing for 8-, 16- and 32-Bit Bus-
es

This section describes the Low Power Intel486 DX
microprocessor.

The Low Power Intel486 Microprocessor meets to-
day’s need for high performance portables. The
combination of special features like dynamic fre-
quency scaling, lower minimum frequency, improved
Ve operation and high integration contribute signifi-
cantly to lower power dissipation and meet the
needs of portable computing.

The Low Power capability is achieved by operating
the, Intel486 Microprocessor in the 2X mode. The
frequency can be varied dynamically between maxi-
mum to minimum as needed. The frequency change
does not affect contents of the registers and data
integrity is maintained. Power dissipation is reduced
significantly at 2 MHz where Igg is only 150 mA
compared to 600 mA at 20 MHz. Low power ver-
sions are offered for both the Intel486 SX and the
Intel486 DX Microprocessors.

The Low Power Intel486 Microprocessor is 100-per-
cent compatible with all versions of the Intel386™
Microprocessor family, assuring compatibility with
the more than $50 billion software base of MS-DOS,
Windows, 0S/2 and UNIX/System oparating system
applications. The Low Power Intel486 Microproces-
sor integrates the same RISC-technology, one clock
per instruction integer core, on-chip cache, and
memory management unit as the standard Intel486
Microprocessor.

Note that the Intel OverDrive™ Processor does not
work in systems based on the Low Power Intel486
CPU.

210

The following section on the Low Power Intel 486
DX Microprocessor contains information specific to
the Low Power device only. All data not defined are
located in the appropriate sections of this data sheet
unless specified otherwise.

15.1

The Low Power Intel486 Microprocessor brings In-
tel486 technology and performance to the portable
computer market. The low power capability is
achieved by a frequency scalability feature during
normal operation. The operating frequency can be
brought down dynamically resulting in lower power
supply current (Igc). This results in minimal power
dissipation which ensures a longer battery life.

Introduction

The Low Power Intel486 Microprocessor integrates
the same RISC-technology, one clock per instruc-
tion integer core, on-chip cache, and memory man-
agement unit as the standard Intel486 Microproces-
sor.

The Low Power Intel486 Microprocessor has the fol-
lowing special features:

* Frequency Scalability—This is achieved by op-
erating the Intel486 Microprocessor in the 2X
clock mode. The frequency can be varied dynam-
ically from maximum back to minimum or vice
versa. The frequency change does not affect the
register content of the CPU, thus data integrity is
maintained.

Lower Minimum Frequency—The Low Power
Intel486 Microprocessor can be operated at a
minimum frequency of 2 MHz, at which Igg(max)
is only 150 mA, compared to an Igg(max) of 600
mA at 20 MHz operation. The power dissipation is
thus drastically reduced ensuring a longer battery
life.

Improved Vgc Operation—The Low Power In-
tel486 Microprocessor has an improved Vg rat-
ing of £10%. Again this feature makes it ex-
tremely attractive to portable battery powered ap-
plications.

The above three features ensure power savings for
portable computer systems resulting in prolonged
battery life.

Besides the above special features, the Low Power
Intel486 Microprocessor has an identical feature set
to the standard Intel486 CPU. This includes:

e Binary Compatibility—The Low Power Intel486
CPU is binary compatible with the 8086, 8088,
80186, 80286, Intel386 SX, Intel386 DX, Intel486
SX and Intel486 DX CPUs.

intal.

Intel486™ DX MICROPROCESSOR PRELIMINARY

Full 32-Bit Integer Processor—The Low Power
Intel486 CPU performs a complete set of arith-
metic and logical operations on 8-, 16-, and 32-bit
data types using a full-width ALU and eight gener-
al-purpose registers.

Separate 32-Bit Address and Data Paths—
Four gigabytes of physical memory can be ad-
dressed directly.

Single-Cycle Execution—Many instructions ex-
ecute in a single clock cycle.

On-Chip Floating Point Unit—The 32-, 64-, and
80-bit formats specified in IEEE standard 754 are
supported. The unit is binary compatible with the
8087, 80287, Intel387T™, Intel387 SX, and In-
tel487™ Math Coprocessors and the Intel486™
CPU.

On-Chip Memory Management Unit—Address-
management and memory-space protection
mechanisms maintain the integrity of memory.
This is necessary in multitasking and virtual-mem-
ory environments, like those implemented by the
UNIX and OS/2 operating systems. Both memory
segmentation and paging are supported.

On-Chip Cache with Cache Consistency Sup-
port—The internal write-through cache can hold
8 KBytes of data or instructions. Cache hits are
as fast as read accesses to a processor register.
Bus activity is tracked to detect alterations in the
memory which internal cache represents. The in-
ternal cache can be invalidated or flushed, so
that an external cache controller can maintain
cache consistency in multi-processor environ-
ments.

External Cache Control—Write-back and flush
controls over an external cache are provided so
that the processor can maintain cache consisten-
cy in multi-processor environments.

Instruction Pipelining—The fetching, decoding,
execution and address translation of instructions
are overlaped within the Low Power Intel486 Mi-
croprocessor. This resuits in a continuous execu-
tion rate of one clock cycle per instruction, for
most instructions.

211

e Burst Cycles—Burst transfers allow a new dou-
bleword to be read from memory each clock cy-
cle. With this capability the internal cache and in-
struction prefetch buffer can be filled very rapidly.

e Write Buffers—The processor contains write
buffers to enhance the performance of consecu-
tive writes to memory. The Low Power Intel486
CPU can continue operations internally after a
write, without waiting for the write to be executed
on the external bus.

¢ Bus Backoff—If another bus master needs con-
trol of the bus during a Low Power Intel486 Mi-
croprocessor initiated bus cycle, the Low Power
Intel486 Microprocessor will float its bus signals,
then restart its cycle when the bus becomes
available again.

¢ Instruction Restart—Programs can continue ex-
ecution following an exception generated by an
unsuccessful attempt to access memory. This
feature is important for supporting demand-paged
virtual memory applications.

e Dynamic Bus Sizing—External controllers can
dynamically alter the effective width of the data
bus. Bus widths of 8, 16 or 32 bits can be used.

The Low Power Intel386 DX Microprocessor pinout
follows the same definition as the Intel486 DX Micro-
processor given in Section 1.0 except for those list-
ed in Table 15.1.

Table 15.1
i486 DX Low Power i486 DX .
. . Pin#
Microprocessor Microprocessor
CLK CLK2 C3
NC CLKSEL A3(1)

NOTE:
1. This pin is TCK on the 50 MHz Intel486 DX Microproces-
SOr.

inteL Intel486™ DX MICROPROCESSOR PRELIMINARY

15.2 Pinout

S R Q P NM L K J H G F E D C B A
! A% © Ac3)1 © é)z © vO © vo © vo © vO © D?I © Dgo\ !
A28 00 Vss S0 Veg € vgg S pP1 S pg D19
2 o o o o o o0 o o0 O o o o o o o o o 2
A26 Vss D1 D6 D5 Vee Veo D18 D22
A25 A29 Veo Vee D3 D8 D13 D21
3 0O O o o o O o O O o O O O o O o o©o 3
A23 A7 DPO D7 D16 D12 D10 cLk2 CLKSEL
Vee A30 D4 D14 DP2 D15 D17 Vss
4 0O O O o O O 4
NC Al9 Vee D23
Vs Vss
5 o O o o O O)
Al4 A21 Vee DP3
A18 Vss
6 o o © o O O 6
Vss A24 D27 D24
Vee D25
7 o O o©o o o0 © 7
A12 A22 D26 Vss
A15 Veo
8 o O o o O O 8
Vss |, A0 LOW POWER bzs . D29
cc
9 o 0 o 168-PIN PGA PINOUT o o o |9
Vss A16 D30 Vss
Vee Intel486™ DX CPU Vee
10 o O o© O O O 10
Vs, M3 ~ TOP SIDE VIEW N NC
11 o O o O "0 O 11
Vss A9 NC Vss
Vee Vee
12 O O o© O O O 12
Vss A5 NC NC
A1 NC
13 o O o o o © 13
Al0 A7 NC NC
A8 NC
14 e} o [¢] o [e] O 14
Vss A2 FERR# NC
Veo NC
15 o O 0O o o O o o O o O o o o _ O o o 15
AB BREQ LOCK# PWT BE2# NC HOLD FLUSH# IGNNE#
A3 HLDA D/C# BEO# BRDY# KEN# A20M# NMI
16 o O o o o 0O o o O o O o o o o0 o o 16
A4 PLOCK# M/10# Vee BE1# cc Vee RESET INTR
BLAST# Vee Vee Vee Vee RDY# Bsg# NC
17 o 0 O O o O O O O O O O O o o o0 O 17
ADS# PCHK# W/R# Vss PCD Vss Vss BS16# AHOLD
NC Vss Vss Vss Vss BE3# BOFF# EADS#
S R Q P N M L K J H G F E D C B A
240440-A5

Figure 15.1. Low Power Intel486™ DX CPU Pinout (Top Side View)

212

Intel486™ DX MICROPROCESSOR

PRELIMINARY

11
12
13
14
15

16

A B C D E F G H J K L M N P Q R s
/ocz)o °C K 22 2R L o0 9o s 98 %% L
D19 pg 35 pp1 SS yge 0 vy SS g Do A28
O o O o o o o 0 o 0 o 0 0o o o o o 2
D22 D18 Vee o D5 D6 D1 Vss A26
D21 D13 D8 D3 Vee Vee A29 A25
0O o O o O o o o 0O O o 0O O o o 0 O 3
CLKSEL cLK2 D10 D12 D16 D7 DPO A7 A23
Vs D17 D15 DP2 D14 D4 A30 Vee
o O © .0 O © 4
D23 Vee A9 NC
Vss Vss
O O © o O O 5
DP3 Vee A21 Al4
Vss A8
o O © o o o 6
D24 D27 A24 Vss
D25 Vee
o o o© o O © 7
Vss D26 A22 A12
Vee A1S
() o) (o)) o O 8
p2e - D8 LOW POWER A20 " Vs
cc
2o D?O 168—-PIN PGA PINOUT SO ° 0 9
SS SS
Vee tel486™ DX CPU Vee
O O O Intel4 D P o O o© 10
N e N PIN SIDE VIEW A13 Vee Vss
o © N% o 2R 1
SS SS
Vee Vee
O O O o O O 12
NC NC A5 Vs
NC A1
O o) () o) o O 13
NC NC A7 AT0
NC A8
o o0 ©o o o o 14
NC FERR# A2 Vs
NC Vee
0o o 0O o0 O 0o o0 o o0 o o o o o o O o 15
IGNNE# _ FLUSH# HOLD NC BE2# PWT LOCK BREQ AB
NMI A20M# KEN# BRDY # BEO# D/C# HLDA A3
o o O 0 o O o o0 0O O 0 0 0 o 16
INTR RESET Vee cc BE1# Vee M/10%# PLOCK A4
NC BS8# RDY# Vee Vee Vee - BLAST#
o o © 0O o O 0O O O o O O O o o0 o 17
AHOLD BS16# Vss Vss PCD Vss W/R# PCHK# ADS#
EADS# BOFF# BE3# Vss Vss Vs Vss
A B C D E F G H J K L M N P Q R S
240440-A6

Figure 15.2. Low Power Intel486™ DX CPU Pinout (Pin Side View)

213

intel.

Intel486™ DX MICROPROCESSOR PRELIMINARY

15.3 Pin Cross Reference (Intel486™ DX CPU)

Address Data Control N/C Vee Vss
Ao Qi4 Do P1 A20M # D15 A10 B7 A7
Ag R15 D4 N2 ADS# S$17 A12 B9 A9
Ay S16 Do N1 AHOLD A17 A13 B11 A1
As Q12 D3 H2 BEO# K15 A14 C4 B3
Ag S15 Dy M3 BE1# J16 B10 C5 B4
Az Q13 Ds J2 . BE2# Ji15 B12 E2 B5
Ag R13 "De L2 BE3# F17 B13 E16 EA1
Ag Qi1 D7 L3 BLAST # R16 B14 G2 E17
Ato S13 Dg F2 BOFF # D17 B16 G16 G1
Aqq R12 Dg D1 BRDY # H15 c10 H16 G17
A2 S7 D1o E3 BREQ Q15 C11 J1 H1
A3 Q10 D14 C1 BS8# D16 ci12 K2 H17
Aqq S5 D12 G3 BS16# Cc17 C13 K16 K1
Ais R7 D3 D2 CLK2 C3 G15 L16 K17
Ats Q9 D4 K3 CLKSEL A3 R17 M2 L1
A7 Q3 Dis F3 D/C# M15 S4 M16 L17
Atg R5 D1s J3 DPO N3 P16 M1
A1g Q4 D17 D3 DP1 F1 : R3 M17
Ago Q8 Dis c2 DP2 H3 R6 P17
Aoy Q5 D19 B1 DP3 A5 R8 Q2
Ag2 Q7 - Dgg A1 EADS # B17 R9 R4
Aos S3 Doq B2 FERR# C14 R10 S6
Aoy Q6 Doo A2 FLUSH # Ci15 R11 S8
Azs R2 Dog A4 HLDA P15 R14 S9
Agg S2 Dog A6 HOLD E15 S10
Ag7 St Das B6 IGNNE # A15 S11
Aog R1 Dog Cc7 INTR A16 S12
Aosg P2 Da7 Cé KEN # F15 S14
Aso P3 D2g Cc8 LOCK# N15
Agzq Q1 Dog A8 M/IO# N16
D30 Cc9 NMI B15
D34 B8 PCD J17
PCHK# Q17
PWT L15
PLOCK # Q16
RDY # F16
RESET Ci16
W/R# N17

15.4 Pin Description

All pin descriptions for the Low Power Intel486 DX Microprocessor follow the same definition as the Intel486
DX Microprocessor with the exception of those listed in Table 15.2.

Table 15.2
Symbol | Type Name and Function
CLK2 | CLK2 provides the fundamental timing for the Low Power Intel486 DX Microprocessor.
This is twice the internal frequency of the CPU.
CLKSEL l Clock Select pin selects the 2X mode required for the Low Power Intel486 CPU. A well

defined pulse on this pin establishes the phase relationship of the 2X clock. With the
exception of a pulse during cold reset, this pin should be driven low at all times and must
be free of spikes or glitches.

214

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

OUTPUT PINS

Table 15.3. lists all the output pins, indicating their
active level, and when they are floated.

Table 15.3. Output Pins

Name ?_?‘;:f When Floated
BREQ HIGH
HLDA HIGH
BEO# -BE3# LOW Bus Hold
PWT, PCD HIGH Bus Hold
W/R#,D/C#, | HIGH/LOW Bus Hold

M/10#
LOCK# LOW Bus Hold
PLOCK # LOW Bus Hold
ADS # LOW Bus Hold
BLAST # LOW Bus Hold
PCHK # LOW
FERR# LOW
A2-A3 HIGH Bus,
Address Hold
INPUT PINS

Table 15.4 lists all input pins, indicating their active
level, and whether they are synchronous or asyn-
chronous inputs.

Table 15.4. Input Pins

Active Synchronous/

Name Level Asynchronous
CLK2
CLKSEL
RESET HIGH Asynchronous
HOLD HIGH Synchronous
AHOLD HIGH Synchronous
EADS # LOW Synchronous
BOFF # LOW Synchronous
FLUSH# LOW Asynchronous
A20M # LOW Asynchronous
BS16+#, BS8# LOW Synchronous
KEN # LOW Synchronous
RDY # LOW Synchronous
BRDY # LOW Synchronous
INTR HIGH Asynchronous
NMI HIGH Asynchronous
IGNNE # LOW Asynchronous

INPUT/OUTPUT PINS

Table 15.5 lists all the input/output pins, indicating
their active level and when they are floated.

215

Table 15.5. Input/Output Pins

Name Active When Floated
Level
D0-D31 HIGH Bus Hold
DP0-DP3 ‘HIGH Bus Hold
A4-A31 HIGH Bus, Address Hold
Table 15.6. Test Pins
Input or Sampled/
Name Output Driven On
TCK Input N/A
TDI Input Rising Edge of TCK
TDO Output Falling Edge of TCK
TMS Input Rising Edge of TCK
Table 15.7. Component and Revision ID (PGA)
i486 SX Microprocessor -
Component | Revision
Low Power
. ID ID
Stepping Name
DO 04 04

NOTE:

Table 15.7 shows the Component ID number and Revision
ID number for the D-0 stepping of the Intel486 DX Micro-
processor. When an Intel OverDrive Processor is installed
in the system, the Component ID and Revision ID is provid-
ed by the OverDrive Processor and not the Intel486 DX Mi-
croprocessor. The Component ID and Revision ID read by
the BIOS/software may change when a Performance Up-
grade Component, such as the Intel OverDrive Processor,
is installed in an Intel486 DX Microprocessor based sys-
tem.

15.5 Signal Description

With the exception of CLK2 and CLKSEL, all signals
follow the same definition as the Intel486 Microproc-
essor. The A.C. timing parameters for all of these
signals are given in Table 15.11.

CLOCK (CLK2)

CLK2 provides the fundamental timing for the Low
Power Intel486 Microprocessor. It is divided by two
internally to generate the internal processor clock
used for instruction execution. The internal clock is
comprised of two phases, “phase one” and “phase
two”. Each CLK2 period is a phase of the internal
clock. Figure 15.3 illustrates the relationship. If de-
sired, the phase of the internal processor clock can
be synchronized to a known phase by ensuring the
pulse on the CLKSEL pin meets the applicable tim-
ings during cold boot (power-up reset).

Intel486™ DX MICROPROCESSOR

PRELIMINARY

CLK2 PERIOD

INTERNAL
Intel486™CPU CLK
(half the freq.

of CLK2) =™ |

INTERNAL
PROCESSOR CLOCK PERIOD
CLK2 PERIOD

@2

5 W D o W
pam

7 N

INTERNAL
PROCESSOR CLOCK PERIOD
CLK2 PERIOD CLK2 PERIOD

o1 @2

240440-A7

Figure 15.3. CLK2 Signal and Internal Processor Clock

All set-up, hold, float-delay and valid delay timings
are referenced to the phase one of the clock.

The internal processor clock (CLK) is similar to the
clock signal of the standard Intel486 Microproces-
sor. All /0 signals get sampled on the rising edge of
this signal, i.e. the rising edge of phase one. Thus it
is important to synchronize the external circuitry with
the phase one of CLK2.

CLKSEL

Clock Select pin selects the 2X mode required for
the Low Power Intel486 DX CPU. This pin should be
driven low after power-up and during the entire oper-
ation of the CPU. However, a well defined pulse is
required on CLKSEL pin during cold boot (power-up

216

reset) to establish the phase relationship of the 2X
clock. The reset pulse width during cold reset should
be at least 1 ms. As shown in Figure 15.4, the pulse
on CLKSEL should be asserted by the end of reset
(approximately 0.9 ms after driving reset active) and
at least 30 CLK2 periods before the falling edge of
reset.

Figure 15.5 shows the detailed timing definition of
this pulse. The pulse on CLKSEL pin is only required
during power-up reset. During all other times includ-
ing warm resets the CLKSEL pin should be driven
low and must be free of spikes or glitches. After the
power-up reset, the system must track the phase of
CLK2 at all times including during warm resets so
that the input/output signals can be sampled at the
appropriate clock edge. The phase relationship is
described in the next section.

inteL Intel486™ DX MICROPROCESSOR PRELIMINARY

I

l ER)

RESET
—

i at least 0.9ms———>|

CLKSEL

e NN S S _
|
L

L

240440-A8
Refer to Figure 15-5 for exact timings of the CLKSEL pulse.
Figure 15.4. CLKSEL Pulse with Reference to the Reset Pulse Width
o1 ord2 ¢lord2 ¢1ord2 ¢l or¢p2 $2 o1 $2 o1 $2 $1

S o

Intel486™ IZITDEJRESE XX UNDEFINED X XX XX .

)
RESET
T1—| [
5

|- T4 >

CLKSEL

T1=T2=T3=2ns (MIN) T4=8ns (MIN) T5=30 CLK2 periods (min)
240440-A9

Figure 15.5. CLKSEL Timing Definition during Power-Up Reset

217

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

15.6 Architecture Overview

The Low Power Intel486 DX Microprocessor is archi-
tecturally similar to the Intel486 CPU. Thus all bus
cycles follow the same definition The difference lies
in the fact that the Low Power Intel486 CPU works
with an external 2X clock input (CLK2). As shown in
Figure 16-3, each of the internal processor clock
(CLK) cycle is two CLK2 cycles wide. Thus a 25 MHz
Low Power Intel486 DX Microprocessor needs a
50 MHz clock input.

CLK2 provides the fundamental timing for the Low
Power Intel486 CPU. It is divided by two internally to
generate the internal processor clock (CLK) used for
instruction execution. The internal clock is com-
prised of two phases, “phase one” and ‘“phase
two”. Each CLK2 period is a phase of the internal
clock. All Low Power Intel486 Microprocessor inputs
are sampled at the rising edge of phase 1. Each bus
cycle is comprised of at least two bus states, T1 and
T2. Each bus state in turn consists of two CLK2 cy-
cles phase 1 and phase 2 of the bus state. The bus
state diagram in Section 7.2.13 is valid for the Low
Power Intel486 Microprocessor.

NOTE:

The timing diagrams given in the Intel486 data
sheet can be used for the Low Power Intel486 Mi-
croprocessor. Read “CLK” signal as the internal
clock of the CPU, with “CLK2” (the input clock of
the Low Power Intel486 CPU) being twice the fre-
quency of the internal processor clock as shown in
Figure 15.3.

The following describes how the input signals are
sampled and output signals are referenced with re-
spect to the input clock (CLK2):

INPUT SIGNALS:

The Low Power Intel486 CPU samples all its syn-
chronous input signals (i.e. RDY#, BRDY#,

218

BS8#, BS16#, KEN#, EADS#, BOFF#, HOLD
and AHOLD) at the rising edge of phase 1, as long
as proper setup and hold times relative to that clock
edge are met.

The Low Power Intel486 CPU samples all its asyn-
chronous input signals (i.e. RESET, INTR, NMI,
A20M# FLUSH#, IGNNE#) at every other rising
edge of the system clock (Phase 1), as long as prop-
er setup and hold times relative to that clock edge
are met.

OUTPUT SIGNALS

The A.C. timing specifications for output signals (i.e.
valid and float delay timings) are specified with re-
spect to the rising edge of the Phase 1 of the system
clock. This holds true for all output signals including
ADS# and PCHK#.

15.7 Variable CPU Frequency

The Low Power Intel486 Microprocessor allows the
CPU frequency to change dynamically. As shown in
Figures 15.6 and 15.7, the relationship between fre-
quency and power consumption is approximately lin-
ear. Thus lowering the CPU frequency, reduces the
power supply current (Icc) consumed by the CPU.

The following must be satisified to change the CPU
frequency:

1. Frequency can be changed at least 8 clocks after
satisfying t4 (see Figure 15.5). The system can be
started at a lower frequency and after satisfying
the CLKSEL pulse specifications, it can be oper-
ated at the required speed.

. The change in frequency should satisfy the mini-
mum specification of “CLK2 high time” and
“CLK2 low time”. That is, at no time should the
clock period go below the specified clock high
and clock low times (see A.C. specifications for
exact values).

Intel486™ DX MICROPROCESSOR

PRELIMINARY

600

.
500
400

< e
£
. +00 ,/
8 200 //
100 M
[1]
0 5 10 15 20 25
F MH
requancy (Miz) 240440-B0
Figure 15.6. Frequency vs Igc(typ) (PGA Version)
700
600
. 500
<
E 400
Qo
£ “00 //
_8 /
200 /
100 —
0
5 10 15 20 25
Frequency (MHz)
240440-B1

Figure 15.7. Frequency vs Icc(typ) (PQFP Version)

219

intal.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

15.8 D.C./A.C. Specifications

Table 15.8 provides the absolute maximum ratings. It is a stress rating only and functional operation at the
maximums is not guaranteed. Functional operating conditions are given in Section 15.8.1 D.C. Specifications
and Section 15.8.3 A.C. Specifications.

Table 15.8. Absolute Maximum Ratings

Case Temperature under Bias

—65°Cto +110°C

Storage Temperature

—65°Cto +150°C

Voltage on Any Pin with Respect to Ground

—0.5V to (Vgg +0.5V)

Supply Voltage with Respect to Vgg

—0.5Vto +6.5V

15.8.1 D.C. SPECIFICATIONS

Table 15.9 provides the D.C. operating conditions for the Low Power Intel486 DX Microprocessor.

Functional operating range: Vog = 5V +10%; Tcase = 0°C to +85°C.

Table 15.9. Low Power Intel486 DX Microprocessor D.C. Parametric Values (PGA Version)

Symbol Parameter Min Max Unit Notes

ViL Input Low Voltage -0.3 +0.8 \

VIH Input High Voltage 2.0 Vce + 0.3 \"

VoL Output Low Voltage 0.45 \" (Note 1)

VoH Output High Voltage 2.4 \" (Note 2)

Icc Power Supply Current 700 mA (Note 3)

CLK2 = 50 MHz

Iy Input Leakage Current +15 pA (Note 4)

I Input Leakage Current 200 BA (Note 5)

L Input Leakage Current —400 MA (Note 6)

Lo Output Leakage Current +15 HA

CiN Input Capacitance 20 pF Fe = 1 MHz(?)

Co 170 or Output Capacitance 20 pF Fe = 1 MHz(?)

CoLk CLK Capacitance 20 pF Fe = 1 MHz(?)
NOTES:

1.

w

NO O

This parameter is measured at:
Address, Data BEn 4.0 mA
Definition, Control 5.0 mA

. This parameter is measured at:

Address, Data BEn —1.0 mA
Definition, Control —0.9 mA

. Typical supply current

lcc = 550 mA @CLK2 = 50 MHz

. This parameter is for inputs without pullups or pulldowns and 0 < V|y < V.
. This parameter is for inputs with pulldowns and V| = 2.4V.

. This parameter is for inputs with pullups and V| = 0.45V.

. Not 100% tested.

220

intel, Intel486™ DX MICROPROCESSOR PRELIMINARY

15.8.2 POWER SUPPLY CURRENT vs FREQUENCY

Following is the power consumption of the Low Power Intel486 Microprocessor installed in a low power system
for different frequencies.

Table 15.10. Power Supply Current (Icc) Values over Frequencies of Operation (PGA Version)

CLK2 Frequency Operating Frequency lcc(max) lcetyp)
(MH2) (MHz) (mA) (mA)
4 2 150 100
16 8 325 235
32 16 525 400
40 20 600 475
50 25 700 550

15.8.3 A.C. SPECIFICATIONS

The following table provides the A.C. specifications for the Low Power Intel486 DX Microprocessor. It consists
of output delays, input setup requirements and input hold requirements. All A.C. specifications are relative to
the rising edge of the phase 1 of the input system clock (CLK2), unless otherwise specified.

Table 15.11. Low Power Intel486 DX—25 MHz Microprocessor A.C. Characteristics
Voe = 5V £10%; Tcase = 0°C to +85°C; C = 50 pF(2 unless otherwise specified

Symbol Parameter Min | Max | Unit | Figure Notes
Frequency 2 25 | MHz Half of CLK2 Frequency

2] CLK2 Period 20 | 250 | ns 15.8

to CLK2 High Time 7 ns 16.8 | Atav

t3 CLK2 Low Time 7 ns 15.8 | At0.8V

tg CLK2 Fall Time 2 ns 1568 | 2Vto 0.8V

ts CLK2 Rise Time 2 ns 15.8 | 0.8Vto2v

ts A2-A31, PWT, PCD, BEO-3#, 3 22 ns 15.9

M/IO#,D/C#,W/R#, ADS#, LOCK#,
FERR#, BREQ, HLDA Valid Delay

t7 A2-A31, PWT, PCD, BEO-3#, 30 ns 15.9 | After Clock Edge(1)
M/I0#,D/C#,W/R#, ADS#,
LOCK# Float Delay

tg PCHK# Valid Delay 3 27 ns 15.9
tga BLAST #, PLOCK # Valid Delay 3 27 ns 15.10

221

intel.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Table 15.11. Low Power Intel486 DX—25 MHz Microprocessor A.C. Characteristics (Continued)
Voc = 5V £10%; Tgase = 0°C to +85°C; C = 50 pF(2) unless otherwise specified

Symbol Parameter Min Max Unit Figure Notes
tg BLAST #, PLOCK # 30 ns 15.9 After Clock Edge(1)
Float Delay
t0 D0-D31, DP0-3 Write Data 3 22 ns 15.9
Valid Delay
t41 D0-D31, DPO-3 Write Data 30 ns 15.9 Atfter Clock Edge()
Float Delay
t12 EADS # Setup Time ns 15.10
t13 EADS# Hold Time ns 15.10
t14 KEN#, BS16#, BS8# ns 15.10
Setup Time
t15 KEN#,BS16+#, BS8# 4 ns 15.10
Hold Time
tie RDY #, BRDY # Setup Time ns 15.10
t47 RDY #, BRDY # Hold Time 4 ns 15.10
t1s HOLD, AHOLD, BOFF # 11 ns 15.10
Setup Time
t1o HOLD, AHOLD, BOFF # 4 ns 15.10
Hold Time
t20 RESET, FLUSH#, A20M #, NMI, 11 ns 15.10
INTR, IGNNE # Setup Time
to1 RESET, FLUSH#, A20M #, NMI, 4 ns 15.10
INTR, IGNNE # Hold Time
too D0-D31, DP0-3, A4-A31 6 ns 15.10
Read Setup Time
to3 D0-D31, DP0-3, A4-A31 4 ns 15.10
Read Hold Time
CLKSEL See Figures 15.4 and 15.5 for details on this signal.
Figure 15.5 shows -minimum timings required for the
proper operation of the CPU. The pulse on CLKSEL can
be of any length as long as the minimums are satisfied
and the transitions from low to high occurs at the clock
edge shown.
NOTES:

1. Not 100% tested, guaranteed by design characterization.
2. All timing specifications assume G| = 50 pF.

222

intgl. Intel486™ DX MICROPROCESSOR PRELIMINARY

| o1 t 2
2.0V _—— /
—_— - — 4 08V
o d
t5 | ——I t4
I t1
240440-B2
Figure 15.8. CLK2 Waveform
i 2 f 1
CLK2
tx ty
INPUTS VALID
tX=112, t14, t16, t18, 120, 122
ty=113, t15, t17, 19, t21, 123
240440-B3
Figure 15.9. Setup and Hold Timings
i 1 i 2
CLK2 4/__—\—/__\—
ty
Enmm— 94
OUTPUTS VALID >—
tx = t6, t8, t8a, t10
ty =17, t9, t11
240440-B4

Figure 15.10. Valid and Float Delay Timings

223

inteL Intel486™ DX MICROPROCESSOR

16.0 SUGGESTED SOURCES FOR
INTEL486™ ACCESSORIES

Following are some suggested sources of accesso-
ries for the Intel486. They are not an endorsement
of any kind, nor a warranty of the performance of
any of the listed products and/or companies.

Sockets

1. McKenzie Technology
44370 Old Paimspring Blvd.
Fremont, CA 94538
Tel: (415) 651-2700

2. E-CAM Technology, Inc.
14455 North Hayden Rd.
Suite 208
Scottsdale, AZ 85260
Tel: (602) 443-1949

3. Augat Inc. (for sockets with decaps)
Interconnection Products Group
33 Perry Ave.
P.O. Box 779
Attleboro, MA 02703
Tel: (508) 222-2202

224

Heat Sinks/Fins

1. Thermalloy Inc.
2021 West Valley View Lane
Dallas, TX 75381-0839
Tel: (214) 243-4321

2. E G & G Division
60 Audubon Road
Wakefield, MA 01880
Tel: (617) 245-5900

TTL Crystals/Oscillators

1. NFL Frequency Controls, Inc.
357 Beloit Street
Burlington, Wi 53105
Tel: (414) 763-3591

2. M-Tron
P.O. Box 630
Yankton, SD 57078
Tel: (605) 665-9321

Debugging Tower

1. Emulation Technology
2344 Walsh Ave., Building F
Santa Clara, CA 95051
Tel: (408) 982-0664

PRELIMINARY

inteL Intel486™ DX MICROPROCESSOR PRELIMINARY

17.0 REVISION HISTORY

Revision -003 of the Intel486 CPU data sheet con-
tains many updates and improvements to the origi-
nal version. A revision summary of major changes is
listed below:

The sections significantly revised since version -001
are:

Section 2.1.2 The polarity and names of the two
cache control bits in Control Regis-
ter 0 (CRO) have been modified.
The Cache Enable (CE) and Writes
Transparent (WR) have been re-
named Cache Disable (CD) and Not
Write Through (NW). The value of
CRO after RESET has been
changed to reflect the polarity
change.

Section 6.2.15 The discussion of A20M# has been
clarifed. During the falling edge of
RESET, A20M# should be high, for
proper operation of the CPU.

Section 6.5 The value of CRO after RESET has
been modified.

Section 6.5.1 Figure 6.3, “Pin State during RE-
SET” is added. This Figure is a gen-
eral reference for Reset issues. Pre-
vious Figures 8.1, 8.2, and 8.8 have
been deleted, since Figure 6.3 now
contains Reset information.

Section 7.2.10 A discussion of addresses and byte
enables driven during INTA cycles
has been added.

Section 10.1 Clock counts and opcodes have
been clarified and corrected.

Section 10.1 The opcode slot for CMPXCHG in-
struction has been moved from
OFA6/A7 to OFB0/B1.

Section 12.2 Table 12.1 has been enhanced. The
“Case Temperature under Bias”
spec was improved. The “Supply
Voltage with Respect to Vgg” spec
was added.

Section 12.3 Maximum Icc values have been im-
proved to 700 mA at 25 MHz and
900 mA at 33 MHz.

Section 12.3 Typical Igg values have been modi-
fied to 550 mA at 25 MHz and
700 mA at 33 MHz.

Section 123 Cjn, Co, and Cgrk values have
been changed to 20 pF. Testing pa-
rameters and Note 7 were added.

Section 12.4

Section 12.5
Section 13.1

Section 13.1

The A.C. Specifications have been
improved. Float delays were im-
proved at both 26 MHz and 33
MHz. Note 1 was added to the float
delays. Maximum valid delays were
reduced at 33 MHz.

The ICD section was enhanced.

Thermal resistance 6ca values of
the 168-pin ceramic package have
been corrected.

Maximum ambient temperatures
have been corrected to use the
max Igc values.

The sections significantly revised since version -002

are:

Section 2.1.2.1 Spec change for PC and PWT bits.

Table 2.16

Section 3.1

Section 3.5

Section 4.4.6
Section 4.5.4
Section 5.6

Section 5.7

Section 6.2.5
Section 6.2.8
Set;tion 6.2.12
Section 6.2.13
Section 6.2.14

Section 6.2.15

Section 6.3

Section 6.3.1
Section 6.3.2

225

Value of intel Reserved Interrupt
Vector assignment corrected to
‘18-31".

Added CMPCHG, XADD instruc-
tions in the table.

Added explanation about NMI not
able to bring out the processor from
shutdown under certain conditions.

Value of task switching time cor-
rected to 10 ms.

Specification change for PCD and
PWT bits.

Specification change for PCD and
PWT bits.

Cache flushing procedure ex-
plained, when FLUSH# applied
synchronously or asynchronously.
Specification change for PLOCK
cycle.

Added explanation for warm boot-
up.

Specification change for PCD and
PWT bits.

Explanation added for FERR# be-
havior.

Explanation added of IGNNE# be-
havior.

Explanation added for A20M# be-
havior in protected mode and dur-
ing RESET.

Simplified example for read reor-
dering in write buffers.

Corrected REP OUTS instruction.

Added explanation about cache up-
date on read-modify-write cycle.

intgl.

Intel486™ DX MICROPROCESSOR

PRELIMINARY

Section 6.5
Section 6.5
Table 6.2
Figure 6.3
Section 7.2.2.3
Section 7.2.3.4

Figure 7.12

Figure 7.13

Figure 7.14

Section 7.2.4.2
Section 7.2.6

Section 7.2.7

Section 7.2.8
Section 7.2.8
Figure 7.22
Figure 7.23
Figure 7.25

Section 7.2.9

Section 7.2.11
Section 7.2.11

Figure 7.30

Section 7.2.14

Section 8.1

Added RESET pulse length require-
ment with or without BIST

Added table for Intel486 revision
ID.

Corrected CRO value after Reset.
Corrected pin state diagram during
RESET. RESET pulse length
changed to 15 CLKs.

Added explanation to terminate
burst cycle.

Clarified text on changing KEN#
during cache line fill.

Corrected timing diagram to show
A4-A31, M/IO#, D/C#, W/R# do
not change during burst.

Corrected timing diagram to show
A4-A31, M/IO#,D/C#, W/R# do
not change during burst.

Corrected timing diagram to show
A4-A31, M/IO#,D/C#, W/R# do
not change during burst.

Added cases that follow burst or-
der.

Added explanation for read-modify-
write for un-aligned transfers.

HOLD latency decreased by provid-
ing window in PLOCK cycle (speci-
fication change).

Added explanation about EADS #
timing.

Added the case of invalidation with
BOFF or HOLD.-
Change in Timing
BREQ.

Change in Timing
BREQ.

Change in Timing
RDY #/BRDY #.
Added explanation about HOLD
getting recognized during unaligned
writes.

Added status of address and data
busses during special bus cycles.
Added sections on Halt and Shut-
down cycles.

Corrected state diagram by ANDing
BRDY# and BLAST# for the last
transfer of the burst cycle.
Difference in FERR# and ER-
ROR# explained.

Changed Reset width to 15 CLKs.

Diagram for
Diagram for

Diagram for

Section 8.4

Table 10.1
Section 11.0

Section 11.0

Section 12.3
Section 12.3

Figure 12.2 &
Figure 12.3

Section 13.1

Section 14.0

Added explanation on tri-state

status.
Corrected value in format.

Added Note 6 on FERR# and
ERROR# difference.

Added TLB replacement algorithm
for 386 DX.

Corrected values in Note 2.

Added “internal” for pullup and
pulldown resistors

Waveforms for input and output sig-
nals have been re-drawn to show
details about set-up, hold and float
times.

Added details about Tp calculation
from 6yc and 6ya.

Added new section on suggested
sources of Intel486 accessories
like sockets, debugging tower, heat
sinks, etc.

The sections significantly revised since revision -003

are:
Cover Page

Figure 1.3

and Figure 1.4

Pin Cross
Reference
Table

Quick Pin
Reference
Table 1.4
Table 1.5
Section 6.2.9
Section 6.2.12
Section 6.2.16
Table 6.3

Figure 6.4

Figure 7.30

Add 50 MHz information to text and
block diagram.

Added 50 MHz pinout diagrams.

Added column for Test Access Port
pins.

Added Test Access Port pin de-
scriptions.

Added Test Access Port pin sam-
ple/driven data.

Added DO, cAx, and cBx revision ID
information.

Added description of HOLD recog-
nition during BOFF #.

Added PCD and PWT description
when paging disabled.

Added signal description for Test
Access Port signals.

Added DO, cAx, and cBx revision ID
information.

Added additional details on signal
samping during RESET.

Added HOLD to state transition be-
tween Tb and T1b.

Section 8.0, 8.5 Added Boundary Scan to test fea-

Table 12.2
Table 12.3

ture description.
Added 50 MHz D.C. specifications.
Added 50 MHz A.C. specifications.

inteI,, Intel486™ DX MICROPROCESSOR PRELIMINARY

Figure 12.7 Added Test signal timing reference Quick Pin Reference Clarified the description for

diagram. KEN#.
Figure 12.4.2 Added 50 MHz capacitive load de- Table 1-5 Updated component and revi-
rating curves. sion |.D. information.
Table 13.2 Added 50 MHz thermal resistance Section 6.2.15 More clearly defined A20M #
values. bit by defining functionality
Table 13.3 Added 50 MHz ambient tempera- during 1/O writes, prefetching,
ture data. ete.
Figure 6.4 Designated that FLUSH#
The sections significantly revised since revision -004 must be inactive during BIST.
are: Section 7.2.15 Added section for floating
oint error handling in AT
Intel OverDrive Processor information/specifications go:'npatible systems. g
have been added throughout the document. Section R .
13.0 contains OverDrive Processor specific informa- ~ Section 8.1 Clarified A20M#, FLUSH#
tion. and AHOLD functionality dur-
ing BIST.
Low Power Intel486 DX CPU information/specifica- Section 8.5.7 BSDL is now available through
tions have been added. Section 15.0 contains Low Intel.
Power specific information. Table 10.1 Clarified CBW and CWD. Cor-

rected REP LODS, REP
MOVS and REP STOS.

Table 10.2 Corrected REP INS and REP
OuUTS.

Table 10.3 Corrected FSTP, FUCOMP,
FSUBR, FDIV, FDIVR.

Appendix A Added appendix for CPU Ilden-

tification Code.

227

il'l‘t'elO Intel486™ DX MICROPROCESSOR PRELIMINARY

APPENDIX A
INTEL RECOMMENDED CPU IDENTIFICATION CODE

The CPU identification assembly code will determine for the user which Intel microprocessor and if a Intel Math
CoProcessor is installed in the system. If a 486 microprocessor has been installed, the program will determine
if the CPU is with/without a floating point unit. This code should be executed so the system can be configured
for a particular application, which may depend on the microprocessor and Math CoProcessor installed in the
system.

TITLE CPUID
DOSSEG
.model small

.stack 100h

.data
fp_status dw ?
id_mess ab "This system has a$§"
£p.8087 db "and an 8087 Math CoProcessor$"
£p.80287 db "and an 287™ Math CoProcessor§"
£p..80387 db "and an 387 Math CoProcessor$"
c8086 db "ng8086/8088 microprocessor$"
c286 db "n80286 microprocessor$"
c386 db "386I microprocessor$"”
c486 dab "486™ DX microprocesser/487T™ SXT™ Math

"CoProcessor$"

c486nfp db "486™ SXTM Microprocesser$"
period db ".$",13,10
present_86 dw 0
present_286 dw 0
present.386 dw 0
present_486 dw 0

’

The purpose of this code is to allow the user the ability to identify
the processor and coprocesor that is currently in the system. The
algorithm of the program is to first determine the processor id.

When that is accomplished, the program continues to then identify
whether a coprocessor exists in the system. If a coprocessor or
integrated coprocessor exists, the program will identify the
coprocessor id. If one does not exist, the program then terminates.

we o we we e we we wo

.code
start:
mov ax,@data
mov ds,ax s set segment register
mov dx,offset id_mess sprint header message
mov ah,9h
int 21h

Intel486™ DX MICROPROCESSOR PRELIMINARY

s we wo we

we we we we

we we we we we we

8086 check
Bits 12-15 are always set on the 8086 processor.

pushf save EFLAGS

pop bx store EFLAGS in BX

mov ax,0fffh clear bits 12~15

and ax,bx in EFLAGS

push ax store new EFLAGS value on stack
popf replace current EFLAGS value
pushf set new EFLAGS

pop ax store new EFLAGS in AX

and ax,0f000h

cmp ax,0f000h

mov dx,offset ¢8086
mov present_86,1

je check_fpu

if bits 12-15 are set, then CPU
is an 8086/8088

store 8086/8088 message

turn on 8086/8088 flag

if CPU is 8086/8088, check for

8087

we we we we WE e we e we we we we we wo

80286 CPU Check
Bits 12-15 are always clear on the 80286 processor. ’

or bx,0f000h ; try to set bits 12-15
push bx

popf

pushf

pop ax

and ax,0f000h
mov dx,offset ¢286

if bits 12-15 are cleared, then
CPU is an 80286

e o we we we

mov present_86,0 turn off 8086/8088 flag
mov present_286,1 turn on 80286 flag
jz check_fpu if CPU is 80286, check for 80287

386 CPU check

The AC bit, bit #18, is a new bit introduced in the EFLAGS register
on the 486 DX CPU to generate alignment faults. This bit can be set
on the 486 DX CPU, but not on the 386 CPU.

mov bx, sp s save current stack pointer to
; align it

and sp,not 3 ; align stack to avoid AC fault

dab 66h

pushf ;s push original EFLAGS

db 66h

pop ax ; get original EFLAGS

db 66h

mov cx,ax ; save original EFLAGS

db 66h s Xor EAX,40000h

xor ax,0 ;s flip AC bit in EFLAGS

dw 4 s upper 16-bits of xor constant

db 66h

push ax ;s save for EFLAGS

db 66h

popf ; copy to EFLAGS

A-2

Intel486™ DX MICROPROCESSOR

PRELIMINARY

v wo weo

we we we we we we we we we we we

is_486:

db
pushf
db
pop
db
xor

mov
mov
mov
je

486 DX

mov
mov
mov

66h

66h
ax
66h
ax,cx

dx,offset c386
present_286,0
present_386,1
check_fpu

CPU and 486 DX CPU w/o FPU

dx,offset c486nfp

present_386,0
present._486,1

we

push EFLAGS
get new EFLAGS value

if AC bit cannot be changed,
CPU is

store 386 message

turn off 80286 flag

turn on 386 flag

if CPU is 386, now check for
80287/80387

checking

B
.
’
.
’

tore 486NFP message
rn off 386 flag

S
t
turn on 486 flag

u
u

Co-processor checking begins here for the 8086/80286/386 CPUs.

The algorithm is to determine whether or not the floating-point
status and control words can be written to, the correct coprocessor
is then determined depending on the processer id. Coprocessor checks
are first performed for an 8086, 80286 and a 486 DX CPU. If the
coprocessor id is still undetermined, the system must contain a 386
CPU. The 386 CPU may work with either an 80287 or an 80387. The
infinity of the coprocessor must be checked to determine the correct
coprocessor id.

check_fpu:

fninit
mov

fnstsw
mov
cmp

jne

fnstew
mov
and
cmp

jne
cmp

je
Jmp

mov
jmp

fp_status,5abah

fp.status
ax,fp_status
al,0

print_one

fp_status
ax,fp_status
ax,103fh
ax,3fh

print_one
present_486,1

is_486
not._486

dx,offset c486
print_one

we wo we we we we we we we we

we wo wo we wo we wo

we we we

-e

check for 8087/80287/80387

reset FP status word

initialize temp word to non-zero
value

save FP status word

check FP status word

see if correct status with
written

jump if not Valid, no NPX
installed

save FP control word

check FP control word

see if selected parts looks OK
check that ones and zeroes
correctly read

jump if not Valid, no NPX
installed

check if 486 flag is on

if so, jump to print 486 message
else continue with 386 checking

store 486 message

Intel486™ DX MICROPROCESSOR

PRELIMINARY

e wo we

exit:

cmp present_386,1
jne print_87_287
mov ah,9h

int 21h

80287/80387 check for the 386 CPU

f£1d1

fldz

fdiv

flad st

fchs :

fcompp

fstsw fp_status

mov ax,fp_status

mov dx,offset fp.80287
sahf

j=z restore_EFLAGS

mov dx,offset fp_80387

restore_EFLAGS:

print_one:

print_87.287:

print_fpu:

finit

mov ah,9%h

int 21h

ab 66h

push cx

db 66h

popf

mov sp,bx

jmp exit

mov ah,9h

int 21lh

jmp exit

mov ah,9%h

int 21h

cmp present_86,1

mov dx,offset fp_8087
je print_fpu

mov dx,offset fp._80287
mov ah,%h

int 21h

jmp exit

mov dx,offset period
mov ah,9h

int 21h

mov ax,4c00h

int 21h

end start

we we we we

“e we we we we we we we we

.o we we we we

.o

.o

we

.o we we

we

.o

we

check if 386 flag is on

if 386 flag not on, check NPX for
8086/8088/80286

print out 386 CPU ID first

must use default control from
FNINIT

form infinity

8087/80287 says +inf = inf
form negative infinity

80387 says +inf <> -inf

see if they are the same and
remove them

look at status from FCOMPP

store 80287 message
see if infinities matched

jump if 8087/80287 is present
store 80387 message

clear any pending fp exception
print NPX message

push ECX

restore original EFLAGS register
restore original stack pointer

print out CPU ID with no NPX

print out 8086/8088/80286 first

if 8086/8088 flag is on
store 8087 message

else CPU = 80286, store 80287
message

print out NPX

print out a period of end message

terminate program

ALABAMA

Intel Corp.

600 Boul South
Sulte 104-1
Huntsville 35802

Tel: (228; 883-3507
FAX: (205) 883-3511
ARIZONA

tintel Corp.

410 North 44th Street
Suite 500

Phoenix 85008

Tel: (ega 231-0386
FAX: (602) 244-0448
CALIFORNIA

tintel X
2151 Sc\zlorpanowon Street
Sulte 116

Cap a Park 91303

Tel: (818) 704-8500
FAX: (818) 340-1144
intel Corp.

1 Sierra Gate Plaza
Suite 280C
Roseville 95678

Tel: (918) 7828086
FAX: (916) 782-8153

Intel
% é’r?.f’;ap.mo..

San D 92123
Tel: (¢ 292-8088
FAX: (e1) 292-0628
*tintel Corp.

400 N. Tustin Avenue
Suite 450

Santa Ana 92705
Tel: (714) mmﬁ
FAX (m) 541-9157
*tintel Corp.
San Tomas 4
2700 San Tomas Expressway
2nd Floor
‘?af‘(& 986-8086
ol

TWX: 81 Aesa‘ozss
FAX: (408) 727-2620
COLORADO

*tintel C
600 S. Chorep"y St.
S Ito

Tol (30@&321-8086
TWX: 910-931-2289
FAX: (303) 3228670
CONNECTICUT
tintel Oo?
301 Lee Farm COrpomn Park
83 Wooster Heights Rd.
Dot

20% 794-0339

FLORIDA

tintel Corp.

800 Fairway Drive

Suite 160

Deerfield Beach 33441

Tel: (305) 421-0508

AX: 421-2444

ﬂmo! p.

5850 T.G. Lee Bivd.
uite 340

Orlan
Tek
A ((407;) 240-8097

1Sales and Service Office
*Fleld Application Location

NORTH AMERICAN SALES OFFICES

GEORGIA

tinte! Corp.

20 Technology Parkway
Sulte 150

Norcross 30092

Tol: (404) 449-0541
FAX: (404) 605-9762

ILLINOIS

*tintel Corp.
Woodfield Corp. Center I
300 N. Martingale Road

Sulte 400
Schaumburg 60173
Tel: (708) 605-8031
FAX: (708) 708-9782
INDIANA

tintel Corp.

8910 Purdue Road
Sulte 350
Indianapolis 46268

Tel: (317) 875-0823
FAX: (317) 875-8938

MARYLAND

*intel Corp.
10010 Junction Dr.
Suite 200

Annapolis Junction 20701
Tel: (410) 208-2860
FAX: (410) 206-3678

MASSACHUSETTS

*tintel COép

Waestford orp Center
5 Carlisle Road

2nd Floor

Waestford 01886

Tel: (508&3%-0960

6333
FAX: (508) 692-7867
MICHIGAN

tintel Corp.

7071 Orchard Lake Road
Suite 1

Wast Bloomﬂald 48322
Tel: (313) 851-8098
FAX: (313) 851-8770

MINNESOTA

tintel Corp.
3500 W. Bpom St

Sulte 360
Bloomington 55431

FAX: (612) 831-8497

NEW JERSEY

*tintel Co

Lincroft Office Cent
125 Half Mile Road
Red Bank 07701
Tel: (908) 747-2233
FAX: (908) 747-0983

NEW YORK

*Intel Corp.

850 Crosskeyg Office Park
Falrport 1

Tel: (716) 425-2750

TWX: 510-253-7391

FAX: (716) 223-2561

*tintel Corp.

2950 Exprass Dr., South
Suite 1
IslandLa 11722

FAX: (51 6) 348-7939

1intel Co

300 Wesugo Business Center
Suite 230

Fishkill 12524

Tel: (914) 897-3860

FAX: (914) 897-3125

OHIO

*tintel Corp.

3401 Park Center Drive
Suite 220

Dayton 45414

FAX: (513) 890-8658

*tintel Corp.

25700 Sclence Park Dr.
Suite 100

Beachwood 44122

Tel: (216) 464-2736
TWX: 810-427-9208
FAX: (804) 282-0673

OKLAHOMA

Intel Corg

6801 N. Broadway
Suite 115

Oklahoma City 73162
Tel: (405) 848-8086
FAX: (405) 840-9819

OREGON

ﬂntel Corl &

15254 N.W. Greenbrier Pkwy.
Building B

Beaverton 97006

FAX: (503) 845-8181

PENNSYLVANIA

*tintel Corp.

925 Harvest Drive
Suite 200

Blue Bell 19422

Tel: (215) 841-1000
FAX: (215) 641-0785

*tintel
400 Penn Center Bivd,
ite 610

Sui

Pittsburgh 15235
Tel: (412) 823-4970
FAX: (412) 829-7578

PUERTO RICO

tintel Corp.

South Industrial Park
P.O. Ba 9 0

Las as 00671

Tel: (309) 733-8616

SOUTH CAROLINA

Intel Corp.

100 Executive Center Drive
Suite 109, B183
Greenville 29615

Tel: (803) 297-8086

FAX: (803) 297-3401

TEXAS

tintel Col (r:n

gs:s N. Capital of Texas Hwy.
Austin 78759

Tel: (512) 794-8086

FAX: (512) 338-9335

*tintel Corp.
12000 Ford Road

Tel: (214) 241-8087
FAX: (214) 484-1180

*tintel Corp.

7322 S.W. Freeway
Suite 1490
Houston 77
Tel: (713&9! 8086
TWX: 910-881-2490
FAX: (713) 988-3660

‘F:

UTAH

tinte! Corp.

428 East 8400 South
Suite 104

Murray 84107

Tel: (801) 263-8051
FAX: (801) 268-1457

WASHINGTON

tintel Corp.

2800 156th Avenue S.E.
Suite 105

Bellevue 98007

Tel: (206) 643-8088
FAX: (206) 746-4495

Int ICo

16 99208
7 (928-8088
FAX: (509) 928-9467

WISCONSIN

Intel CoErg
ecutive Dr.
S ha

Brookfi
Tel: (414) 75&2733
FAX: (414) 789-2748

CANADA

BRITISH COLUMBIA
Intel Semiconductor of
Canada, Ltd

999 Canada Place
Suite 404, #11
Vancouver V6C 3E2
Tel: (604) 844-2823
FAX: (604) 844-2813

ONTARIO
tintel Semiconductor of

ada, Ltd.
2650 Queensview Drive
Suite 250
Ottawa K2B 8H6
Tel: (613) 829-9714
FAX: (613) 820-5936
tintel Semiconductor of

Ltd.

ana .
190 Attwell Drive
Suite 500

Rexdale MSW 6H8
Tel: (416) 675-2105
FAX: (416) 6875-2438

QUEBEC

tintel Semiconductor of
Canada, Ltd.

1 Rue Hohday

Suite 115

Tour East

Pt. Claire H9R SN3

Tel: (514) 694-9130
FAX: 514-694-0064

CG/SALE/050892

In

ALABAMA

Arrow/Schweber Electronics
1015 Henderson Road
Huntsville 35808

Tel: (205) 837-6955

FAX: (205) 721-1581

Hamilton/Avnet

4960 Corporate Drive, #135
Huntsville 35805

Tel: (205) 837-7210

FAX: (205) 721-0356

w'lsos p'g:ats ajr‘)” #120
e Dr.

Huntsville 35805

Tel: (205) 830-9526

FAX: (205) 830-9557

Ploneer Technologies Group
4835 University Square, #5
Huntsville

Tel: (2(356& 837-9300

FAX:) 837-9358

ARIZONA

Arrow/Schweber Electronics
2415 W, Erie Drive

Tempe 85282

Tel: (602) 431-0030

FAX: (602) 252-9109

Avnet Computer

30 South McKemy Avenue
Chandler 85226

Tel: (602) 961-6460

FAX: (602) 961-4787

Hamitton/Avnet

30 South McKemy Avenue
Chandler 85226

Tel: (602) 961-6403

FAX: (602) 961-1331

Wyle Laboratories
4141 E. Raymond
Phoenix 85040

Tel: (802) 437-2088
FAX: (602) 437-2124
CALIFORNIA

Arrow Commercial Systems Group
:' 502 Crocker Avenue

Tei: (510) 489-5371

FAX: (510) 489-9393

Arrow Commercial Symms Groui
14242 Chambers i
Tustin 92680

Tel: (714) 544-0200

FAX: (714) 731-8438
Arrow/Schweber Electronics
26707 W.) ura Road

Tel: (818%880—9688

FAX: (818) 772-8930
Arrow/Schweber Electronics
9511 Rldgehmn Court
San Dl 92123

Tel: 565-4800

FAX: (819) 279-8062
Arrow/Schweber Electronics
1180 Murpl? Avenus

San Jose 95131

Tel: (408) 441-9700

FAX: (408) 453-4810
Arrow/Schweber Electronics
2961 Dow Avenue

Tustin 92680

Tel: (714) 838-5422

FAX: (714) 8384151

Avnet Compute

31 70 Pullmln Slreet

Costa Mesa 92626

lesa
Tel: (714) 641-4150
FAX: (714) 6414170

NORTH AMERICAN DISTRIBUTORS

Avnet Computer
1361B Wesl 190!h Street
dena 90248

Gar

Tel: (800) 426-7999
FAX: (310) 327-5389
Avnet Computer

755 Sunrise Bivd., #150
Roseville 95661

Tel: (916) 781-2521
FAX: (916) 781-3819

Avnet Computer

1175 Bordeaux Drive, #A
Sunnyvale 94089

Tel: (408) 743-3304

FAX: (408) 743-3348

Hamilton/Avnet
3170 Puliman Street
Costa Mesa 92626
Tel: (714) 641-4100
FAX: (714) 754-6033

Hamitton/Avnet

1175 Bordeaux Drive, #A
Sunnyvale 94089

Tel: (408) 743-3300

FAX: (408) 745-6679
Hamilton/Avnet

4545 Viewridge Avenue
$San Diego 92123

Tel: (3130 571-1900

FAX: (619) 571-8761

Hamilton/Avnet
21150 Califa St.
Woodland Hills 91367
Tel: (818) 594-0404
FAX: (818) 594-8234

Hamilton/Avnet

755 Sunrise Avenue, #150
Roseville 95661

Tel: (918) 925-2216

FAX: (916) 925-3478

Pioneer Techno les Grou
134 Fll b bog P

San Jose 95134
Tel: (408) 954-9100
FAX: (408) 954-9113

e Laboratories
1 Barranca Pkwy.
Irvine 92713
Tel: (714) 753 9953

Wyle Laborat:
2951 Sunrise Blvd #175
Rancho Cordova 95742
Tel: (916) 638-5282
FAX: (916) 638-1491

le Laboratories
9525 Chesapeake Drive
Diego 921

San
Tel: «sfgo 565-9171
FAX: (619) 365-0512

Wyle Laboratories
3000 Bowers Avanue
Santa Clara

Tel: (408) 727- 2500
FAX: (408) 727-5896

\09’!9 Laboratories
17872 Cowan Avenue
Irvine 92714

Tel: (714) 863-9953
FAX: (714) 263-0473

Wyle Laborat

26010 Muveau Hoad #150
Calabasas 91302

Tel: (818) 880-9000

FAX: (818) 880-5510
COLORADO
Arrow/Schweber Electronics
61 Inverness Dr. East, #105
Englewood 8011

Tel: (303) 799-0258

FAX: (303) 373-5760

Hamilton/Avni
9605 Maroon CIrcle. #200
lewood 80112

Eng|
TeI (303) 789-7800
AX: (303) 798-7801

e Laboratories
1 E. 124th Avenue
Thornton 80241
Tel: (303) 457-9953
FAX: (303) 457-4831

CONNECTICUT

Arrow/Schweber Electronics
12 Beaumont Road
Wallingford 06492

Tel: (203) 265-7741

FAX: (203) 265-7988

Avnet Computer

55 Federal Road, #103
Danbury 06810

Tel: (203) 797-2880
FAX: (203) 791-9050

Hamilton/Avnet

55 Federal Road, #103
Danbury 06810

Tel: (203) 743-6077
FAX: (203) 791-9050

Pioneer-Standard

2 Trap Falls Rd., #101
Shelton 06484

Tel: (203) 929-5600
FAX: (203) 838-9901

FLORIDA
Arrow/Schweber Electronics

Deerfield
Tel: (305) 429-8200
FAX: (305) 428-3991

Arrow/Schweber Electronics
37 S Ine Drlve #3101

32746
Tel (333 -9300
FAX: (407) 333-9320

Avnet Computer

3343 W. Commercial Bivd.
Bidg. C/D, Suite 107

Ft. Lauderdale 33309

Tel: (305) 979-9067

FAX: (305) 730-0368

Avnet Computer
3247 Tech Drive North

St. 6
Tel: (513) 573-5524
FAX: (813) 572-4324

Hamifton/Avnet

5371 N.W. 33rd Avenue
Ft. Lauderdale 33309
Tel: (305) 484-5016
FAX: (305) 484-8369

Hamilton/Avnet

3247 Tech Drive North
St. Petersburg 33716
Tel: (813) 573-3930
FAX: (813) 572-4329

Hamilton/Avnet
7079 University Boulevard
1V_VI|mar Park 32791

ol (407;,857-3300
FAX: (407) 678-1878
Pioneer Technologies Group
337 Northlake Bivd., #1000
Alta Monte Springs 32701
Tel: (407) 834-9090
FAX: (407) 834-0885
Pioneer Technologlies Group
674 S. Miltary Tral

428-8877
FAX (305) 481-2950

GEORGIA

Arrow Commercial Wstems Group
3400 C. COrpome

Duluth

Tel (404) szuazs
AX: (404) 623-8802

Arrow/Schweber Electronics
4250 E. Hivsvgrsan Pkwy., #E
Duluth 301 36

Tel: (404) 49

FAX: (404) 476-1499

Avnet Computer

3425 COrporate Way, #G
Duluth 30136

Tel: (404) 623-5452
FAX: (404) 476-0125

Haglgm/l\vnet Way, #G
orporate Way,
Duluth aom Y

Tel: (404) 446-06

FAX: (404) 44&1011

Pioneer Technologies Group
4250 C. Rlvergreen Parkway
Duluth 3

Tel: (404) 623-1003

FAX: (404) 623-0665

ILLINOIS

Arrow/Schweber Electronics
1140 W. Thorndale Rd.

Hasca 60143

Tel: (708) 250-0500
Avnet Computer

1124 Thorndale Avenue
Bensenville 60106

Tel: (708) 860-8573
FAX: (708) 773-7976

Hamilton/Avnet

1130 Thorndale Avenue
Bensenville 60106

Tel: (708) 860-7700
FAX: (708) 860-8530

MTI Systems

1140 W. Thorndale Avenue
ltasca 60143

Tel: (708) 250-8222

FAX: (708) 250-8275

Pioneer-Standard

2171 Executive Dr., #200
Addison 601 1
Tel: (708) 495-9680
FAX: (708) 495-9831

INDIANA

Arrow/Schweber Electronics
7108 Lakeview Parkway West Dr.
Indlanapolis

Tel: (317) 299-2071
FAX: (317) 299-2379

Avnet Computer
485 Gradle Drive
Carmel 46032

Tel: (317) 575-8029
FAX: (317) 844-4964

Hamitton/Avnet
485 Gradle Drive
Carmel 46032
Tel: (317) 844-9333
FAX: (317) 844-5921
Pioneer-Standard
9350 Prlorlty Way West Dr.
Indianapolis 462:
Tel: (31 7) 573 -0880
FAX: (317) 573-0979

CG/SALE/050892

intel
® NORTH AMERICAN DISTRIBUTORS (Contd.)

IOWA

Hamitton/Avnet
2335A Blairsfer: Rd N.E.
Cedar Raplds 5240
Tel: (319) 362-475! 7
FAX: (319) 393-7050

KANSAS

Arrow/Schweber Electronics
9801 Le ler Road

19
o 913) 541-9542
FAX: (913) 541-0328

Avnet Computer
15313 W. 95th Street

Lenexa 61219

Tel: (913) 541-7989

FAX: (913) 541-7904

Hamilton/Avnet
15313 W 95!h

Overl
Tel: (913) ab-1055
FAX: (913) 541-7951

KENTUCKY

Hamilton/Avnet

805 A. Newtown Circle
Lexington 40511

Tel: (606) 259-1475
FAX: (606) 252-3238

MARYLAND

Arrow/Schweber Electronics
9800J Patuxent Woods Dr.

Tel: (301) 596-7800
FAX: (301) 995-6201

Avnet Computer

7172 Columbia Gateway Dr., #G
Columbia 21045

Tel: (301) 995-3571

FAX: (301) 995-3515

Hamilton/Avnet

7172 Columbia Gateway Dr., #F
Columbia 21045

Tel: (301) 995-3554

FAX: (301) 995-3515

*North Atlantic Industries
Systems Division

7125 River Wood Dr,
Columbia 21046

Tel: (301) 312-5800
FAX: (301) 290-7951

Pioneer Technologies Group
15810 Gaither Roa
Gaithersburg 20877

Tel: (301) 921-0660

FAX: (301) 670-6746

MASSACHUSETTS

Arrow/Schweber Electronics
25 Upton Dr.

Wilmington 01887

Tel: (508) 658-0900

FAX: (508) 694-1754

Avnet Computer

10D Centennial Drive
Peabodx

Tel: (508) 532~9886
FAX: (508) 532-9660
Hamilton/Avnet

10 D Centennial Drive
Peal 01960

Tel: (508) 531-7430
FAX: (508) 5329802

Ploneer-Standard
44 Hartwell Avenue
Lexington 02173
Tel: (617) 861-9200
FAX: (617) 863-1547

Wyla Laboratories
15 Third Avenue
Burlington 01803
Tel: (617) 272-7300
FAX: (617) 272-6809

*Self Certified Small Busii per Federal

MICHIGAN

Arrow/Schweber Electronics
19880 Hag; eny

Livonia 48152

Tel: (800) 231-7902

FAX: (313) 462-2686

Avnet Computer

2876 28th Street, SW., #5
Grandville 49418

Tel: (816) 531-9607

FAX: (616) 531-0059

Avnet Computer

41650 Gar len Brook Rd. #120
Novi 4

Tel: (313) 347-1820

FAX: (313) 347-4067

Hamilton/Avnet

2876 28th Street, S.W., #5
Grandville 43418

Tel: (616) 243-8805

FAX: (616) 531-0059

Hamilton/Avnet

41650 Garden Brook Rd., #100
Novi 48375

Tel: (313) 347-4270

FAX: (313) 347-4021

Ploneer-Standard

.E.
Grand Rapids 49512
Tel: (616) 698-1800
FAX: (616) 698-1831

Pioneer-Standard
13485 Stamford
Livonia 48150

Tel: (313) 525-1800
FAX: (313) 427-3720

MINNESOTA

Arrow/Schweber Electronics
10100 Viking Drive, #100
Eden Prairie 55344

Tel: (612) 941-5280

FAX: (612) 942-7803

Avnet Computer

10000 West 76th Street
Eden Prairie 55344
Tel: (612) 829-0025
FAX: (612) 944-2781

Hamilton/Avnet
12400 Whitewater Drive

Tel: (612) 932-0600
FAX: (612) 932-0613

Pioneer-Standard

7625 Golden Triange Dr., #G
Eden Prairie 55344

Tel: (612) 944-3355

FAX: (612) 944-3794

MISSOURI

Arrow/Schweber Electronics
2380 Schuetz Road

St. Louls 63141

Tel: (314) 567-6888

FAX: (314) 567-1164

Avnet Computer

739 Goddard Avenue
Chesterfield 63005
Tel: (314) 537-2725
FAX: (314) 537-4248

Hamilton/Avnet

741 Goddard
Chesterfield 63005
Tel: (314) 537-1600
FAX: (314) 537-4248

NEW HAMPSHIRE

Avnet Computer

2 Executive Park Drive
Bedford 03102

Tel: (800) 442-8638
FAX: (603) 624-2402

NEW JERSEY

Arrow/Schweber Electronics
4 East Stow Rd., Unit 11
Mariton 08053

Tel: (609) 596-8000

FAX: (609) 596-0632

Arrow/Schweber Electronics
43 Route 48 East

Pine Brook 07058

Tel: (201) 227-7880

FAX: (201) 538-4962

25 Keyetone Ava., Bidg. 36
-| lone Ave.,

Gremy 1l 08008 %"
Tel: (609) 424-8961

FAX: (609) 751-2502

Hamilton/Avnet
1 Keystone Ave., Bldg 36

Chenzol;lll
Tel: (609) 424-0110
FAX: (609) 751-2552

Hamilton/Avnet

10 Industrial
Falrfield 07008

Tel: (201) 575-3390
FAX: (201) 575-5839

MTI Sys(ems Sales
6 Cemury Drive

y 07054
Tal @01) 882.8780
539-6430

Ploneer-smndard
14-A Madison Rd.
Fairfield 07006

Tel: (201) 575-3510
FAX: (201) 575-3454

NEW MEXICO

Alliance Electronics, Inc.
10510 Research Avenue
Albu uerque 871628

) 275-6392

Avnet Computer
7801 Academy Road
Bldg. 1, Sulte 204
Albu uerque 87109
Te (5) 02&9 25
8-0360

Hammon/Avnet

Albuc uerque 87108
Tel: (505) 765-1500
FAX: (505) 243-1395

NEW YORK

Arrow/Schweber Elsctronics

3375 Brighton Henrietta Townline Rd.
Rochester 14523

Tel: (716) 427-0300

FAX: (716) 427 0735

Arrow/Schweber Electronics
20 Oser Avenue
gauge 11788
Tel (516) 231-1000
FAX: (516) 231-1072

Avnet Computer
933 Motor Parkway
Hauppauge 11788
Tel: (516) 434-7443
FAX: (516) 434-7426

Avnet Computer
2060 Townline Rd.
Rochester 14623
Tel: (716) 272:9110
FAX: (716) 272-9685

Hamilton/Avnet

933 Motor Parkway
Hauppauge 11788
Tel: (516) 231-9800
FAX: (516) 434-7426

Hamiton/Avnet

Tol: (716) 292-0730
FAX: (716) 292-0810

Hamilton/Avnet

103 Twin Oaks Drive
Syracuse 13120

Tel: (315) 437-2641
FAX: (315) 432-0740

:JI"I:"I SVsmms

250 W :mn street
New York 10119
Tel: (212) 643-1280
FAX: (212) 643-1288

Pioneer-Standard
68 Corporate Drive
Binghamton 13904
Tel: (607) 722-9300
FAX: (607) 722-9562

Pioneer-Standard
60 Cross Park West
Woodbury, onq]lsland 11797
Tel: (516) 921-8700

FAX: (516) 921-2143

Pioneer-Standard

840 Falrport Park

Fairport 14450

Tel: (716) 381-7070
FAX: (716) 381-5955

NORTH CAROLINA

Arrow/Schweber Electronics
5240 Graensdalvy Road
Ralel gh

Tel: (319) 876-3132

FAX: (919) 878-9517

Avnet Comput
2725 MIIIbrook Rd #123

Tk 819
Tel: (919) 7901735
FAX: (919) 672-4972

Hamilton/Avnet

5250-77 Center Dr. #350
Charlotte 28217

Tel: (704) 527-2485

FAX: (704) 527-8058

ring Fore: rive
Ralolgh 27804

Tel: (319) 878-0819

Pioneer Technologies Group
1 L-Southern Pine Bivd.

Charlotte 282

Tel: (704) 527-8188

FAX: (704) 522-8564

Pioneer Technologies Group

2810 Meridian Parkway, #148

Durham 27713

Tel: (919) 544-5400
FAX: (919) 544-5685

OHIO

Arrow Commercial Systems Group
840ramer Cree Court

Dublin 43

Tel: (614) sas

FAX: (614) awsseo

Arrow/Schweber Electronics
6573 Cochran Road, #E
Solon 44139

Tel: (216) 248-3990

FAX: (216) 248-1108
Arrow/Schweber Electronics
8200 Washington Village Dr.
Centerville 45458

Tel: (513) 435-5563
FAX: (513) 435-2049

CG/SALE/050892

intel
® NORTH AMERICAN DISTRIBUTORS (Contd.)

OHIO (comd)

Avnet Com
7764 Wasstlggton Village Dr.

Dayton 4!

Tel: (513) 439-6756

FAX: (513) 439-6719

“aoa”"S‘s%".“%‘,"s:' Rd., Bldg. A
ainbridge

Solon 44139 ¢

Tel: (216) 349-2505

FAX: (216) 349-1894

776D Washinglon Vilage D
fashington Village Dr.
454531

Dslyton
Tel: (513) 439-6733
FAX: (513) 439-6711

Hamilton/Avnet
30325 Bainbridge
Solon 44139

Tel: (216) 349-4910
FAX: (216) 349-1894

Hamilton/Avnet

Corp Exchange Drive, #180

2600

Columbus 43231
Tel: (614) 882-7004
FAX: (614) 882-8650

MTI Systems Sales
23404 Cﬂmeroo Park Rd.

Beachwo
Tel: (216) 464-6688
FAX: (216) 464-3564

Pioneer-Standard
4433 Interpoint Boulevard
Da) 45424

rm
Tel: (513) 236-9900
FAX: (513) 236-8133

Pioneer-Standard

4800 E. 131st Street

Cleveland 44105

Tel: (216) 587-3600
FAX: (216) 663-1004

OKLAHOMA

Arrow/Schweber Electronics
12111 East 51st Street, #101
Tulsa 74146

Tel: (918) 252-7537

FAX: (918) 254-0917

Hamilton/Avnet

12121 E. 51st St., #102A
Tulsa 74146

Tel: (918) 252-7297

FAX: (918) 250-8763

OREGON

Almac/Arrow Electronics
1885 N.W. 169th Place
Beaverton 97006

Tel: (503) 629-8090
FAX: (503) 645-0611

Avnet Computel

9409 Southwam Nimbus Ave.
Beavenon 9700

Tel: (503) 627-0900

FAX: (503) 526-6242

Hamilton/Avnet

9750 Southwest Nimbus Ave.
Beaverton 97005

Tel: (503) 627-0201

FAX: (503) 641-4012

Wyle Laboratories
9640 Sunshine zggun

005
Tel: (503) 643-7900
FAX: (503) 646-5466
PENNSYLVANIA
Avnet Computer
213 Executive Drive, #320
Mars 16046
Tel: (412) 772-1888
FAX: (412) 772-1830

Hamitton/Avn
213 Exacuﬂve. #320
Mars 16045

ars
Tel: (412) 281-4152
FAX: (412) 772-1890

gloneer -Standard

Tel: (412) 782-2300
FAX: (412) 963-8255

Pioneer Technologies Group
500 Enterprise Road

Keith Valley Business Center
Horsham 19044

Tel: (215) 674-4000

FAX: (215) 674-3107

TEXAS

Arrow/Schweber Electronics
3220 Commander Drive
Carroliton 75006

Tel: (214) 380-6464

FAX: (214) 248-7208

Avnet Computer
4004 Beltline, Suite 200
75244

Dallas
Tel: (214) 308-8181
FAX: (214) 308-8129

Avnet Computer
1235 Nonh Loop West, #525

Hou:
Tel: (7 13) 867-7500
FAX: (713) 861-6851

Hamilton/Avnet
1826-F Kramer Lane
Austin 78758

Tel: (512) 832-4306
FAX: (512) 832-4315

Hamilton/Avnet
4DOtI)I4 Belﬂme, Suite 200
Tel: (214) 308-8111
FAX: (214) 308-8109

Hamilton/Avnet

1235 North Loop West, #521
Houston 77008

Tel: (713) 240-7733

FAX: (713) 861-6541

Pioneer-Standard
1826-D Kramer Lane
Austin 78758

Tel: (512) 835-4000
FAX: (512) 835-9829

Pioneer-Standard
13765 Beta Road
Dallas 75244

Tel: (214) 263-3168
FAX: (214) 490-6419

Pioneer-Standard

10530 Rockley Road, #100
Houston 77099

Tel: (713) 495-4700

FAX: (713) 495-5642

Wyle Laboratories

1810 Greenville Avenue

Richardson

Tel: (214) 235-9953
FAX: (214) 644-5064

Wyle Laboratori
4030 West Brakev Lane, #330
in 78758

Austi
Tel: (512) 345-8853
FAX: (512) 345-9330
Wyle Laboratories
IIOOSIOSoth Wilcrest, #100

Hi
Tel: (713) 879-9953
FAX: (713) 879-6540

UTAH
Arrow/Schweber Electronics
1946 P kwa Blvd

Salt
Tel: (801) 9% 8913

Avnet Com|

Sait

Tel: (801) 266-1115
FAX: (801) 266-0362

Hamifton/Avnet
1100 East 6600 South, #120
Salt Lake City 84121
Tel: (801) 972-2800
FAX: (801) 263-0104
Wyle Laboratories
1325 West 2200 South, #E
West Valley 84119
Tel: (801) 974-9953
FAX: (801) 972:2524

WASHINGTON
Almac/Arrow Electronics

Tel: (206) 643-9992

FAX: (206) 843-9709
Hamilton/Avnet

17761 N.E. 78th Place, #C
Redmond 98052

Tel: (206) 241-8555

FAX: (206) 241-5472
Avnet c%mnguter
17761 Northeast 76th Place

Teld (206) 86
el
AX: (206) aemm

‘1'%35 A o Sweet
Redmond 98052

Tel: (206) 881-1150
FAX: (206) 881-1567
WISCONSIN

Arrow/Schweber Electronics
200 N. Patrick Bivd., #100
Brookfield 53005
Tel: (414) 792-0150
FAX: (414) 792-0156
Avnet Computer
20875 Crossroads Circle, #400
Waukesha 53186
Tel: (414) 784-820!
FAX: (414) 7B¢BOOG
Hamilton/Avn

28875 cyossroads Circle, #400
Waukesha 53186
Tel: (414) 784-4510
FAX: (414) 784-9509
o pe

a)

Brooifield 53005
Tel: (414) 784-3480
ALASKA

Avnet Computer
1400 West Boggn Bivd., #400

CANADA

ALBERTA

Avnet Computer
2816 21st Street Northeast
T2E 622

Calg:

Tel: (%a) 291-3284

FAX: (403) 250-1591
Zentronics

g?!l’ Bth StEro7e':N.E.. #100
Tt

FAX: (403) 295-8714

BRITISH COLUMBIA
Almac-Arvow Electronics
8544

Burnaby VSA 478

Tel (604) 421.2333
AX: (604) 421-5030

Hamitton/Avnet

8610 Commerce Court
Burnaby V5A 4N6

Tel: (604) 420-4101
FAX: (604) 420-5376

Zentronics

11400 Bvidee Rd. #108
Richmond

Tel: (604) 2735575

FAX: (604) 273-2413

ONTARIO
gruw/smwaber Electronics

Tel: (613% 226-6903
FAX: (613) 723-2018
Arrow/Schweber Electronics
1093 Meyerside, Unit 2
Mississauga L5T 1M4
Tel: (416) 670-7769

FAX: (416) 670-7781

Avnet Computer

151 Superior Bivd.
Mississuaga L5T 2L1
Tel: (416) 795-3835

Avnet Computer

190 t:olclzlzaé'ie7 ?_rf'd

Telpg?:i 727-2000
FAX: (613) 226-1184

Hamilton/Avnet

;.1?‘ ISupevlm g‘¥d2'i.'1Jnm 1-6
ssissauga

Tel: (413)%546060

FAX: (416) 564-6033

Hamitton/Avnet

190 Colonade Road
Nepean K2E 7J5
Tel: (613) 226-1700
FAX: (613) 226-1184

nics
1355 Meyerside Drive
Mississauga L5T 1C9
Tel: (416) 564-9600
FAX: (416) 564-3127

Zentronics
l1155 Colonade Rd., South

Nepean K2E 7K1
Tel (613) 226-8840
FAX: (613) 226-6352

QUEBEC
Armv/sarwebor Electronics
1100 St. Regls Bivd.

rval HY|

Dol P 2T5
Tel: (514) 421-7411
FAX: (514) 421-7430

Quebec H2E 5R9
Tel: (418) 871-7500
FAX: (418) 871-6816
Avrm 00mputor
795 Ri m

Sl Lau 1P8
Tel: (514) 335-2483
FAX: (514) 335-2481

Hamilton/Avnet

Tel: (514) 335-1000
FAX: (514) 335-2481

520 McCaffrey
St. Laurent H4T 1N3
Tel: (514) 737-9700
FAX: (514) 737-5212

intel.

FINLAND

Intel Finland OY

Ruosilantie 2

00390 Helsinki

Tel (358) 0 544 844
AX: (358) 0 544 030

FRANCE

Intel ration S.A.R.L.
1 Rue Edison-BP 303
8054 St. Quentin-en-Yvelines

Codok
Tok (33) (1) 3057 70 00
FAX: (33) (1) 30 64 60 32

EUROPEAN SALES OFFICES

GERMANY

Intel GmbH
Dornacher Strasse 1

8016 Feldkirchen bel Muenchen

Tel: (49) 089/90992-0
FAX: (49) 089/9043948

ISRAEL
Intel Semiconductor Lt

Atidim In uwlal Park- Neve Sharet

P.O. Box 43

Tel-Aviv e14so

Tel: (972) 03 498080
FAX: (972) 03 491870

ITALY

intel Corporation ltalla S.p.A.

Milanofiori Palazzo E
3‘0094 Assago

jlan
Tel: (39) (oz; 89200950
FAX: (39)

NETHERLANDS

intel Semiconductor B.V.
Postbus 84130

3009 CC Rotterdam
Tel: (31) 10 407 11 11
FAX: (31) 10 455 4688

SPAIN

Intel Iberia S.A.
Zubaran, 28

T (34) 308 25 52
FAX: (34) 410 7570

SWEDEN

Intel Sweden A.B.
Dalvagen 24

171 36 Solna

Tel: (46) 8 734 01 00
FAX: (46) 8 278085

UNITED KINGDOM

Inte! Covv)oraﬂon (UK) ld.

s»zindon. Wiltshire SN3 1R
Tel: (44) (0793) 696000
FAX: (44) (0793) 641440

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AUSTRIA

Bacher Electronics GmbH
Rotenmuehigasse 26
A-1120 Wien

AX: 43 222 834276

BELGIUM

Inelco Belgium S.A.

Avenue des Croix de Guerre 94
1120 Bruxelles

Tel: 32 2 244 2811

FAX: 32 2 216 4301

FRANCE

Alm
48, Flue de I'Aubepine
B.P. 102

92164 Anto Cedsx
Tel: 33 1
FAX: 33 1 4666 6028

Lex Electronics

60-62 Rue des Je'meaux
Silic 585

94663 Rungis Cedex
Tel: 33 1 4978 4978
FAX: 33 1 4978 0596

Tekelec
5 Rue Carle Vernet
BP2

92310 Sevres
Tel: 33 1 4623 2425
FAX: 33 1 4507 2191

GERMANY

E2000 Vertriebs-AG
Stahlgruberring 12
8000 Muenchen 82
Tel: 49 89 420010
FAX: 49 89 42001209

Jermyn GmbH
Im Dachsstueck 9

49 6431 508289

Proslectron Vertriebs GmbH
Max-Planck-Strasse 1-3
6072 Dreleich

Tel: 49 6103 304343

FAX: 49 6103 304425

GREECE

Pouliadis Associates Corp.
5 Koumbari Street

Tel: 30 1 360 3741
FAX: 30 1 360 7501

IRELAND

Micro Matkeﬁng
Taney Hall
Egluéton Terraoe

Dublin 14
Tel: 010 3531 989 400
FAX: 010 3531 989 828

ISRAEL

Eastronics Ltd.
Rozanis 11

P.0.B. 39300

Tel Baruch

Tel-Aviv 61392

Tel: 972 3 6450777
FAX: 9

ITALY

Intesi Div. Della Deutsche
Divisione n'r Industries GmbH
06550 0158

P.l

Milano)
Tel 392 ?2%7(51)
FAX: 39 2 8242631

Lasi Ekmlonk;a S.PA
P.l. 008380001

Viale Fulvio Tesﬁ N.280
20126 Milano

Tel: 39 2 66101370
FAX: 39 2 66101385

NETHERLANDS
Datelcom

Tel: 3 609 906
FAX: 31 15619 194

Dioda Components b.v.
Coltbaan 17

3439 NG Nleuwegeln
Tel: 3402 91234

FAX: 3402 35924

SOUTH AFRICA

EBE

P.O. Box 912-1222
SIlvsnon 0127
Tel: 27 12 803 7680
FAX: 27 12 803 8294

SPAIN

ATD Electronica, S.A.
Avda de la Industria, 32
Nave 17, 2B

28100 Aicobendas
Madrid

Tel: 34 1 661 6551
FAX: 34 1 661 6300

SCANDINAVIA

QY Fintronic AB
Heikkilantie 2a
SF-0210 Helsinki
Finland

Tel: 358 0 6926022
FAX: 358 0 6821251

ﬂ'l' Mumkomponenl AS
averland

DK 2600 Glosuup

Denmark

Tel: 45 42 451822

FAX: 45 42 450724

Nortec Electronics A/S
Postboks 123
Smedsvingen 4B
N-1364 Hvalstad

No
Teln?Z 846210
FAX: 47 2 846545

Nortec Electronics AB
Fs'arkvagen 2A

2; Solna
Sweden
Tel: 46 8 7051850

SWITZERLAND

I':lldulstrada A.G.

ort

CH-8304 Walllsellen

Tel 41 18328111
1 1 8307550

TURKEY

EMPA
Florya Js Merkezi
0l Londra Asfalti
0 Florya
Istanbul
Tel: 901 5993050
FAX: 901 5955353

UNITED KINGDOM
Avnet-Access
Jubilee House
Jubilee Road
Letchworth
Hertsfordshire

$G6 1QH

Tel: 0462 480888
FAX: 0462 682467

B eg; Components Ltd.
Chlnehmauslnoss Park

FAX: 0256 707162

Jermyn
Vestry Estate
Otford Road

Sevenoaks

Kent TN14 5EU
Tel: 0732 743743
FAX: 0732 451251

MMD/Rapid
3 Bennet Court
Bennet Road

Readi

Berkshire RG2 0QX
Tel: 0734 313232
FAX: 0734 313255

YUGOSLAVIA

H.R. Microelectronics Corp.

§005 de la Cruz Bivd.
uite 2

Santa Clara. CA 95050

USA

Tel: (408) 988-0286
FAX: (408) 988-0306

CG/SALE/050892

intgl.

AUSTRALIA
Intel Australia Pty. Ltd.
Unit 13 Py

Allambie Grove Business Park
25 Frenchs Forest Road East
Frenchs Forest, NSW, 2086

Sydney
TZE 61-2-975-3300
FAX: 61-2-975-3375

Intel Australia Pty. Ltd.
711 High Street

1st Floor

East Kw. Vic., 3102
Melbourne

Tel: 61-3-810-2141
FAX: 61-3-819 7200

BRAZIL

Intel Semiconductores do Brazil LTDA
Avenida Paulista, 1159-CJS 404/405
CEP 01311 - Sao Paulo - S.P.

Tel: 55-11-287-5899

TLX: 11-37-557-1SDB

FAX: 55-11-287-5119

CHINA/HONG KONG

Intel PRC Corporation
15/F, Office 1, Citic Bldg.
Jian Guo Men Wali Street

Tel: (1 500435
TLX: 22947 INTEL CN
FAX: (1) 500-2853

INTERNATIONAL SALES OFFICES

Intel Semiconductor Ltd.*
10/F East Tower

Bond Center
Queensway, Central

Hon Kong“4

Tel: ?852) 4555

FAX: (852) 868-1989

INDIA

Intel Asia Electronics, Inc.
4/2.MSamrah Plaza
aj

LX:
FAX: 091-812-215067

JAPAN

Intel Japan K.K.

5-6 Tokodal, Tsukuba-shi
Ibaraki, 300-26

Tel: 0298-47-8511

FAX: 0298-47-8450

Intel Japan K.K.*
Hachlo{wON Bldg.
4-7-14 jin-machi
Hach|01I~sh Tokyo 192
Tel: 0426-48-8770

FAX: 0426-48-8775

Intel Japan K.K.*

Bldg. Kumagaya

2-69 Hon-cho
Kumagaya~sh| Saltama 360
Tel: 0485-24-1

FAX: 0485-24 7518

Intel Japan K.K.*
Kawa-asa Bldg.

2-11-5 Shin-Yokohama
Kohoku-ku, Yokohama-shi
Kanagawa, 222

Tel: 045-474-7660

FAX: 045-471-4394

Intel Japan K.K.*
Ryokuchl i-Eki Bldg.

2-4-1 Terauchi

To naka sm Osaka 560
Tel: 06-863-1091

FAX: 06-863-1084

Intel Japan K.K.
Shinmaru Bldg.

1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100
Tel: 03-3201-3621
FAX: 03-3201-6850

Intel Jay an KK
Green Bldg.

1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 460

Tel: 052-204-1261
FAX: 052-204-1285

KOREA

lntel Korea, Ltd.
6th Floor, Life Bldg.
61 Ymdodg?g YYoungdeungpo-Ku

Seoul 1
Tel: (2) 784-8186
FAX: (2) 784-8096

SINGAPORE

Intel Singapore Technology, Ltd.
101 Thomson Road #08-03/06

TAIWAN

Intel Technology Far East Ltd.
Taiwan Branch Office

8th Floor, No. 205

Bank Tower Bidg.

Tung Hua N. Road

Taipei

Tel: 886-2-5144202

FAX: 886-2-717-2455

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES |

ARGENTINA

Dafsys S.R.L.
Chacabuco, 90-6 Piso
1069-Buenos Aires

Tel. & FAX: 54.1334.1871

AUSTRALIA

Email Electronics

15-17 Hume Street
Huntingdale, 3166

Tel: 011-61-3-544-8244
TLX: AA 30895

FAX: 011-61-3-543-8179

NSD-Australia

205 Middleborough Rd.
Box Hill, Victoria 3128
Tel: 03 8300970

FAX: 03 8990819

BRAZIL

Microlinear
jo do Arouche, 24

221
FAX: 5511 -220-5750

CHILE

Sisteco

Vecinal 40—Las Condes
Santiago

Tel: 562-234-1644

FAX: 562-233-9895

CHINA/HONG KONG

Novel Precision Machinery Co., Ltd.
Room 728 Trade Square

681 Cheung Sha Wan Road
Kowloon, Hong Kong

Tel: (352) 360-8999

TWX: 32032 NVTNL HX

FAX: (852) 725-3695

GUATEMALA
Abinitio

11 Calle 2—Zona 9
Guatemala City
Tel: 5022-32-4104
FAX: 5022-32-4123

*Field Application Location

INDIA

Micronic Devices

Arun Complex

No. 65 D.V.G. Road

Basavanagudi

Bangalore 560 004

Tel: 011-91-812-600-631
011-91-812-611-365

TLX: 9538458332 MDBG

Micronic Devices

No. 516 5th Floor
Swastik Chambers

Sion, Trombay Road
Chembur

Bombay 400 071

TLX: 9531 171447 MDEV

Micronic Devices
25/8, 1st Floor
da Bazaar Marg
Oid Fla]mder Nagar
New Delhi 110 060
Tel: 011-91 11-5723509
011-91-11-589771
TLX: 031-63253 MDND IN

Micronic Devices

6-3-348/12A Dwarakapun Colony
Hyderabad 500 482

Tel: 011-91-842-226748

S&S Corporation
1587 Kooser Road
San Jose, CA 95118
Tel: (408) 978-6216
TLX: 820281

FAX: (408) 978-8635

JAMAICA

MC Systems

10-12 Grenada Crescent

Kingston 5

Tel: (809) 929-2638
(809) 926-0188

FAX: (809) 926-0104

JAPAN

Asahi Electronics Co. Ltd.
KMM BIdg. 2-14-1 Asano
Kokurakita-ku
Kitakyushu-shi 802

Tel: 093-511-6471

FAX: 093-551-7861

CcTC COmponsnts Systems Co., Ltd.
4-8-1 Dobashi, Miyamae-ku
Kawasaki-shl, Kanagawa 213

Tel: 044-852-5121

FAX: 044-877-4268

Dia Semicon Systems, Inc.
Flower Hill Shinmachi Higashi-kan
1-23 Shmmachr Setagaya-ku

Tokyo 1

Tel: 03-3439-1600

FAX: 03-3439-1601
Okaya Koki

2-4-18 Sakae

Naka-ku, Nagoya -shi 460
Tel: 052-204-83

FAX: 052-204- 6380

Ryoyo Electro Corp.
Bldg.

Konwa

1-12-22 Tsukiji

Chuo-ku, Tokyo 104

Tel: 03- 3546 011

FAX: 03-3546-5044

KOREA

J Tek Corporation
Sung Bidg. 9/F

158 4, Samsung-Dong. Kangnam-Ku
Seoul 135-090

Tel: (822) 557-8039

FAX: (822) 557-8304

Samsung Electronics

Samsung Main Bidg.

150 Taepyung-Ro-2KA, Chung-Ku
Seoul 100 102
C.P.0. Box 878
Tel: (azz) 751 3
TWX: KORSST K 27970
FAX: (822) 753-9065

MEXICO

PSIS.A. de C.V.

Fco. Villa esq. Ajusco s/n
Cuernavaca, MOR 62130
Tel: 52-73-13-9412

52-73-17-5340
FAX: 52-73-17-5333
NEW ZEALAND
Email Electronics
36 Olive Road
Penrose, Auckland
Tel: 011-64-9-591-155
FAX: 011-64-9-592-681

SAUDI ARABIA

AAE Systems, Inc.
642 N. Pastoria Ave
lSJunnyvale CA 94

Tel: (408) 7321710
FAX: (408) 732-3095
TLX: 494-3405 AAE SYS

SINGAPORE

Eleclromc Resuurces Pte, Ltd.
1701’; 81 Si 1336
%%.gé)m

Toi (69)2
TWX: RS 56541 ERS
FAX: (ss) Soosaz7

SOUTH AFRICA

Electronic Building Elements

178 Erasmus St. ?oﬂ Walermeyet St)
Meyerspark, Pretoria, 0
Tel: 011-2712-803-7 0
FAX: 011-2712-803-8294

TAIWAN

Micro Electronlcs Corporallon
12th Floor, Section
285 Nanking East Road

Taipei, R.O.
Tel (886)27198419
FAX: (886) 2-7197916

Acer Sertek Inc.

FAX: (886) 2-5012521

URUGUAY

Interfase

Zabala 1378

11000 Montevideo

Tel: 5982-96-0490
5982-96-1143

FAX: 5982-96-2965

VENEZUELA

Unixe! C.A.

4 Transversal de Monte Cristo

Edf. AXXA, Piso 1, of, 1&2

Centro Empresarial Boleita
aracas

Tel: 582-238-6082

FAX: 582-238-1816

CG/SALE/05089:

intel.

ALASKA

Intel Corp.

c/o TransAlaska Network
1515 Lore Rd.
Anchorage 99507

Tel: (907) 522-1776

Intel Corp.

c/o TransAlaska Data Systems
c/o GCI Operations

520 Fifth Ave Suite 407
Fairbanks 99701

Tel: (907) 452-6264

ARIZONA

*Intel Corp.

410 North 44th Street
Suite 500

Phoenix 85008

Tel: (602) 231-0386
FAX: (602) 244-0446

*Intel Corp.

500 E. Fry Bivd., Suite M-15
Slerra Vlsla 85635

Tel: (602) 459-5010

ARKANSAS

Intel Corp.

c/o Federal Express
1500 West Park Drive
Little Rock 72204

CALIFORNIA

*Inte! Corp.

21515 Vanowen St., Ste. 116
Canoga Park 91303

Tel: (818) 704-8500

*Intel Corp.
300 N %onnnental Bivd.

EI Segundo 90245
Tel: (213) 640-6040

*Intel Corp.

1900 Prairie City Rd.
Folsom 95630-9597
Tel: (916) 351-6143

*Intel Corp.

9665 Chesapeake Dr., Suite 325
San Diego 92123

Tel: (619) 292-8086

**Intel Cor|

400 N, Tus\m Avenue
Suite 450

Santa Ana 92705

Tel: (714) 835-9642

**Intel Cogp

2700 San Tomas Exp 1st Floor
Santa Clara 95051

Tel: (408) §70-1747

COLORADO

*Intel Corp.

600 S. Cherry St., Suite 700
Denver 80222

Tel: (303) 321-8086

ARIZONA

2402 W Beardsley Road

Phoenix 85027

Tel: (602) 869-4288
1-800-468-3548

MINNESOTA

3500 W. 80th Street
Suite 360

Bloomington 55431
Tel: (612) 835-6722

*Carry-in locations
**Carry-in/mail-in locations

NORTH AMERICAN SERVICE OFFICES

CONNECTICUT

*Intel Co;p
301 Lee Farm Corporate Park
83 Wooster Heights Rd.

Danbury 06811
Tol (205 7483130
FLORIDA

**Intel Corp.

800 Fairway Dr., Suite 160
Deerfield Beach 33441

Tel: (305) 421-0508

FAX: (305) 421-2444

*Intel Corp.

5850 T.G. Lee Bivd., Ste. 340
Orlando 32822

Tel: (407) 240-8000

GEORGIA

*Intel Corp.
ﬁo Technolo Park, Suite 150
orcr

Tl (40) pres

5523 Theresa Street
Columbus 31907

HAWAII

**Intel Corp.
Honolulu 96820
Tel: (808) 847-6738

ILLINOIS

**tintel Corp.

Woodfield Corp Center Ill

300 N. Martiny ala Rd., Ste. 400
Schaumburg 60173

Tel: (708) 605-8031

INDIANA

*Intel Corp.

8910 Purdue Rd., Ste. 350
Indianapolis 46268

Tel: (317) 875-0623

KANSAS

*Intel Corp.

10985 Cndy. Suite 140
Overland Park 66210
Tel: (313) 345-2727

KENTUCKY

Intel Cor,

133 Walton Ave Office 1A
Lexington 405

Tel: (606) 255- 2957

Intel Corp.
896 Hillcrest Road, Apt. A
Radcliff 40160 (Louisville)

LOUISIANA

Hammond 70401
(serviced from Jackson, MS)

MARYLAND

**Intel Corp.

10010 Junction Dr., Suite 200
Annapolis Junction 20701
Tel: (301) 206-2860

MASSACHUSETTS

**|ntel Co&

Waestford Corp. Center
3 Carlisle Rd 2nd Floor
Westford 01886

Tel: (508) 692~0960

MICHIGAN

*Inte! Corp.

707 Orchald Lake Rd., Ste. 100
West Bloomfield 48322

Tel: (313) 851-8905

MINNESOTA

*Intel Cor,

3500 W. 80th St., Suite 360
Bloomington 55431

Tel: (612) 835-6722

MISSISSIPPI

Intel Corp.

c/o Compu -Car

2001 Alrpon Road Suite 205F
Jackson 3!

Tel: (601) 932-6275

MISSOURI

*Intel Corp.

3300 Rider Trail South
Suite 170

Earth City 63045

Tel: (314) 291-1990

intel Corp.

Route 2 Box 221
Smithville 64089
Tel: (913) 345-2727

NEW JERSEY

**Intel Corp.

300 Sylvan Avenue
Englewood Cliffs 07632
Tel: (201) 567-0821

*Intel Corp.

Lincroft Office Center
125 Half Mile Road
Red Bank 07701

Tel: (908) 747-2233

NEW MEXICO

Intel Corp.
Rio Rancho 1
4100 Sar.
Rio Rancho 97124 1025
¥|ear Albuquerque)
el: (505) 893-7000

NEW YORK

*Intel Corp.
2950 Expressway Dr. South
Sulte 130

Islandia 11722
Tel: (516) 231-3300

Intel Corp.

300 Westage Business Center
Suite 230

Fishkill 12524

Tel: (914) 897-3860

Intel Corp.

5658 East Molloy Road
Syracuse 13211

Tel: (315) 454-0576

NORTH CAROLINA

*Intel Corp.

5800 Executive Center Drive
Suite 105

Charlotte 28212

Tel: (704) 568-8966

**Intel Corp.
5540 Cantevvlew Dr., Suite 215

Tor @19
Tel: (919) 851-9537

OHIO

**Intel Corp.
3401 Park Center Dr., Ste. 220

Dayton 45414
Tol: (513) 890-5350

*Intel Corp.

25700 Science Park Dr., Ste. 100
Beachwood 44122

Tel: (216) 464-2736

OREGON

**Intel Cor vf

15254 N.W. Greenbrier Pkwy.
Building B

Beaverton 97006

Tel: (503) 645-8051

PENNSYLVANIA

*tintel Corp.

925 Harvest Drive
Suite 200

Blue Bell 19422

Tel. 215) 641 1000
1-80

FAX: (215) 641 0765

**tintel Cor|

400 Penn Centar Blvd., Ste. 610
Pittsb ug

Tel: (412) 823-4970

*Intel Corp.

1513 CGdar Clift Dr.
Camp Hill 17011
Tel: (717) 761-0860

CUSTOMER TRAINING CENTERS

SYSTEMS ENGINEERING OFFICES

NEW YORK

2950 Expressway Dr., South
Islandia 11722
Tel: (506) 231-3300

PUERTO RICO

Intel Corp.

South Industrial Park
P.O. Box 910

Las Piedras 00671
Tel: (809) 733-8616

TEXAS

**Intel Corp.
Westech 360. Suite 4230
8911 N. C%%It?l o; Texas Hwy.

n 787
Tel (512) 794-8086

**tintel Cory
120|00 FOId Rd Suite 401

Dallas 75

Tel: (214) 241-8087

**Intel Cor,

7322 SW reeway, Suite 1490

Houston 77074
Tel: (713) 9868-8086

UTAH

Intel Corp.
428 East 6400 South
Suite 104

Murray 84107
Tel: (801) 263-8051
FAX: (801) 268-1457

VIRGINIA

*Intel Corp.
go%o Stony Point Pkwy.

Fllchmond 23235
Tel: (804) 330-9393

WASHINGTON

**Intel Corp.

155 108th Avenue N.E., Ste. 386
Bellevue 98004

Tel: (206) 453-8086

CANADA

ONTARIO

**Intel Semiconductor of
Canada, Ltd.

2650 Queensvlew Dr., Ste. 250
Ottawa K2B 8H6

Tel: (613) 829-9714

**|ntel Semiconductor of
Canada, Ltd.

190 Attwell Dr., Ste. 102
Rexdale (T oronto) MoW 6H8
Tel: (416) 675-2105

QUEBEC

**Intel Semiconductor of
Canada, Ltd.

1 Rue Hollday

Sunte 1

Pt Clalre HIR 5N3

Tel: (514) 694-9130
FAX: 514-694-0064

CG/SALE/050892

UNITED STATES

Intel Corporation

2200 Mission College Boulevard
P.O. Box 58119

Santa Clara, CA 95052-8119

JAPAN

Intel Japan K.K.

5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

FRANCE

Intel Corporation S.A.R.L.

1, Rue Edison, BP 303

78054 Saint-Quentin-en-Yvelines Cedex

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Pipers Way

Swindon

Wiltshire, England SN3 1RJ

GERMANY

Intel GmbH

Dornacher Strasse 1

8016 Feldkirchen bei Muenchen

HONG KONG

Intel Semiconductor Ltd.
10/F East Tower

Bond Center
Queensway, Central

CANADA

Intel Semiconductor of Canada, Ltd.
190 Artwell Drive, Suite 500
Rexdgle, Ontario, MOW 6H8

Order Number: 240440-005

Printed in U.S.A./ 10K/ 11/92/1P / CK
Microprocessors

©Intel Corporation

o

UNITED STATES

Intel Corporation

2200 Mission College Boulevard
P.O. Box 58119

Santa Clara, CA 95052-8119

JAPAN

Intel Japan K.K.

5.6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

FRANCE

Intel Corporation S.A.R.L.

1, Rue Edison, BP 303

78054 Saint-Quentin-en-Yvelines Cedex

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Pipers Way

Swindon

Wiltshire, England SN3 1R]

GERMANY

Intel GmbH

Dornacher Strasse 1

8016 Feldkirchen bei Muenchen

HONG KONG

Intel Semiconductor Ltd.
10/F East Tower

Bond Center
Queensway, Central

CANADA

Intel Semiconductor of Canada, Ltd:
190 Attwell Drive, Suite 500
Rexdale, Ontario MOW 6HS8

Printed in U.S.A. /0492/10K/RRD CK
MICROPROCESSOR
©lntel Corporation, 1992

Order No. 240486-002

This entire book is printed on recycled paper

ISBN 1-55512-159-4

