

To order Intel Literature write or call:

Intel Literature Sales
P.O. Box 58130

LITERATURE

Santa Clara, CA 95052-8130

Intel Literature Sales:
(800) 548-4725
Other Inquiries:
(800) 538-1876

Use the order blank on the facing page or call our Toll Free Number listed above to order literature.
Remember to add your local sales tax and a 10% handling charge for U.S. customers, 20% for Canadian
customers.

1986 HANDBOOKS

Product Line handbooks contain data sheets, application notes, article reprints and other design
information.

*PRICE IN
NAME ORDER NUMBER U.S. DOLLARS

COMPLETE SET OF 9 HANDBOOKS 231003 $120.00
Get a 30% discount off the retail price of $171.00

MEMORY COMPONENTS HANDBOOK 210830 $18.00

MICROCOMMUNICATIONS HANDBOOK 231658 $18.00

MICRO CONTROLLER HANDBOOK 210918 $18.00

MICROSYSTEM COMPONENTS HANDBOOK 230843 $25.00
Microprocessor and peripherals (2 Volume Set)

DEVELOPMENT SYSTEMS HANDBOOK 210940 $18.00

OEM SYSTEMS HANDBOOK 210941 $18.00

SOFTWARE HANDBOOK 230786 $18.00

MILITARY HANDBOOK 210461 $18.00

QUALITY/RELIABILITY HANDBOOK 210997 $20.00

PRODUCT GUIDE 210846 No charge
Overview of Intel's complete product lines

LITERATURE GUIDE 210620 No charge
Listing of Intel Literature

INTEL PACKAGING SPECIFICATIONS 231369 No charge
Listing of Packaging types, number of leads,
and dimensions

*These prices are for the U. S. and Canada only. In Europe and other international locations, please
contact your local Intel Sales Office or Distributor for literature prices.

u.s. LITERATURE ORDER FORM
NAME: __ _

COMPANY:

ADDRESS: __ ___

CITY: ______________________________ STATE: ____ ZiP: ___ _

COUNTRY:

PHONE NO.: (____ ..:...... _____________________________________ _

ORDER NO.

L-I ..L.I -L-L-..L.--'--.JI - IL-..L.--'--.J
L-I ..L.I --'---.JL-..L.--'--.JI - IL-..L.-l...-.J
,--I -,--I ~L-..L.--,---,I - ,--I ~--'

~I ~I ~~I-I~~
IL-..L.I --'--.JL-..L.~I - L-I ~--'
,--I -,--I ~L-..L.~I - ,--I ~--'
L-I ..L.I --'--.JL-..L.-L-.JI - L-I ~--'

Add appropriate postage
and handling to subtotal
10% U.S.
20% Canada
~-------------~
Allow 2-4 weeks for delivery

TITLE QTY. PRICE TOTAL

__ x __

__ x __

__ x __

__ x __

__ x __

__ x __

__ x __

Subtotal ____ _

Your Local Sales Tax ______ _

---------,l .. ~ Postage & Handling ______ _

Total _____ _

Pay by Visa, MasterCard, Check or Money Order, payable to Intel Books. Purchase Orders
have a $50.00 minimum
o Visa 0 MasterCard Expiration Date ________ _

Account No.

Signature: _____________________________________ _

Mail To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA
95052-8130

Customers outside the U.S. and Canada should con
tact the local I ntel Sales Office or Distributor listed
in the back of most Intel literature.

Call Toll Free: (800) 548-4725 for phone orders

Prices good until 12/31/86.

Source HB

Mail To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA 95052-8130

80386
HARDWARE REFERENCE MANUAL

1986

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH, Genius, i, t
ICE, iCEL, iCS, iDBP, iDIS, FICE, iLBX, im, iMDDX, iMMX, Insite, Intel, intel,
intelBOS, Intelevision, inteligent Identifier, inteligent Programming, Intellec,
Intellink, iOSP, iPDS, iPSC, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, Library
Manager, MAP-NET, MCS, Megachassis, MICROMAINFRAME, MUL TIBUS,
MULTICHANNEL, MULTIMODULE, MultiSERVER, ONCE, OpenNET, OTP,
PC-BUBBLE, Plug-A-Bubble, PROMPT, Promware, QUEST, QueX,
Quick-Pulse Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, UPI,
and VLSiCEL, and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or UPI
and a numerical suffix, 4-SITE.

MDS is an ordering code only and is not used as a product name or trademark. MDS" is a registered trademark of Mohawk
Data Sciences Corporation .

• MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Distribution
Mail Stop SC6-59
3065 Bowers Avenue
Santa Clara, CA 95051

©INTEL CORPORATION 1986 CG·6/SS

PREFACE

The Intel 80386 is a high-performance 32-bit microprocessor. This manual provides complete
hardware reference information for 80386 system designs. It is written for system engineers
and hardware designers who understand the operating principles of microprocessors and
microcomputer systems. Readers of this manual should be familiar with the information in
the Introduction to the 80386 (Intel publication Order Number 231252).

RELATED PUBLICATIONS

In this manual, the 80386 is presented from a hardware perspective. Information on the
software architecture, instruction set, and programming of the 80386 can be found in these
related Intel publications:

• 80386 Programmer's Reference Manual, Order Number 230985

• 80386 System Software Writer's Guide, Order Number 231499

• 80386 Data Sheet, Order Number 231630

The 80386 Data Sheet contains device specifications for the 80386. Always consult the most
recent version of this pUblication for specific 80386 parameter values.

Together with the 80386 Hardware Reference Manual, these publications provide a complete
description of the 80386 system for hardware designers, software engineers, and all users of
80386 systems.

ORGANIZATION OF THIS MANUAL

The information in this manual is divided into 12 chapters and three appendices. Tl)e material
begins with a description of the 80386 microprocessor and continues with discussions of
hardware design information needed to implement 80386 system designs.

• Chapter 1, "System Overview." This chapter provides an overview of the 80386 and its
supporting devices.

• Chapter 2, "Internal Architecture." This chapter describes the internal architecture of
the 80386.

• Chapter 3, "Local Bus Interface." This chapter discusses the 80386 local bus interface.
This chapter includes 80386 signal descriptions, memory and I/O organization, and local
bus interface guidelines.

• Chapter 4, "Performance Considerations." This chapter explores the factors that affect
the performance of an 80386 system.

• Chapter 5, "Coprocessor Hardware Interface." This chapter describes the interface
between the 80386 and the 80287 and 80387 Numeric Coprocessors. Each of these copro
cessors expands the floating-point numerical processing capabilities of the 80386.

iii

PREFACE

• Chapter 6, "Memory Interfacing." This chapter discusses techniques for designing memory
subsystems for the 80386.

• Chapter 7, "Cache Subsystems." This chapter describes cache memory subsystems, which
provide higher performance at lower relative cost.

• Chapter 8, "I/O Interfacing." This chapter discusses techniques for connecting I/0 devices
to an 80386 system.

• Chapter 9, "MULTIBUS® I and 80386." This chapter describes the interface between
an 80386 system and the Intel MUL TIBUS I multi-master system bus.

• Chapter 10, "MULTIBUS® II and 80386." This chapter describes the interface between
an 80386 system and the Intel MUL TIBUS II multi-master system bus.

• Chapter II, "Physical Design and Debugging." This chapter contains recommendations
for constructing and debugging 80386 systems.

• Chapter 12, "Test Capabilities." This chapter describes 80386 test procedures.

• Appendix A contains descriptions of the components of the basic memory interface
described in Chapter 6.

• Appendix B contains descriptions of the components of the 80387 emulator described in
Chapter 5.

• Appendix C contains descriptions of the components of the dynamic RAM subsystem
described in Chapter 6.

iv

TABLE OF CONTENTS

CHAPTER 1 Page

SYSTEM OVERVIEW
1.1 Microprocessor ... 1-1
1.2 Coprocessors.. 1-3
1.3 Interrupt Controller 1-4
1.4 Clock Generator .. 1-4
1.5 DMA Controller ... '" 1-4

CHAPTER 2
INTERNAL ARCHITECTURE

2.1 Bus Interface Unit 2-2
2.2 Code Prefetch Unit .. 2-3
2.3 Instruction Decode Unit ... 2-3
2.4 Execution Unit 2-3
2.5 Segmentation Unit 2-4
2.6 Paging Unit 2-4

CHAPTER 3
LOCAL BUS INTERFACE

3.1 Bus Operations 3-2
3.1.1 Bus States 3-4
3.1.2 Address Pipelining 3-5
3.1.3 32-Bit Data Bus Transfers and Operand Alignment 3-5
3.1.4 Read Cycle 3-10
3.1.5 Write Cycle 3-13
3.1.6 Pipelined Address Cycle 3-14
3.1.7 Interrupt Acknowledge Cycle 3-17
3.1.8 Halt/Shutdown Cycle 3-18
3.1.9 BS16 Cycle .. 3-19
3.1.10 16-Bit Byte Enables and Operand Alignment 3-20
3.2 Bus Timing 3-22
3.2.1 Read Cycle Timing ... 3-24
3.2.2 Write Cycle Timing 3-24
3.2.3 READY# Signal Timing .. 3-25
3.3 Clock Generation 3-26
3.3.1 82384 Clock Generator 3-26
3.3.2 Clock Timing .. 3-26
3.4 Interrupts 3-27
3.4.1 Non-Maskable Interrupt (NMI) 3-29
3.4.2 Maskable Interrupt (INTR) 3-29
3.4.3 Interrupt Latency .. 3-30
3.5 Bus Lock 3-30
3.5.1 Locked Cycle Activators ... 3-31

v

TABLE OF CONTENTS

Page

3.5.2 Locked Cycle Timing 3-32
3.5.3 LOCK# Signal Duration 3-32
3.6 HOLD/HLDA (Hold Acknowledge) ... 3-33
3.6.1 HOLD/HLDA Timing ... 3-33
3.6.2 HOLD Signal Latency............. 3-35
3.6.3 HOLD State Pin Conditions 3-35
3.7 Reset ... 3-35
3.7.1 RESET Timing .. 3-35
3.7.2 80386 Internal States ... 3-36
3.7.3 80386 External States ... 3-38

CHAPTER 4
PERFORMANCE CONSIDERATIONS

4.1 Wait States and Pipelining 4-1

CHAPTER 5
COPROCESSOR HARDWARE INTERFACE

5.1 80287 Numeric Coprocessor Interface 5-2
5.1.1 80287 Connections 5-2
5.1.2 80287 Bus Cycles 5-2
5.1.3 80287 Clock Input 5-4
5.2 80387 Numeric Coprocessor Interface .. 5-4
5.2.1 80387 Connections 5-4
5.2.2 80387 Bus Cycles 5-6
5.2.3 80387 Clock Input 5-6
5.3 Local Bus Activity with the 80287/80387 5-6
5.4 Designing an Upgradable 80386 System .. 5-7
5.4.1 80287/80387 Recognition 5-8
5.4.2 80387 Emulator .. 5-9

CHAPTER 6
MEMORY INTERFACING

6.1 Memory Speed versus Performance and Cost 6-1
6.2 Basic Memory Interface ... , 6-1
6.2.1 PAL Devices ... 6-2
6.2.2 Address Latch .. 6-3
6.2.3 Address Decoder 6-4
6.2.4 Data Transceiver 6-5
6.2.5 Bus Control Logic 6-6
6.2.6 EPROM Interface 6-9
6.2.7 SRAM Interface .. 6-11
6.2.8 16-Bit Interface 6-14
6.3 Dynamic RAM (DRAM) Interface 6-15

vi

TABLE OF CONTENTS

Page

6.3.1 Interleaved Memory '" 6-15
6.3.2 DRAM Memory Performance 6-15
6.3.3 DRAM Controller .. 6-16
6.3.3.1 3-ClK DRAM Controller 6-17
6.3.3.2 2-ClK DRAM Controller 6-21
6.3.4 DRAM Design Variations .. 6-23
6.3.5 Refresh Cycles 6-25
6.3.5.1 Distributed Refresh 6-25
6.3.5.2 Burst Refresh 6-26
6.3.5.3 DMA Refresh 6-26
6.3.6 Initialization 6-27
6.3.7 Timing Analysis .. 6-27

CHAPTER 7
CACHE SUBSYSTEMS

7.1 Introduction to Caches .. 7-2
7.1.1 Program locality .. 7-2
7.1.2 Block Fetch 7 -2
7.2 Cache Organizations ... 7-3
7.2.1 Fully Associative Cache .. 7-3
7.2.2 Direct Mapped Cache .. "... 7-4
7 .2.3 Set Associative Cache ... 7-6
7.3 Cache Updating ... 7-8
7 .3.1 Write-Through System ... 7-8
7.3.2 Buffered Write-Through System ... 7-8
7.3.3 Write-Back System .. 7-9
7.3.4 Cache Coherency ... 7-10
7.4 System Structure and Performance 7 -11
7.5 DMA Through Cache ... 7-12
7.6 Cache Example ... 7-13
7.6.1 Example Design ... 7-13
7.6.2 Example Cache Memory Organization ... 7-13
7.6.3 Example Cache Implementation ... 7-15

CHAPTER 8
I/O INTERFACING

8.1 I/O Mapping versus Memory Mapping 8-1
8.2 8-Bit, 16-Bit, and 32-Bit I/O Interfaces .. 8-1
8.2.1 Address Decoding .. 8-1
8.2.2 8-Bit I/O 8-2
8.2.3 16-Bit I/O 8-4
8.2.4 32-Bit I/O 8-4
8.2.5 Linear Chip Selects 8-4

vii

TABLE OF CONTENTS

Page

8.3 Basic I/O Interface 8-4
8.3.1 Address Latch 8-5
8.3.2 Address Decoder 8-6
8.3.3 Data Transceiver 8-8
8.3.4 Bus Control Logic 8-8
8.4 Timing Analysis for I/O Operations 8-9
8.5 Basic I/O Examples 8-13
8.5.1 8274 Serial Controller ... 8-14
8.5.2 8259A Interrupt Controller 8-14
8.5.2.1 Single Interrupt Controller ... 8-15
8.5.2.2 Cascaded Interrupt Controllers ... 8-16
8.5.2.3 Handling More Than 64 Interrupts ... 8-16
8.6 80286-Compatible Bus Cycles 8-16
8.6.1 AO/A1 Generator .. 8-17
8.6.2 SO#/S1# Generator .. 8-17
8.6.3 Wait-State Generator 8-18
8.6.4 Bus Controller and Bus Arbiter 8-19
8.6.5 82258 ADMA Controller 8-20
8.6.5.1 82258 as Bus Master 8-22
8.6.5.2 82258 as Peripheral 8-24
8.6.6 82586 LAN Coprocessor 8-25
8.6.6.1 Dedicated CPU 8-26
8.6.6.2 Decoupled Dual-Port Memory 8-26
8.6.6.3 Coupled Dual-Port Memory ... 8-27
8.6.6.4 Shared Bus 8-28

CHAPTER 9
MUL TIBUS® I AND 80386

9.1 MUL TIBUS® I (IEEE 796) 9-1
9.2 MUL TIBUS® I Interface Example ... 9-2
9.2.1 Address Latches and Data Transceivers .. 9-2
9.2.2 Address Decoder ... 9-5
9.2.3 Wait-State Generator ... 9-5
9.2.4 Bus Controller and Bus Arbiter .. 9-7
9.3 Timing Analysis of MUL TIBUS® I Interface 9-10
9.4 82289 Bus Arbiter 9-10
9.4.1 Priority Resolution .. 9-11
9.4.2 82289 Operating Modes .. 9-11
9.4.3 MUL TIBUS® I Locked Cycles 9-14
9.5 Other MUL TIBUS® I Design Considerations 9-14
9.5.1 Interrupt-Acknowledge on MULTIBUS® I .. 9-14
9.5.2 Byte Swapping during MULTIBUS® I Byte Transfers 9-16
9.5.3 Bus Timeout Function for MUL TIBUS® I Accesses 9-17

viii

T ABLE OF CONTENTS

9.5.4 MUL TIBUS® I Power Failure Handling
9.6 iLBX'" Bus Expansion .. .
9.7 Dual-Port RAM with MULTIBUS® I
9.7.1 Avoiding Deadlock with Dual-Port RAM

CHAPTER 10
MUL TIBUS® II AND 80386

10.1 MUL TIBUS® II Standard
10.2 Parallel System Bus (iPSB)
10.2.1 iPSB Interface
10.2.1.1 BAC Signals
10.2.1.2 MIC Signals '"
10.3 Local Bus Extension (iLBX'" II)
10.4 Serial System Bus (iSSB) '"

CHAPTER 11
PHYSICAL DESIGN AND DEBUGGING

Page

9-17
9-18
9-19
9-20

10-1
10-1
10-2
10-4
10-6
10-7
10-7

11.1 Power and Ground Requirements ... 11-1
11 .1.1 Power and Ground Planes 11-1
11 .1.2 Decoupling Capacitors ... 11-2
11.2 High-Frequency Design Considerations .. 11-3
11.2.1 Line Termination 11-4
11.2.2 Interference .. 11-5
11.2.3 Latchup .. 11-7
11.3 Clock Distribution and Termination 11-7
11.4 Thermal Characteristics 11-7
11.5 Debugging Considerations 11-10
11.5.1 Hardware Debugging Features 11-10
11.5.2 Bus Interface 11-11
11.5.3 Simplest Diagnostic Program 11-11
11.5.4 Building and Debugging a System Incrementally 11-12
11 .5.5 Other Simple Diagnostic Software 11-14
11 .5.6 Debugging Hints 11-14

CHAPTER 12

TEST CAPABILITIES
12.1 Internal Tests '"
12.1.1 Automatic Self-Test
12.1.2 Translation Lookaside Buffer Tests
12.2 Board-Level Tests

ix

12-1
12-1
12-2
12-5

TABLE OF CONTENTS

APPENDIX A
LOCAL BUS CONTROL PAL DESCRIPTIONS

PAl-1 Functions .. .
PAl-2 Functions .. .
PAL Equations .. .

APPENDIX B
80387 EMULATOR PAL DESCRIPTION

APPENDIX C
DRAM PAL DESCRIPTIONS

Page

A-1
A-2
A-2

DRAM State PAL C-1
DRAM Control PAL C-13
Refresh Interval Counter PAL ... C-13
Refresh Address Counter PAL C-13
Timing Parameters ... C-25

Figures

Figure Title Page

1-1 80386 System Block Diagram .. 1-2
2-1 Instruction Pipelining 2-1
2-2 80386 Functional Units 2-2
3-1 ClK2 and ClK Relationship ... 3-5
3-2 80386 Bus States Timing Example 3-6
3-3 Bus State Diagram (Does Not Include Address Pipelining) 3-7
3-4 Non-Pipelined Address and Pipelined Address Differences 3-8
3-5 Consecutive Bytes in Hardware Implementation 3-9
3-6 Address, Data Bus, and Byte Enables for 32-Bit Bus 3-9
3-7 Misaligned Transfer 3-11
3-8 Non-Pipelined Address Read Cycles .. 3-12
3-9 Non-Pipelined Address Write Cycles 3-15
3-10 Pipelined Address Cycles ... 3-16
3-11 Interrupt Acknowledge Bus Cycles ... 3-18
3-12 Internal NA# and BS16# logic ... 3-20
3-13 32-Bit and 16-Bit Bus Cycle Timing 3-21
3-14 32-Bit and 16-Bit Data Addressing ... 3-22
3-15 Connecting 82384 to 80386 ... 3-27
3-16 Using ClK to Determine Bus Cycle Start ... 3-28
3-17 Error Condition Caused by Unlocked Cycles .. 3-31
3-18 lOCK# Signal during Address Pipelining 3-32
3-19 Bus State Diagram with HOLD State ... 3-34
3-20 Typical RC RESET Timing Circuit 3-36
3-21 RESET, ClK, and ClK2 Timing 3~37

5-1 80386 System with 80287 Coprocessor .. 5-3

x

Figure

5-2
5-3
5-4
5-5
5-6
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17

TABLE OF CONTENTS

Title

80386 System with 80387 Coprocessor
Pseudo-Synchronous Interface .. .
Routine to Detect 80287 Presence
80386 Machine Control Register (CRO)
80387 Emulator Schematic
Basic Memory Interface Block Diagram
PAL Equation and Implementation
PAL Naming Conventions .. .
Bus Control Logic .. .
Bus Control Signal Timing
150-Nanosecond EPROM Timing Diagram .. .
1 OO-Nanosecond SRAM Timing Diagram .. .
3-CLK DRAM Controller Schematic
3-CLK DRAM Controller Cycles
2-CLK DRAM Controller Schematic
2-CLK DRAM Controller Cycles
Cache Memory System
Fully Associative Cache Organization .. .
Direct Mapped Cache Organization
Two-Way Set Associative Cache Organization
Stale Data Problem .. .
Hardware Transparency .. .
Non-Cacheable Memory .. .
Example of Cache Memory Organization .. .
Cache Memory System Implementation .. .
32-Bit to 8-Bit Bus Conversion .. .
Linear Chip Selects .. .
Basic I/O Interface Block Diagram
Basic I/O Interface Circuit .. .
Basic I/O Timing Diagram .. .
8274 Interface
Single 8259A Interface .. .
80286-Compatible Interface .. .
AO, A1, and BHE# Logic
SO#/S1# Generator Logic .. .
Wait-State Generator Logic
82288 and 82289 Connections
HOLD and HLDA Logic for 80386-82258 Interface
82258 Slave Mode Interface .. .
LAN Station
Decoupled Dual-Port Memory Interface
Coupled Dual-Port Memory Interface .. .

xi

Page

5-5
5-7
5-8
5-9

5-10
6-2
6-4
6-5
6-7
6-8

6-10
6-12
6-18
6-20
6-22
6-24

7-1
7-4
7-5
7-7
7-9

7-10
7-11
7-14
7-16

8-3
8-5
8-6
8-7

8-11
8-14
8-15
8-18
8-20
8-21
8-21
8-22
8-23
8-24
8-25
8-27
8-28

Figure

8-18
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
10-1
10-2
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
12-1
12-2
A-1
A-2
A-3
A-4
B-1
C-1
C-2
C-3
C-4
C-5
C-6
C-7
C-8

TABLE OF CONTENTS

Title

Shared Bus Interface
80386-MUL TIBUS® I Interface
MUL TIBUS® I Address Latches and Data Transceivers
Wait-State Generator Logic
MUL TIBUS® Arbiter and Bus Controller .. .
MUL TIBUS® I Read Cycle Timing
MUL TIBUS® I Write Cycle Timing
Bus Priority Resolution .. .
Operating Mode Configurations
Bus-Select Logic for Interrupt Acknowledge
Byte-Swapping Logic .. .
Bus-Timeout Protection Circuit .. .
iLBXlM Signal Generation
iPSB Bus Cycle Timing .. .
iPSB Bus Interface .. .
Reducing Characteristic Impedance
Circuit without Decoupling
Decoupling Chip Capacitors
Decoupling Leaded Capacitors .. .
Series Termination
Split Termination .. .
Avoid Closed-Loop Signal Paths
CLK2 Series Termination
CLK2 Loading .. .
CLK2 Waveforms .. .
4-Byte Diagnostic Program .. .
More Complex Diagnostic Program
Object Code for Diagnostic Program
80386 Self-Test
TLB Test Registers
PAL-1 State Listings .. .
PAL-2 State Listings .. .
PAL-1 Equations .. .
PAL-2 Equations .. .
80387 Emulator PAL Equations .. .
PAL Sampling Edges
3-CLK DRAM State PAL Equations
2-CLK DRAM State PAL Equations
3-CLK DRAM Control PAL Equations
2-CLK DRAM Control PAL Equations
Refresh Interval Counter PAL Equations
Refresh Address Counter PAL Equations
DRAM Circuit Timing Diagram

xii

Page

8-28
9-3
9-4
9-6
9-7
9-8
9-9

9-12
9-13
9-16
9-18
9-19
9-20
10-3
10-4
11-2
11-2
11-3
11-4
11-5
11-5
11-6
11-8
11-9
11-9

11-12
11-15
11-16

12-2
12-3
A-3
A-9

A-14
A-15

8-1
C-1
C-3
C-8

C-15
C-17
C-20
C-23
C-26

TABLE OF CONTENTS

Tables

Table Title Page

1-1 80386 System Components ... 1-1
3-1 Summary of 80386 Signal Pins .. 3-3
3-2 Bus Cycle Definitions 3-4
3-3 Possible Data Transfers on 32-Bit Bus ... 3-10
3-4 Misaligned Data Transfers on 32-Bit Bus ... 3-13
3-5 Generation of BHE#, BLE#, and A1 from Byte Enables 3-23
3-6 Byte Enables during BS16 Cycles 3-23
3-7 Output Pin States during RESET ... 3-38
4-1 80386 Performance with Wait States and Pipelining 4-1
4-2 Wait States versus Operating Frequency ... 4-3
6-1 Bus Cycles Generated by Bus Controller 6-6
6-2 DRAM Memory Performance .. 6-16
6-3 Designs for Six DRAM Types ... 6-28
7-1 Cache System Performance 7-12
8-1 Data Lines for 8-Bit I/O Addresses ... 8-2
8-2 Timings for Peripherals Using Basic I/O Interface 8-13
8-3 AO,A1,andBHE#TruthTable .. 8-19
9-1 MUL TIBUS® I Timing Parameters .. 9-10
C-1 DRAM State PAL Pin Description ,.. C-2
C-2 DRAM Control PAL Pin Description .. C-14
C-3 Refresh Interval Counter PAL Pin Description C-19
C-4 Refresh Address Counter PAL Pin Description C-22
C-5 DRAM Circuit Timing Parameters ... C-27

xiii

inter

CUSTOMER SUPPORT

CUSTOMER SUPPORT

Customer Support is Intel's complete support service that provides Intel customers with Customer
Training, Software Support and Hardware Support.

After a customer purchases any system hardware or software product, service and support become
major factors in determining whether that product will continue to meet a customer's expectations.
Such support requires an international support organization and a breadth of programs to meet a
variety of customer needs. Intel's extensive customer support includes factory repair services as well as
worldwide field service offices providing hardware repair services, software support services and
customer training classes.

HARDWARE SUPPORT

Hardware Support Services provides maintenance on Intel supported products at board and system
level. Both field and factory services are offered. Services include several types of field maintenance
agreements, installation and warranty services, hourly contracted services (factory return for repair) and
specially negotiated support agreements for system integrators and large volume end-users having
unique service requirements. For more information contact your local Intel Sales Office.

SOFTWARE SUPPORT

Software Support Service provides maintenance on software packages via software support contracts
which include subscription services, information phone support, and updates. Consulting services can
be arranged for on-site assistance at the customer's location for both short-term and long-term needs.
For complex products such as NDS II or PICE, orientationl installation packages are available
through membership in Insite User's Library, where customer-submitted programs are catalogued and
made available for a minimum fee to members. For more information contact your local Intel Sales
Office.

CUSTOMER TRAINING

Customer Training provides workshops at customer sites (by agreement) and on a regularly scheduled
basis at Intel's facilities. Intel offers a breadth of workshops on microprocessors, operating systems and
programming languages, etc. For more information on these classes contact the Training Center nearest
you.

TRAINING CENTER LOCATIONS

To obtain a complete catalog of our workshops, call the nearest Training Center in your area.

Boston (617) 692-1000 London (0793) 696-000
Chicago (312) 310-5700 Munich (089) 5389-1
San Francisco (415) 940-7800 Paris (01) 687-22-21
Washington, D.C. (301) 474-2878 Stockholm (468) 734-01-00
Israel (972) 349-491-099 Milan 39-2-82-44-071
Tokyo 03-437-6611 Benelux (Rotterdam) (10) 21-23-77
Osaka (Call Tokyo) 03-437-6611 Copenhagen (I) 198-033
Toronto, Canada (416) 675-2105 Hong Kong 5-215311-7

System Overview 1

CHAPTER 1
SYSTEM OVERVIEW

The 80386 is a new 32-bit microprocessor that forms the basis for a high-performance
32-bit system. The 80386 incorporates multitasking support, memory management, pipelined
architecture, address translation caches, and a high-speed bus interface all on one chip. The
integration of these features speeds the execution of instructions and reduces overall chip
count for a system. Paging and dynamic data bus sizing can each be invoked selectively,
making the 80386 suitable for a wide variety of system designs and user applications.

While the 80386 represents a significant improvement over previous generations of micro
processors, substantial ties to the earlier processors are preserved. Software compatibility at
the object-code level is provided, so that an existing investment in 8086 and 80286 software
can be maintained. New software can be built upon existing routines, reducing the time to
market for new products. Hardware compatibility is preserved through the dynamic bus
sizing feature.

The major components of an 80386 system and their functions are shown in Figure 1-1.
Table 1-1 describes these components.

1.1 MICROPROCESSOR

The 80386 provides unprecedented performance. At 16 MHz, the 80386 is capable of
executing at sustained rates of three to four million instructions per second, a speed compa
rable to that of most super minicomputers. This achievement is made possible through a
state-of-the-art design that includes a pipelined internal architecture, address translation
caches, and a high-performance bus.

The 80386 features 32-bit wide internal and external data paths and eight general-purpose
32-bit registers. The instruction set offers 8-, 16-, and 32-bit data types, and the processor
outputs 32-bit physical addresses directly, for a physical memory capacity of four gigabytes.

Table 1-1. 80386 System Components

Component Description

80386 Microprocessor 32-bit high-performance microprocessor with on-
chip memory management and protection

80287 or 80387 Numeric Coprocessor Performs numeric instruction in parallel with
80386; expands instruction set

82384 Clock Generator Generates system clock and RESET signal

8259A Programmable Interrupt Controller Provides interrupt control and management

82258 Advanced OMA Performs direct memory controller access (OMA)

1-1

}

CLK
82384

CLOCK
GENERATOR I CLK2

l

80387
OR

80287
NUMERIC

COPROCESSOR

8259A
INTERRUPT

CONTROLLER

INTERRUPTING
DEVICES

)
I'

SYSTEM OVERVIEW

1

80386
MICRO·

PROCESSOR

A

"I ,..

BUS
CONTROL

LOGIC

A

""
".

LOCAL
MEMORY

J

LOCAL BUS

82258
ADMA

CONTROLLER

<[I
""7

BUS
CONTROL

LOGIC

/).

~

LOCAL
110

Figure 1-1. 80386 System Block Diagram

1-2

READY
LOGIC

0

G30107

SYSTEM OVERVIEW

The 80386 has separate 32-bit data and address paths. A 32-bit memory access can be
completed in only two clock cycles, enabling the bus to sustain a throughput of 32 megabytes
per second (at 16 MHz). By making prompt transfers between the microprocessor, memory,
and peripherals, the high-speed bus design ensures that the entire system benefits from the
processor's increased performance.

Pipelined architecture enables the 80386 to perform instruction fetching, decoding, execu
tion, and memory management functions in parallel. The six independent units that make
up the 80386 pipeline are described in detail in Chapter 2. Because the 80386 prefetches
instructions and queues them internally, instruction fetch and decode times are absorbed in
the pipeline; the processor rarely has to wait for an instruction to execute.

Pipelining is not unusual in modern microprocessor architecture; however, including the
memory management unit (MMU) in the on-chip pipeline is a unique feature of the 80386.
By performing memory management on-chip, the 80386 eliminates the serious access delays
typical of implementations that use off-chip memory management units. The benefit is not
only high performance but also relaxed memory-access time requirements, hence lower system
cost.

The integrated memory management and protection mechanism translates logical addresses
to physical addresses and enforces the protection rules necessary for maintaining task integ
rity in a multitasking environment. The paging function simplifies the operating-system
swapping algorithms by providing a uniform mechanism for managing the physical structure
of memory.

Task switching occurs frequently in real-time multitasking or multiuser systems. To perform
task switching efficiently, the 80386 incorporates special high-speed hardware. Only a single
instruction or an interrupt is needed for the 80386 to perform a complete task switch. A
16-MHz 80386 can save the state of one task (all registers), load the state of another task
(all registers, even segment and paging registers if required), and resume execution in less
than 16 microseconds (at 16 MHz). For less sophisticated task and interrupt handling, the
latency can be as short as 3.5 microseconds (at 16 MHz).

1.2 COPROCESSORS

The performance of most applications can be enhanced by the use of specialized coproces
sors. A coprocessor provides the hardware to perform functions that would otherwise be
performed in software. Coprocessors extend the instruction set of the 80386.

The 80386 has a numeric coprocessor interface that can support one of two coprocessors:
the 80387 or the 80287. For applications that benefit from high-precision integer and
floating-point calculations, these numeric coprocessors provide full support for the IEEE
standard for floating-point operations. Both the 80387 and 80287 are software compatible
with the 8087, an earlier numeric coprocessor. At 16 MHz, the 80387 operates about eight
times faster than a 5-MHz 80287. However, the 80287 is fast enough for many applications
and is a cost-effective solution for many designs. The 80386 therefore offers the system
designer the choice of low-cost or high-performance numeric solutions.

1-3

SYSTEM OVERVIEW

1.3 INTERRUPT CONTROLLER

The 8259A Programmable Interrupt Controller manages interrupts for an 80386 system.
Interrupts from as many as eight external sources are accepted by one 8259A; as many as
64 requests can be accommodated by cascading several 8259A chips. The 8259A resolves
priority between active interrupts, then interrupts the processor and passes a code to the
processor to identify the interrupting source. Programmable features of the 8259A allow it
to be used in a variety of ways to fit the interrupt requirements of a particular system.

1.4 CLOCK GENERATOR

The 82384 Clock Generator generates timing for the 80386 and its support components.
The 82384 provides both the 80386 clock (CLK2) and a half-frequency clock (CLK) to
indicate the internal phase of the 80386 and to drive 80286-compatible devices that may be
included in the system. It can also be used to generate the RESET signal for the 80386 and
other system components. Both CLK2 and CLK are used throughout this manual to describe
execution times.

1.5 DMA CONTROLLER

A DMA (Direct Memory Access) controller performs DMA transfers between main memory
and an I/O device, typically a hard disk, floppy disk, or communications channel. In a DMA
transfer, a large block of data can be copied from one place to another without the interven
tion of the cpu.

The 82258 Advanced DMA (ADMA) Controller offers four channels and provides all the
signals necessary to perform DMA transfers. Other features of the 82258 are as follows:

• Command chaining to perform multiple commands

• Data chaining to scatter data to separate memory locations (separate pages, for example)
and gather data from separate locations

• Automatic assembly and disassembly to convert from 16-bit memory to 8-bit I/O, or
vice versa

• Compare, translate, and verify functions

• The option to replace one of the four high-speed channels with as many as 32 lower-speed,
multiplexed channels.

1-4

Internal Architecture 2

CHAPTER 2
INTERNAL ARCHITECTURE

The internal architecture of the 80386 consists of six functional units that operate in
paralle1. Fetching, decoding, execution, memory management, and bus accesses for several
instructions are performed simultaneously. This parallel operation is called pipelined
instruction processing. With pipelining, each instruction is performed in stages, and the
processing of several instructions at different stages may overlap as illustrated in
Figure 2-1. The six-stage pipelined processing of the 80386 results in higher performance
and an enhanced throughput rate over non-pipelined processors.

The six functional units of the 80386 are identified as follows:

• Bus Interface Unit

• Code Prefetch Unit

• Instruction Decode Unit

• Execution Unit

• Segmentation Unit

• Paging Unit

TYPICAL
PROCESSOR

80386

BUS UNIT

--ELAPSEDTIME------------.....

EXECUTE 2

~~~""~------~------~~------,--------,-------. 
DECODE 
UNIT 

~~~~------~------~----~~----~-------
EXECUTION --------- - -- - - - ~EXECUTE 1 EXECUTE 2

UNIT ~~ ---------------
EXECUTE 4 I_-_-_-_-_-_-~ EXECUTE 3

MMU ~-_-_-_-_-_-_-_-_-:_-_-_-_-_-_-:_-.......... ·"'AD"'P,"'R:.o;,&"'MM"'U""" ______ A_DD_R_&_M_MU_""I ~~~~~~~~~~~~
210760-11

Figure 2-1. Instruction Pipelining

2-1

INTERNAL ARCHITECTURE

The Execution Unit in turn consists of three subunits:

• Control Unit

• Data Unit

• Protection Test Unit

Figure 2-2 shows the organization of these units. This chapter describes the function of each
unit, as well as interactions between units.

2.1 BUS INTERFACE UNIT

The Bus Interface Unit provides the interface between the 80386 and its environment. It
accepts internal requests for code fetches (from the Code Prefetch Unit) and data transfers
(from the Execution Unit), and prioritizes the requests. At the same time, it generates or

r-

EXECUTION
UNIT

REGISTERS

BARREL
SHIFTER

MULTIPLYI
DIVIDE

ALU

l

SEGMENT UNIT PAGE UNIT

SEGMENT TRANSLATION

REGISTERS LOOKASIDE
BUFFER

SEGMENT PAGE
TRANSLATOR TRANSLATOR BUSUNIT - ~

1 1 BUS INTERFACE

1
DECODER - PREFETCH

QUEUE

INSTRUCTION
PREFETCHER QUEUE

DECODE UNIT PREFETCH UNIT

G30107

Figure 2-2. 80386 Functional Units

2-2

INTERNAL ARCHITECTURE

processes the signals to perform the current bus cycle. These signals include the address,
data, and control outputs for accessing external memory and I/O. The Bus Interface Unit
also controls the interface to external bus masters and coprocessors.

2.2 CODE PREFETCH UNIT

The Code Prefetch Unit performs the program look ahead function of the 80386. When the
Bus Interface Unit is not performing bus cycles to execute an instruction, the Code Prefetch
Unit uses the Bus Interface Unit to fetch sequentially along the instruction byte stream.
These prefetched instructions are stored in the 16-byte Code Queue to await processing by
the Instruction Decode Unit.

Code prefetches are given a lower priority than data transfers; assuming zero wait state
memory access, prefetch activity never delays execution. On the other hand, if there is no
data transfer requested, prefetching uses bus cycles that would otherwise be idle. Instruction
pre fetching reduces to practically zero the time that the processor spends waiting for the
next instruction.

2.3 INSTRUCTION DECODE UNIT

The Instruction Decode Unit takes instruction stream bytes from the Prefetch Queue and
translates them into microcode. The decoded instructions are then stored in a three-deep
Instruction Queue (FIFO) to await processing by the Execution Unit. Immediate data and
opcode offsets are also taken from the Prefetch Queue.

2.4 EXECUTION UNIT

The Execution Unit executes the instructions from the Instruction Queue and therefore
communicates with all other units required to complete the instruction. The functions of its
three subunits are as follows:

• The Control Unit contains microcode and special parallel hardware that speeds multiply,
divide, and effective address calculation.

• The Data Unit contains the ALU, a file of eight 32-bit general-purpose registers, and a
64-bit barrel shifter (which performs multiple bit shifts in one clock). The Data Unit
performs data operations requested by the Control Unit.

• The Protection Test Unit checks for segmentation violations under the control of the
microcode.

To speed up the execution of memory reference instructions, the Execution Unit partially
overlaps the execution of any memory reference instruction with the previous instruction.
Because memory reference instructions are frequent, a performance gain of approximately
nine percent is achieved.

2-3

INTERNAL ARCHITECTURE

2.5 SEGMENTATION UNIT

The Segmentation Unit translates logical addresses into linear addresses at the request of
the Execution Unit. The on-chip Segment Descriptor Cache stores the currently used segment
descriptors to speed this translation. At the same time it performs the translation, the
Segmentation Unit checks for bus-cycle segmentation violations. (These checks are separate
from the static segmentation violation checks performed by the Protection Test Unit.) The
translated linear address is forwarded to the Paging Unit.

2.6 PAGING UNIT

When the 80386 paging mechanism is enabled, the Paging Unit translates linear addresses
generated by the Segmentation Unit or the Code Prefetch Unit into physical addresses. (If
paging is not enabled, the physical address is the same as the linear address, and no
translation is necessary.) The Page Descriptor Cache stores recently used Page Directory
and Page Table entries in its Translation Lookaside Buffer (TLB) to speed this translation.
The Paging Unit forwards physical addresses to the Bus Interface Unit to perform memory
and I/O accesses.

2-4

Local Bus Interface 3

CHAPTER 3
LOCAL BUS INTERFACE

Local bus operations are considered in this chapter. The 80386 performs a variety of bus
operations in response to internal conditions and external conditions (interrupt servicing, for
example). The function and timing of the signals that make up the local bus interface are
described, as well as the sequences of particular local bus operations.

The high-speed bus interface of the 80386 provides high performance in any system. At the
same time, the bus control inputs and status outputs of the 80386 allow for adaptation to a
wide variety of system environments.

The 80386 communicates with external memory, I/O, and other devices through a parallel
bus interface. This interface consists of a data bus, a separate address bus, five bus status
pins, and three bus control pins as follows:

• The bidirectional data bus consists of 32 pins (D31-DO). Either 8, 16, 24, or 32 bits of
data can be transferred at once.

• The address bus, which generates 32-bit addresses, consists of 30 address pins (A31-A2)
and four byte-enable pins (BE3#-BEO#). Each byte-enable pin corresponds to one of four
bytes of the 32-bit data bus. The address pins identify a 4-byte location, and the byte
enable pins select the active bytes within the 4-byte location.

• The bus status pins establish the type of bus cycle to be performed. These outputs indicate
the following conditions:

Address Status (ADS#)-address bus outputs valid
Write/Read (W /R#)-write or read cycle
Memory /1/0 (M/IO#)-memory or I/O access
Data/Control (D/C#)-data or control cycle
LOCK#-locked bus cycle

• The bus control pins allow external logic to control the bus cycle on a cycle-by-cycle basis.
These inputs perform the following functions:

READY #--ends the current bus cycle; controls bus cycle duration

Next Address (NA#)-allows address pipelining, that is, emitting address and status
signals for the next bus cycle during the current cycle

Bus Size 16 (BSI6#}-activates 16-bit data bus operation; data is transferred on the
lower 16 bits of the data bus, and an extra cycle is provided for transfers of more than
16 bits

3-1

inter LOCAL BUS INTERFACE

The following pins are used to control the execution of instructions in the 80386 and to
interface external bus masters. The 80386 provides both a standard interface to communi
cate with other bus masters and a special interface support a numerics coprocessor.

• The CLK2 input provides a double-frequency clock signal for synchronous operation. This
signal is divided by two internally, so the 80386 fundamental frequency is half the CLK2
signal frequency. For example, a 16-MHz 80386 uses a 32-MHz CLK2 signal.

• The RESET input forces the 80386 to a known reset state.

• The HOLD signal can be generated by another bus master to request that the 80386
release control of the bus. The 80386 responds by activating the Hold Acknowledge
(HLDA) signal as it relinquishes control of the local bus.

• The Maskable Interrupt (INTR) and Non-Maskable Interrupt (NMI) inputs cause the
80386 to interrupt its current instruction stream and begin execution of an interrupt service
routine.

• The BUSY #, ERROR#. and Coprocessor Request (PEREQ) signals make up the inter
face to an external numeric coprocessor. BUSY # and ERROR# are status signals from
the coprocessor; PEREQ allows the coprocessor to request data from the 80386. The
80386 can use either the 80287 or the 80387 coprocessor.

All of the 80386 bus interface pins are summarized in Table 3-1.

3.1 BUS OPERATIONS

There are seven types of bus operations:

• Memory read

• Memory write

• I/O read

• I/O write
• Instruction fetch

• Interrupt acknowledge

• Halt/shutdown

Each bus cycle is initiated when the address is valid on the address bus, and bus status pins
are driven to states that correspond to the type of bus cycle, and ADS# is driven low. Status
pin states that correspond to each bus cycle type are shown in Table 3-2. Notice that the
signal combinations marked as invalid states may occur when ADS# is false (high). These
combinations will never occur if the signals are sampled on the CLK2 rising edge when
ADS# is low, and the 80386 internal CLK is high (as indicated by the CLK output of the
82384). Bus status signals must be qualified with ADS# is true (low) to identify the bus
cycle.

Memory read and memory write cycles can be locked to prevent another bus master from
using the local bus and allow for indivisible read-modify-write operations.

3-2

LOCAL BUS INTERFACE

Table 3-1. Summary of 80386 Signal Pins

Input Output
Signal Name Signal Function Active Input! Synch or High Impedance State Output Asynch

to CLK2 During HLDA?

CLK2 Clock - I - -

00-031 Data Bus High I/O S Yes

BEO#-BE3# Byte Enables Low 0 - Yes

A2-A31 Address Bus High 0 - Yes

W/R# Write-Read Indication High 0 - Yes

O/C# Data-Control Indication High 0 - Yes

M/IO# Memory-I/O Indication High 0 - Yes

LOCK# Bus Lock Indication Low 0 - Yes

AOS# Address Status Low 0 - Yes

NA# Next Address Request Low I S -

BS16# Bus Size 16 Low I S -

REAOY# Transfer Acknowledge Low I S -

HOLD Bus Hold Request High I S -

HLOA Bus Hold Acknowledge High 0 - No

PEREQ Coprocessor Request High I A -

BUSY# Coprocessor Busy Low I A -

ERROR# Coprocessor Error Low I A -

INTR Maskable Interrupt Request High I A -

NMI Non-Maskable Intrpt Request High I A -

RESET Reset High I S -

3-3

LOCAL BUS INTERFACE

Table 3-2. Bus Cycle Definitions

M/IO# O/C# W/R# Bus Cycle Type Locked?

Low Low Low INTERRUPT ACKNOWLEDGE Yes

Low Low High does not occur -

Low High Low I/O DATA READ No

Low High High I/O DATA WRITE No

High Low Low MEMORY CODE READ No

High Low High HALT: SHUTDOWN: No
Address = 2 Address = 0

(BEO# High (BEO# Low
BE1# High BE1# High
BE2# Low BE2# High
BE3# High BE3# High
A2-A31 Low) A2-A31 Low)

High High Low MEMORY DATA READ Some Cycles

High High High MEMORY DATA WRITE Some Cycles

3.1.1 Bus States

The 80386 uses a double-frequency clock input (CLK2) to generate its internal processor
clock signal (CLK). As shown in Figure 3-1, each CLK cycle is two CLK2 cycles wide.

Notice that the internal 80386 matches the external 82384 CLK. The 82384 CLK is permit
ted to lag CLK2 slightly, but will never lead CLK2, so that it can be used reliably as a phase
status indicator. All 80386 inputs are sampled at CLK2 rising edges. Many 80386 signals
are sampled every other CLK2 rising edge; some are sampled on the CLK2 edge when CLK
is high, while some are sampled on the CLK2 edge when CLK is low. The maximum data
transfer rate for a bus operation, as determined· by the 80386 internal clock, is 32 bits for
every two CLK cycles, or 32 megabytes per second (CLK2 = 32 MHz, internal CLK = 16
MHz).

Each bus cycle is comprised of at least two bus states, TI and T2. Each bus state in turn
consists of two CLK2 cycles, which can be thought of as Phase 1 and Phase 2 of the bus
state. Figure 3-2 shows bus states for some typical read and write cycles. During the first
bus state (Tl), address and bus status pins go active. During the second bus state (T2),
external logic and devices respond. If the READY # input of the 80386 is sampled low at
the end of the second CLK cycle, the bus cycle terminates. If READY # is high when sampled,
the bus cycle continues for an additional T2 state, called a wait state, and READY # is
sampled again. Wait states are added until READY# is sampled low.

3-4

CLK2 [

INTERNAL 80386
PROCESSOR CLOCK [

(SAME fRE~UENCY AS
82384 ClK SIGNAL)

lOCAL BUS INTERFACE

PROCESSOR CLOCK
PERIOD

PROCESSOR CLOCK
PERIOD

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD .1 .2 .1 .2

62 ns MIN}
(16 MHz MAX) 80386-16

83 ns MIN}
(12.5 MHz MAX) 80386-12

Figure 3-1. ClK2 and ClK Relationship

231630·2

When no bus cycles are needed by the 80386 (no bus requests are pending, the 80386 remains
in the idle bus state (TI). The relationship between Tl, T2, and TI is shown in Figure 3-3.

3.1.2 Address Pipelining

In the 80386, the timing address and status outputs can be controlled so the outputs become
valid before the end of the previous bus cycle. This technique, which allows bus cycles to be
overlapped, is called address pipelining. Figure 3-4 compares non-pipelined address cycles to
pipelined address cycles.

Address pipelining increases bus throughput without decreasing allowable memory or I/O
access time, thus allowing high bandwidth with relatively inexpensive components. In addition,
using pipelining to address slower devices can yield the same throughput as addressing faster
devices with no pipelining. A 16-MHz 80386 can transfer data at the maximum rate of 32
megabytes per second while allowing an address access time of three CLK cycles
(187.5 nanoseconds at CLK = 16 MHz neglecting signal delays); without address pipelin
ing, the access time is only two CLK cycles (125 nanoseconds at CLK = 16 MHz). When
address pipeline is activated following an idle bus cycle, performance is decreased slightly
because the first bus cycle cannot be pipelined. This condition is explained fully in
Chapter 4.

3.1.3 32-Bit Data Bus Transfers and Operand Alignment

The 80386 can address up to four gigabytes (232 bytes, addresses OOOOOOOOH-FFFFFFFFH)
of physical memory and up to 64 kilobytes (216 bytes, addresses OOOOOOOOH-OOOOFFFFH)
of I/O. The 80386 maintains separate physical memory and I/O spaces.

3-5

LOCAL BUS INTERFACE

IDLE I CYCLE 1 I CYCLE 2 IDLE

I
CYCLE 3 IDLE

I
NON-PIPELINED NON-PIPELINEO NON-PIPELINED

(READ) (WRITE) (READ)

TI T1 T2 T1 T2 T2 Ti T1 T2 T2 Ti

ClK2 [

(82384 ClK) [

9EO#-8E1 #
A2-A31. [

M/IO#.O/C#

W/R# [

AOS# [

NA# [

8516 # [

REAOY# [

LOCK # [VALID 2 VALID 3

DO- 031 [• OUT

Jdle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can immediately
follow the write cycle.

231630·16

Figure 3-2. 80386 Bus States Timing Example

The programmer views the address space (memory or I/O) of the 80386 as a sequence of
bytes. Words consist of two consecutive bytes, and double words consist of four consecutive
bytes. However, in the system hardware, address space is implemented in four sections. Each
of the four 8-bit portions of the data bus (DO-D7, D8-D15, D16-D23, and D24-D3l) connects
to a section. When the 80386 reads a doubleword, it accesses one byte from each section.
The 80386 automatically translates the programmers' view of consecutive bytes into this
hardware implementation (see Figure 3-5).

The 80386 memory spaces and I/0 space are organized physically as sequences of 32-bit
doublewords (230 32-bit memory locations and 214 32-bit I/O ports maximum). Each double
word starts at a physical address that is a multiple of four, and has four individually address
able bytes at consecutive addresses.

3-6

LOCAL BUS INTERFACE

Bus States:

ALWAYS

READY# ASSERTED'

REQUEST PENDING

T1-first clock of a non-pipelined bus cycle (80386 drives new address and asserts ADS"')
T2-subsequent clocks of a.bus cycle when NAN has not been sampled asserted in the current bus cycle
Ti- idle state

The fastest bus cycle consists of two states: T1 and T2.

READY# NEGATED'
NA# NEGATED

231630-17

Figure 3-3. Bus State Diagram (Does Not Include Address Pipelining)

Pins A31-A2 correspond to the most significant bits of the physical address; these pins address
doublewords of memory. The two least significant bits of the physical address are used inter
nally to activate the appropriate byte enable output (BE3#-BEO#). Figure 3-6 shows the
relationship between physical address, doubleword location, data bus pins, and byte enables.
This relationship holds for a 32-bit bus only; the organization for a 16-bit bus is described
later in Section 3.1.10.

Data can be transferred in quantities of 32 bits, 24 bits, 16 bits, or 8 bits for each bus cycle
of a data transfer. Table 3-3 shows which bytes of a 32-bit doubleword can be transferred
in a single bus cycle. If a data transfer can be completed in a single cycle, the transfer is
said to be aligned. For example, a word transfer involving D23-D8 and activating BEl# and
BE2# is aligned.

Transfers of words and doublewords that overlap a doubleword boundary of the 80386 are
called misaligned transfers. These transfers require two bus cycles, which are automatically
generated by the 80386. For example, a word transfer at (byte) address 0003H requires two
byte transfers: the first transfer activates doubleword address 0004H and uses D7-DO, and
the second transfer activates doubleword address OOOOH and uses D31-D24.

3-7

NDN·PIPELINED

CLK2
(INPUT)

BEOMwBE3#, A2-A31 ,
MIIOM. OleN, W/RI#

(OUTPUTS)

ADS.
(OUTPUT)

NAt
(INPUT)

REAOYl
(INPUT)

LOCKIt
(OUTPUT)

00-031
(INPUT DURING READ)

PIPELINED

CLK2
(INPUT)

BEO#-BE3*, A2-A31,
M/IOH. OleN. W/RIi

(OUTPUTS)

ACSH
(OUTPUT)

NA.
(INPUn

READY"
(INPUT)

LOCK'
(OUTPUT)

00-031
(INPUT DURING READ)

LOCAL BUS INTERFACE

11 T2 T1 T2 T1 T2

.' I .. .' I .2 .' 1.2 ., 1.2 .' I .. "'1 I q'J2

Figure 3-4. Non-Pipelined Address and Pipelined Address Differences

3-8

030107

LOCAL BUS INTERFACE

A L 031-024 MEMORY CS
J " y

023-016)i L MEMORY CS
J " 80386

)t J:>--015-08 MEMORY CS

"
.A '" ~ 07-00 MEMORY CS

" I'

l BEO#

BE1#

BE2#

BE3#

Figure 3-5. Consecutive Bytes in Hardware Implementation

BEO

BE1

BE2

BE3

BEO

BE1

BE2

BE3

BEO

BYTE
ADDRESS

0

1

2

3

4

5

6

7

8

-
-
-

WORD
ADDRESS

0

0

2

2

4

4

6

6

8

-
-
-

131 24123 16115 81 7
BE3# BE2# BE1 #

DWORD
ADDRESS

0

0

0

0

4
4

4

4

8

-
-
-

BEO#
01

Figure 3-6. Address, Data Bus, and Byte Enables for 32-Bit Bus

3-9

G30107

G30107

LOCAL BUS INTERFACE

Table 3-3. Possible Data Transfers on 32-Bit Bus

Possible Data Transfers to 32-Bit Memory

Size Byte Enables

32 bits 3-2-1-0

24 bits 3-2-1
2-1-0

16 bits 3-2
2-1
1-0

8 bits 3
2
1
0

Figure 3-7 shows the steps required for a misaligned 32-bit transfer. In the first bus cycle,
the physical address crosses over into the next doubleword location, and BEO# and BEI# are
active. In the second bus cycle, the address is decremented to the previous doubleword, and
BE2# and BE3# are active. After the transfer, the data bits are automatically assembled in
the correct order.

Table 3-4 shows the sequence of bus cycles for all possible misaligned transfers. Even though
misaligned transfers are transparent to a program, they are slower than aligned transfers
and should thus be avoided.

Because the 80386 operates on only bytes, words, and doublewords, certain combinations of
BE3#-BEO# are never produced. For example, a bus cycle is never performed with only
BEO# and BE2# active because such a transfer would be an operation on two noncontiguous
bytes at the same time. A single 3-byte transfer will never occur, but a 3-byte transfer followed
or preceded by a I-byte transfer can occur for some misaligned doubleword transfers.

3.1.4 Read Cycle

Read cycles are of two types: pipelined address cycles and non-pipelined address cycles. In
a non-pipelined address cycle, the address bus and bus status signals become valid during
the first eLK period of the cycle. In a pipelined address cycle, the address bus and bus status
signals are output before the beginning of cycle, in the previous bus cycle, to allow longer
memory access times. Pipelined address cycles are described in Section 3.1.6.

The timing for two non-pipelined address read cycles (one with and one without a wait state)
is shown in Figure 3-8.

3-10

LOCAL BUS INTERFACE

FIRST BUS CYCLE: A31 - A2 ~ n + 4

32-BIT MEMORY
,

DATA BUS DATA BUS

I I I I I , I I
I I I I I I I I
I I I I I I I I

n+7 n+6 "+5 I---- n+4 ~

n+3 n+2 n+1 n

I I I I I I I I
I I I I I I I I
I I I I I I I 1

BE3 BE2 BE1 BEO
HIGH HIGH LOW LOW

SECOND BUS CYCLE: A31 - A2 ~ n

32-BIT MEMORY
,

DATA BUS DATA BUS

I I I I 1 1 I I
I I 1 I I I I I
I I 1 1 I I I I

n+7 "+6 n+5 n+4

n+3 - n+2 - n+1 n

1 I I I I I , I
1 1 I I I I I I
1 I I I I I I I

-
BE3 BE2 BE1 BEO
LOW LOW HIGH HIGH

G30107

Figure 3-7. Misaligned Transfer

ClK2

(82384 ClK)

6EO#-BE1#,
A2-A31,

MIIO#,O/C#

W/R#

AD5#

NA#

6516#

REAOY#

lOCK#

IDLE

T1

LOCAL BUS INTERFACE

CYCLE 1
NON-PIPElINEO

(READ)

T1 T2 T1

CYCLE
NON-PIPElINEO

(READ)

T2 T2

00-031 -I ---T---

Figure 3-8. Non-Pipelined Address Read Cycles

3-12

IDLE

T1

G30107

LOCAL BUS INTERFACE

Table 3-4. Misaligned Data Transfers on 32-Bit Bus

First Cycle: Second Cycle:

Transfer Physical Address Byte Address Byte
Type Address Bus Enables Bus Enables

Word 4N + 3 4N + 4 0 4N 3

Doubleword 4N + 1 4N + 4 0 4N 1-3

Doubleword 4N + 2 4N + 4 0-1 4N 2-3

Doubleword 4N + 3 4N + 4 0-2 4N 3

NOTE: 4N = Nth doubleword address

The sequence of signals for the non-pipelined cycle is as follows:

• The 80386 initiates the cycle by driving ADS# low. The states of the address bus
(A31-A2), byte enable pins (BE3#-BEO#), and bus status outputs (M/IO#, D/C#,
W /R#, and LOCK#) at the CLK2 edge when ADS# is sampled low determine the type
of bus cycle to be performed. For a read cycle,

-W/R# is low

- M/IO# is high for a memory read, low for an I/O read

- For a memory read, D / C# is high if data is to be read, low if an instruction is to be
read. Immediate data is included in an instruction.

- LOCK# is low if the bus cycle is a locked cycle. Only a memory data read cycle (in a
read-modify-write sequence) can be locked. No other bus master should be permitted
to control the bus between two locked bus cycles.

The address bus, byte enable pins, and bus status pins (with the exception of ADS#)
remain active through the end of the read cycle.

• At the end of T2, READY # is sampled. If READY # is low, the 80386 reads the input
data on the data bus.

• If READY# is high, wait states (one CLK cycle) are added until READY# is sampled
low. READY # is sampled at the end of each wait state.

• Once READY# is sampled low, the 80386 reads the input data, and the read cycle termi
nates. If a new bus cycle is pending, it begins on the next CLK cycle.

3.1.5 Write Cycle

Write cycles, like read cycles, are of two types: pipelined address and non-pipelined address.
Pipelined address cycles are described in Section 3.1.6.

3-13

LOCAL BUS INTERFACE

Figure 3-9 shows two non-pipelined address write cycles (one with and one without a wait
state. The sequence of signals for a non-pipelined write cycle is as follows:

• The 80386 initiates the cycle by driving ADS# low. The states of the address bus
(A31-A2), byte enable pins (BE3#-BEO#), and bus status outputs (M/IO#, D/C#,
W jR#, and LOCK#) at the CLK edge when ADS# is sampled low to determine the type
of bus cycle to be performed. For a write cycle,

~ W /R# is high

-M/IO# is high for a memory write, low for an I/O write

-D/C# is high

- LOCK# is low if the bus cycle is a locked cycle. Only a memory write cycle (in a read-
modify-write sequence) is locked. No other bus master should be permitted to control
the bus between two locked bus cycles.

The address bus, byte enable pins, and bus status pins (with the exception of ADS#)
remain active through the end of the write cycle.

• At the start of Phase 2 in Tl, output data becomes valid on the data bus. This data
remains valid until the start of Phase 2 in Tl of the next bus cycle.

• At the end of T2, READY# is sampled. If READY# is low, the write cycle terminates.

• If READY # is not low, wait states are added until READY # is sampled low. READY #
is sampled at the end of each wait state.

• Once READY # is sampled low, the write cycle terminates. If a new bus cycle is pending,
it begins on the next CLK cycle.

3.1.6 Pipelined Address Cycle

Address pipelining allows bus cycles to be overlapped, increasing the amount of time avail
able for the memory or I/O device to respond. The NA# input of the 80386 controls address
pipelining. NA# is generated by logic in the system to indicate that the address bus is no
longer needed (for example, after the address has been latched). If the system is designed so
that NA# goes active before the end of the cycle, address pipelining may occur.

NA# is sampled at the rising CLK2 edge of Phase 2 of each CLK cycle. Once NA# is
sampled active, the address, byte enables, and bus status signals for the next bus cycle are
output as soon as they are available internally. Once NA# is sampled active, it is not required
again until the CLK cycle after ADS# goes active.

Figure 3-10 illustrates the effect of NA#. During the second CLK cycle (T2) of a non
pipelined address cycle, NA# is sampled low. The address, byte enables, and bus status
signals for the next bus cycle are output in the third CLK cycle (the first wait state of the
current bus cycle). Thereafter, NA# is sampled in the next CLK cycle after ADS# is valid
(Tl of each bus cycle); if NA# is active, the address, byte enables and bus-status pins for
the next cycle are output in T2 if another bus cycle is pending.

3-14

CLK2

(82384 ClK)

BEO#-BE1#
A2-A31,

MIIO#,O/C#

W/R#

AOS#

NA#

B516#

REAOY#

LOCK#

00-031

10LE

T1

LOCAL BUS INTERFACE

CYCLE1
NON·PIPELINEO

(WRITE)

T1 T2 T1

CYCLE2
NON·PIPEUNEO

(WRITE)

T2 T2

Figure 3-9. Non-Pipelined Address Write Cycles

3-15

10LE

T1

G30107

ClK2 [

(82384 ClK) [

8EO# - 8E3 # [
A2 - A31,

I.I/IO#,D/C#

W/R# [

ADS# [

NA# [

8516 # [

READY# [

LOCAL BUS INTERFACE

IDLE CYCLE 1
NON-PIPELINED

(WRITE)

TI Tl T2 T1

CYCLE 2
NON-PIPELINED

(READ)

CYCLE 3
PIPELINED

(WRITE)

CYCLE 4
PIPELINED

(READ)

T2 T2P T1 P T2P T1 P T21

lOCK# [~~~~_~::":"-¥_-+ ____ .('-_"";-_.('-----f

00- 031 [

IDLE

TI

Following any idle bus slale (Ti), addresses are non-pipelined. Wilhin non-pipelined bus cycles, NA" is only sampled during wait states.
Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipelined cycle with at least one wait state
(Cycle 2 above).

231630-20

Figure 3-10. Pipelined Address Cycles

The first bus cycle after an idle bus state is always non-pipelined_ To initiate address pipelin
ing, this cycle must be extended by at least one eLK cycle so that the address and status
can be output before the end of the cycle, Subsequent cycles can be pipelined as long as no
idle bus cycles occur.

NA# is sampled at the start of Phase 2 of any eLK cycle in which ADS# is not active,
specifically,

• The second eLK cycle of a non-pipelined address cycle

• The first eLK cycle of a pipelined address cycle

• Any wait state of a non-pipelined address or pipelined address cycle unless NA# has
already been sampled active

3-16

LOCAL BUS INTERFACE

Once NA# is sampled active, it remains active internally throughout the current bus cycle.
If NA# and READY # are active in the same CLK cycle, the state of NA# is irrelevant,
because READY # causes the start of a new bus cycle; therefore, the new address and status
signals are always output regardless of the state of NA#.

A complete discussion of the considerations for using address pipelining can be found in the
80386 Data Sheet (Order Number 231630).

3.1.7 Interrupt Acknowledge Cycle

An unmasked interrupt causes the 80386 to suspend execution of the current program and
perform instructions from another program called a service routine. Interrupts are described
in detail in Section 3.4.

The 8259A Programmable Interrupt Controller is a system component that coordinates the
interrupts of several devices (eight interrupts for a single 8259A; up to 64 interrupts with
eight cascaded 8259As). When a device signals an interrupt request, the 8259A activates
the INTR input of the 80386.

Interrupt acknowledge cycles are special bus cycles designed to activate the 8259A INTA
input that enables the 8259A to output a service-routine vector on the data bus. The 80386
performs two back-to-back interrupt acknowledge cycles in response to an active INTR input
(as long as the interrupt flag of the 80386 is enabled).

Interrupt acknowledge cycles are similar to regular bus cycles in that the 80386 bus outputs
signals at the start of each bus cycle and an active READY # terminates each bus cycle. The
cycles are shown in Figure 3-11.

• ADS# is driven low to start each bus cycle.

• Control signals MjIO#, DjC#, and W jR# are driven low to signal to interrupt
acknowledge bus cycles. These signals must be decoded to generate the INTA input signal
for the 8259A. The decoding logic is usually included in the bus controller logic for the
particular design. Bus controller designs are discussed in Chapters 6 and 8.

• LOCK# is active from the beginning of the first cycle to the end of the second. HOLD
requests from other bus masters are not recognized until after the second interrupt
acknowledge cycle.

• The address driven during the first cycle is 4; during the second cycle, the address is O.
BE3#, BE2#, and BE1# are high, BEO# is low, and A3l-A3 are low for both cycles;
A2 is high for the first cycle and low for the second.

• The 80386 floats D3l-DO for both cycles; however, at the end of the second cycle, the
service routine vector at the 8259A outputs is read by the 80386 on pins D7-DO.

• READY # must go low to terminate each cycle.

Systemlogic must delay READY# to extend the cycle to the minimum pulse-width require
ment of the 8259A Programmable Interrupt Controller. In addition, the 80386 inserts at
least 160 nanoseconds of bus idle time (four Ti states) between the two cycles to match the
recovery time of the 8259A.

3-17

CLK2 [

(82384 ClK) [

BE1#. 8E2#. 80#[

8EO#. A3-A31. [
101/10#. O/C#. W/R#

LOCK# [

ADS#[

08-031 [

LOCAL BUS INTERFACE

PREVIOUS I
CYCLE

T2 Tl

INTERRUPT
ACKNOWLEDGE

CYCLE 1

T2 TZ TI

-rtn rm nn rm nn
-V ~ V ~ V

IXXX '{XX

.XX I~ XX

XX IY XX

/
~~ I.\.

1\-.-'
XLX.LX.X IXXXX X XXX

X LX. XXX LX.XXX XX IGNORED XX

XX IXXXX LX.XJ ~\ /..x
IGNORED

- ---- ---- ----- --@--
IGNORED

.. ---- -_ .. - ----- --q:>--

IDLE
(4 BUS STATES)

TI TI

rm nn
V V
IXXX XX

IXXX IXXX

IXXX IXXX

IXXX IXXX

X X

IXXXj\ LX..XX

"""-r""" ---- -----

TI

rm
~
IXXXX

XXX

XXX

XX

X

.XX

Interrupt Vector (0-255) is read on DO-D7 at end of second Interrupt Acknowledge bus cycle.

INTERRUPT
ACKNOWLEDGE

CYCLE 2

IDLE

T1 T2 T21 TI

nn rtrL nn rm
V ~ V ~

,,(XX IXXX
,r-

.J<.J<. J<.J<.

V
X X

V
~

'--I
XX X X

XXX '(IGNORED)! [XXXX

XXX .XY ~ m.
VECTOR

----- ---- --@---
IGNORED

'----- --cp---
231630-26

Because each Interrupt Acknowledge bus cycle is followed by idle bus states. asserting NAil' has no practical effect. Choose the approach
which is Simplest for your system hardware design.

231630-26

Figure 3-11. Interrupt Acknowledge Bus Cycles

3.1.8 Halt/Shutdown Cycle

The halt condition in the 80386 occurs in response to a HL T instruction. The shutdown
condition occurs when the 80386 is processing a double fault and encounters a protection
fault; the 80386 cannot recover and shuts down. Halt or shutdown cycles result from these
conditions. Externally, a shutdown cycle differs from a halt cycle only in the resulting address
bus outputs.

As with other bus cycles, a halt or shutdown cycle is initiated by activating ADS# and the
bus status pins as follows:

• MjIO# and W jR# are driven high, and D jC# is driven low to indicate a halt cycle.

3-18

LOCAL BUS INTERFACE

• All address bus outputs are driven low. For a halt condition, BE2# is active; for a shutdown
condition, BEO# is active. These signals are used by external devices to respond to the
halt or shutdown cycle.

READY # must be asserted to complete the halt or shutdown cycle. The 80386 will remain
in the halt or shutdown condition until...

• NMI goes high; 80386 services the interrupt

• RESET goes high; 80386 is reinitialized

In the halt condition (but not in the shutdown condition), if maskable interrupts are enabled,
an active INTR input will cause the 80386 to end the halt cycle to service the interrupt. The
80386 can service processor extension (PEREQ input) requests and HOLD (HOLD input)
requests while in the halt or shutdown condition.

3.1.9 8816 Cycle

The 80386 can perform data transfers for both 32-bit and 16-bitdata buses. A control input,
BS 16#, allows the bus size to be specified for each bus cycle. This dynamic bus sizing gives
the 80386 flexibility in using 16-bit components and buses.

The BSI6# input causes the 80386 to perform data transfers for a 16-bit data bus (using
data bus signals DIS-DO) rather than a 32-bit data bus. The 80386 automatically performs
two or three cycles for data transfers larger than 16 bits and for misaligned (odd-addressed)
16-bit transfers.

BS 16# must be supplied by external hardware, either through chip select decoding or directly
from the addressed device. BSI6# is sampled at the start of Phase 2 only in CLK cycle as
long as ADS# is not active. If BS 16# and READY # are sampled low in the same CLK cycle,
the 80386 assumes a 16-bit data bus.

The BSI6# control input affects the performance of a data transfer only for data transfers
in which 1) B~O# or BE1# is active and 2) BE2# or BE3# is active at the same time. In
these transfers, the 80386 must perform two bus cycles using only the lower half of the data
bus.

If a BS 16 cycle requires an additional bus cycle, the 80386 will retain the current address
for the second cycle. Address pipelining cannot be used with BS 16 cycles because address
pipelining requires that the next address be generated on the bus before the end of the current
bus cycle. Therefore, because both signals are sampled at the same sampling window, BSI6#
must be active before or at the same time as NA# to guarantee 16-bit operation. Once NA#
is sampled active in a bus cycle and BSI6# is not active at that time, BSI6# is locked out
internally.

If BS16# is asserted during the last clock of the bus cycle and NA# was not asserted previ
ously in the bus cycle, then the processor performs a 16-bit bus cycle. This is true, even if
NA# is asserted during the last clock of the bus cycle. Figure 3-12 illustrates this logic.

3-19

LOCAL BUS INTERFACE

""ILl
NA, l (PIN .13) I (INrr.NAL) \

BS16# BS16,
(PIN C14) T (INTERNAL))

80386 CHIP - -

231630-22

Figure 3-12. Internal NA# and BS16# Logic

Figure 3-13 compares the signals for 32-bit and 16-bit bus cycles.

3.1.10 16-Bit Byte Enables and Operand Alignment

For a 16-bit data bus, the 80386 views memory and I/O as sequences of 16-bit words. For
this configuration, the Bus High Enable (BHE#), AO or Bus Low Enable (BLE#), and Al
signals are needed. BHE# and BLE# are byte enables that correspond to two banks of memory
in the same way that BE3#-BEO# correspond to four banks. Al is added to A31-A2 to
generate the addresses of 2-byte locations instead of 4-bytelocations. Figure 3-14 compares
the addressing configurations of 32-bit and 16-bit data buses.

The BHE#, BLE#, and Al signals can be generated from BE3#, BE2#, BE1#, and BEO#
using just four external logic gates. Table 3-5 shows the truth table for this conversion. Note
that certain combinations of BE3#-BEO# are never generated.

When BS16# is sampled active, the states of BE3#-BEO# determine how the 80386 responds:

• BS 16# has no effect if activated for a bus cycle in which BE3# and BE2# are inactive.
• If BEO# and BE1# are both inactive during a BS16 cycle, and either BE2# or BE3# is

active,
-For a write cycle, data on D31-D16 is duplicated on D15-DO, regardless of the state

of BS16#. (This duplication occurs because BS16# is sampled late in the cycle but
data must be available early).

-For a read cycle, data that would normally be read on D31-D24 is read on D15-D8,
and data that would normally be read on D23-D16 is read on D7-DO.

• If BEO# or BEl # is active, and BE2# or BE3# is active, two bus cycles are required. The
two cycles are identical except BEO# and BE1# are inactive in the second cycle and
- For a write cycle, the data that was on D31-D16 in the first cycle is copied onto

D15-DO.
-For a read cycle, data that would normally be read on D31-D24 is read on D15-D8,

and data that would normally be read on D23-D16 is read on D7-DO.

3-20

CLK2

(82384CLK)

BEO#-BE3#,
A2-A31,

MIIO#, D/C#

W/R#

ADS#

BSI6#

LOCK#

LOCAL BUS INTERFACE

IDLE I CYCLE 1
NON·PIPELINED

(WRITE)

T1 Tl T2

~~wcq

..LpCJI~:.l....-+-~l....

CLK2

(82384CLK)

BEO#, BE1#

IDLE

T1

A TRANSFER REQUIRING TWO
CYCLES ON Ie-BIT DATA BUS

CYCLE1A
NON·PIPELINED

WRITE)
PART TWO

T1 T2

CYCLE 1 I
NON·PIPELINED

(WRITE
PART ONE

T1 T2

DfJI.~r'---I--4

BE2#, BE3#, \J1o~~w--I--:-:-:t:--i--1
A2-A31,

M/IO#, D/C#

W/R#

LJPl.Y.rf

ADS#

BSI6#

READY# "."".,,,,, ",,,,,,.,,,,,

Figure 3-13. 32-Bit and 16-Bit Bus Cycle Timing

3-21

G30l07

LOCAL BUS INTERFACE

32 DATA BUS (00-031)

80386 ADDRESS BUS (BEO#-BE3#,A2-A31)

1BS16#
"HIGH"

DATA BUS (00-031)

ADDRESS BUS

(BEO#-BE3#. A2-A31)

DATA BUS (00-015)

32-BIT
MEMORY

Figure 3-14. 32-Bit and 16-Bit Data Addressing

231630-6

231630-7

Table 3-6 shows which combinations of BE3#-BEO# require two bus cycles and the states of
BE3#-BEO# for each cycle.

In some cases, 16-bit cycles may be performed without using BS16#. Address pipelining may
be used as follows for these cycles.

• BSI6# is not needed for cycles that use only DI5-DO.

• BSI6# is not needed for a word-aligned 16-bit write. For write cycles, all 32 bits of the
data bus are driven regardless of bus size.

3.2 BUS TIMING

This section describes timing requirements for read cycles, write cycles, and the READY #
signal.

All 80386 signals have setup and hold time requirements relative to CLK2. The timings of
certain signals relative to one another depends on whether address pipelining is used. These
facts must be considered when determining external logic needed to facilitate bus cycles.

3-22

LOCAL BUS INTERFACE

Table 3-5. Generation of BHE#, BLE#, and A 1 from Byte Enables

80386 Signals 16-Bit Bus Signals
Comments

BE3# BE2# BE1# BEO# Al BHE# BLE# (AO)

H* H* H* H* x x x x-no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L* H* L* x x x x-not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L* H* H* L* x x x x-not contiguous bytes
L* H* L* H* x x x x-not contiguous bytes
L* H* L* L* x x x x-not contiguous bytes
L L H H H L L
L* L* H* L* x x x x-not contiguous bytes
L L L H L L H
L L L L L L L

BLE# asserted when 00-07 of 16-bit bus is active.
BHE# asserted when 08-015 of 16-bit bus is active.
A1 low for ali even words; A1 high for ali odd words.

Key:
x = don't care
H = high voltage level
L = low vOltage level
* = a non-occurring pattern of Byte Enables; either none are asserted, or the pattern has Byte Enables

asserted for non-contiguous bytes

Table 3-6. Byte Enables during BS16 Cycles

First Cycle: Second Cycle:

BE3# BE2# BE1# BEO# BE3# BE2# BE1# BEO#

High High High Low None
High High Low High None
High High Low Low None
High Low High High None
High Low Low High High Low High High
High Low Low Low High Low High High
Low High High High None
Low Low High High None
Low Low Low High Low Low High High
Low Low Low Low Low Low High High

3-23

LOCAL BUS INTERFACE

The analyses that follow are based on the assumption that a 16-MHz 80386 is used. If the
processor is operated at a different frequency, the timings will change accordingly. Example
worst-case signal parameter values from the 80386 Data Sheet (Order Number 231630) are
used; consult the most recent data sheet to confirm these values. Also note that delay times
and setup times must be factored into the timing of system response and interaction with
the 80386 to ensure comfortable margins for all critical timings.

3.2.1 Read Cycle Timing

For read cycles, the minimum amount of time from the output of valid addresses to the
reading of the data bus sets an upper limit on memory access times (including address
decoding time). In a non-pipelined address cycle, this time is

Four CLK2 cycles
- A31-A2 output delay (maximum)
- D31-DO input setup (minimum)

125 nanoseconds
- 40 nanoseconds
- 10 nanoseconds

75 nanoseconds

With address pipelining and no wait states, the address is valid one CLK cycle earlier:

Non-pipelined value
+ One CLK cycle (2 CLK2 cycles)

75 nanoseconds
+ 62.5 nanoseconds

137.5 nanoseconds

For both cases above, each wait state in the bus cycle adds 62.5 nanoseconds.

3.2.2 Write Cycle Timing

For write cycles, the elapsed time from the output of valid address to the end of the cycle
determines how quickly the external logic must decode and latch the address. In a non
pipelined address cycle, this time is

Four CLK2 cycles
- A31-A2 output delay (maximum)

(With address pipelining)
(With N wait states)

3-24

125 nanoseconds
- 40 nanoseconds

85 nanoseconds

(+ 62.5 nanoseconds)
(+ N*62.5 nanoseconds)

LOCAL BUS INTERFACE

The minimum amount of time from the output of valid write data by the access device to
the end of the write cycle is the least amount of time external logic has to read the data.
Thi8 setup time is

Three CLK2 cycles 93.75 nanoseconds
- D31-DU output delay (maximum) - 50 nanoseconds

43.75 nanoseconds

(With N wait states) (+ N*62.5 nanoseconds)

Data outputs are valid beyond the end of the bus cycle. This data hold time is at least

One CLK2 cycle 31.25 nanoseconds
+ D31-DO hold time (minimum) + 1 nanoseconds

32.25 nanoseconds

(Wait states do not affect this parameter)

Wait states add the same amounts of data-to-end-of-cycle time as they do for read cycles.
(See Section 3.2.1.)

3.2.3 READY# Signal Timing

The amount of time from the output of valid address signals to the assertion of READY # to
end a bus cycle determines how quickly external logic must generate the READY # signal.
READY # must meet the 80386 setup time. In a nonpipelined address cycle, READY # signal
timing is as follows:

Four CLK2 cycles
- A31-A2 output delay (maximum)
- READY # setup (minimum)

(With address pipelining)
(With N wait states)

125 nanoseconds
- 40 nanoseconds
- 20 nanoseconds

65 nanoseconds

(+ 62.5 nanoseconds)
(+ N*62.5 nanoseconds)

Again, pipelining and wait states increase this amount of time.

Because the efficiency ofa cache depends upon quick turnaround of cache hits (i.e., when
requested data is found in the cache) the timing of the READY # signal is critical; therefore,
READY # is typically generated combination ally from the cache hit comparator. If the
READY # signal is returned too slowly, the speed advantage of the cache is lost.

3-25

LOCAL BUS INTERFACE

3.3 CLOCK GENERATION

3.3.1 82384 Clock Generator

The 82384 Clock Generator is a multifunction component of the 80386 system that provides
clocking for synchronous operation of the 80386 and its support components as follows:

• Both CLK2 (a double-frequency clock for the 80386 and some support devices) and CLK
(a system clock for some 80386 support devices) are generated. The phase of the 82384
CLK matches that of the CLK signal generated internally by the 80386.

• The RESET signal for the 80386 and other system components is generated. The RES#
input of the 82384 accepts an asynchronous input from a simple RC circuit or similar
source, synchronizes the signal with CLK, and outputs the active-high RESET signal to
the 80386 and other system components. The timing and function of the RESET signal
with respect to the 80386 is discussed later in this chapter.

• The 82384 uses the ADS# output of the 80386 (which guarantees setup and hold time to
CLK2) to generate an ADSO# signal, which is functionally equivalent to ADS# but
guarantees setup and hold times with respect to CLK. Devices that are clocked with the
CLK output of the 82384 can use ADSO#.

Figure 3-15 shows a typical circuit to connect the 82384 to the 80386.

Either an external frequency source or a third overtone crystal can be used to drive the
82384. The F jC# input indicates the signal source; if F jC# is pulled high, the 82384 recog
nizes the signal on its External Frequency Input (EFI) pin as its frequency source. If F jC#
is tied low, the crystal connected to the Xl and X2 pins of the 82384 is its frequency source.
In either case, the source frequency must equal the desired CLK2 frequency. For example,
a 32 MHz crystal yields a 32 MHz CLK2 signal and a 16 MHz 80386 internal clock rate.

3.3.2 Clock Timing

The CLK2 and CLK outputs of the 82384 are both MOS-Ievel outputs with output high
voltage levels of V cc-0.6V and adequate drive for TTL inputs. CLK2 is twice the frequency
ofCLK.

The internal CLK signal of the 80386 is matched to the CLK output of the 82384 by the
falling edge of the RESET signal. This operation is described with the RESET function in
Section 3.8.

The skew between the 82384 CLK2 and CLK signals is maintained at 0-16 nanoseconds
(regardless of clock frequency). For closely timed interfaces, peripheral devices must be
timed by CLK2. Devices that cannot be operated at the double-clock frequency must use
the CLK output of the 82384. The 80386 interface to these devices must allow for the CLK2-
to-CLK skew.

3-26

RC
CIRCUIT

LOCAL BUS INTERFACE

30pF

HO: a~ .' 200 pf

5"H

X, X,

~
RES* RESET

~ 82384

F/C# CLK2

r- I ... " I'"
TO

SUPPORT
PERIPHERALS

RESET

CLK2

Figure 3-15. Connecting 82384 to 80386

ADS#
r--

80386

G30107

The phase of the CLK output of the 82384 is useful for determining the beginning of a bus
cycle. Because each CLK2 cycle is 31.25 nanoseconds (at CLK2 = 32 MHz), and bus
status signal delays may be as much as 35 nanoseconds, it is impossible to tell from these
status signals alone which CLK2 cycle begins the bus cycle, and therefore when to expect
valid address signals. The phase of CLK can be used to make this determination. ADS#
should be sampled on rising CLK2 transitions when CLK is high, i.e., at the end of phase 2
(see Figure 3-16).

3.4 INTERRUPTS

Both hardware-generated and software-generated interrupts can alter the programmed
execution of the 80386. A hardware-generated interrupt occurs in response to an active input
on one of two 80386 interrupt request inputs (NMI or INTR). A software-generated inter
rupt occurs in response to an INT instruction or an exception (a software condition that
requires servicing). For complete information on software-generated interrupts, see the 80386
Programmer's Reference Manual.

3-27

lOCAL BUS INTERFACE

31.25 ns --1 I--- i
I I I I I I

ClK2 mlrulfUl
L...l RISING EDGE

I· I QUALIFIER

ClK

4-35 n8 --j r- ,. >---"---

ADS# -. I~
QUALIFIER

G30107

Figure 3-16. Using ClK to Determine Bus Cycle Start

In response to an interrupt request, the 80386 processes the interrupt (saves the processor
state on the stack, plus task information if a task switch is required) and services the inter
rupt (transfers program execution to one of 256 possible interrupt service routines). Entry
point descriptors to service routines or interrupt tasks are stored in a table (Interrupt
Descriptor Table or IDT) in memory. To access a particular service routine, the 80386 must
obtain a vector, or index, to the table location that contains the corresponding descriptor.
The source of this vector depends on the type of interrupt; if the interrupt is maskable (INTR
input active), the vector is supplied by the 8259A Interrupt Controller. If the interrupt is
nonmaskable (NMI input active), location 2 in the JDT is used automatically.

The NMI request and the INTR request differ in that the 80386 can be programmed to
ignore INTR requests (by clearing the interrupt flag of the 80386). An NMI request always
provokes a response from the 80386 unless the 80386 is already servicing a previous NMI
request. In addition, an INTR request causes the 80386 to perform two interrupt
acknowledge bus cycles to fetch the service-routine vector. These bus cycles are not required
for an NMI request, because the vector location for an NMI request is fixed.

Under the following two conditions a service routine will not be interrupted by an incoming
interrupt:

• The incoming interrupt is an INTR request, and the 80386 is programmed to ignore
maskable interrupts. (The 80386 is automatically programmed to ignore maskable inter
rupts when it receives any interrupt request. This condition may be changed by the inter
rupt service routine.) In this case, the INTR request will be serviced only if it is still
active when maskable interrupts are reenabled.

3-28

LOCAL BUS INTERFACE

• The incoming interrupt is an NMI, and the 80386 is servicing a previous NMI. In this
case, the NMI is saved automatically to be processed after the IRET instruction in the
NMI service routine has been executed. Only one NMI can be saved; any others that
occur while the 80386 is servicing a previous NMI will not be recognized.

If neither of the above conditions is true, and an interrupt occurs while the 80386 is servicing
a previous interrupt, the new interrupt is processed and serviced immediately. The 80386
then continues with the previous service routine. The last interrupt processed is the first one
serviced.

If an NMI request and an INTR request arrive at the 80386 simultaneously, the NMI
request is processed first. Multiple hardware interrupts arriving at the 8259A are processed
according to their priority and are sent to the 80386 INTR input one at a time.

3.4.1 Non-Maskable Interrupt (NMI)

The NMI input of the 80386 generally signals a catastrophic event, such as an imminent
power loss, a memory error, or a bus parity error. This input is edge-triggered (on a low-to
high transition) and asynchronous. A valid signal is low for eight CLK2 periods before the
transition and high eight CLK2 periods after the transition. The NMI signal can be
asynchronous to CLK2.

An NMI request automatically causes the 80386 to execute the service routine correspond
ing to location 2 in the IDT. The 80386 will not service subsequent NMI requests until the
current request has been serviced. The 80386 disables INTR requests (although these can
be reenabled in the service routine) in Real Mode. In Protected Mode, the disabling of
INTR requests depends on the gate in IDT location 2.

3.4.2 Maskable Interrupt (INTR)

The INTR input of the 80386 allows external devices to interrupt 80386 program execution.
To ensure recognition by the 80386, the INTR input must be held high until the 80386
acknowledges the interrupt by performing the interrupt acknowledge sequence. The INTR
input is sampled at the beginning of every instruction; it must be high at least eight CLK2
periods prior to the instruction to guarantee recognition as a valid interrupt. This require
ment reduces the possibility of false inputs from voltage glitches. In addition, maskable
interrupts must enabled in software for interrupt recognition. The INTR input may be
asynchronous to CLK2.

The INTR signal is usually supplied by the 8259A Programmable Interrupt Controller, which
in turn is connected to devices that require interrupt servicing. The 8259A, which is controlled
by commands from the 80386 (the 8259A appears as a set of 1/0 ports), accepts interrupt
requests from devices connected to the 8259A, determines the priority for transmitting the
requests to the 80386, activates the INTR input, and supplies the appropriate service routine
vector when requested.

An INTR request causes the 80386 to execute two back-to-back interrupt acknowledge bus
cycles, as described earlier in Section 3.1.4.

3-29

LOCAL BUS INTERFACE

3.4.3 Interrupt Latency

The time that elapses before an interrupt request is serviced (interrupt latency) varies
according to several factors. This delay must be taken into account by the interrupt source.
Any of the following factors can affect interrupt latency:

• If interrupts are masked, an INTR request will not be recognized until interrupts are
reenabled.

• If an NMI is currently being serviced, an incoming NMI request will not be recognized
until the 80386 encounters the IRET instruction.

• If the 80386 is currently executing an instruction, the instruction must be completed. An
interrupt request is recognized only on an instruction boundary. (However, Repeat String
instructions can be interrupted after each iteration.)

• Saving the Flags register and CS:EIP registers (which contain the return address) requires
time.

• If interrupt servicing requires a task switch, time must be allowed for saving and restoring
registers.

• If the interrupt service routine saves registers that are not automatically saved by the
80386, these instructions also delay the beginning of interrupt servicing.

The longest latency occurs when the interrupt request arrives while the 80386 is executing
a long instruction such as multiplication, division, or a task-switch in the Protected mode.

If the instruction loads the Stack Segment register, an interrupt is not processed until after
the following instruction, which should be an ESP load. This allows the entire stack pointer
to be loaded without interruption.

If an instruction sets the interrupt flag (thereby enabling interrupts), an interrupt is not
processed until after the next instruction.

3.5 BUS LOCK

In a system in which more than one device may control the local bus, locked cycles must be
used when it is critical that two or more bus cycles follow one another immediately. Other
wise, the cycles can be separated by a cycle from another bus master.

Any bus cycles that must be performed back-to-back without any intervening bus cycles by
other bus masters should be locked. The use of a semaphore is one example of this precept.
The value of a semaphore indicates a condition, such as the availability of a device. If the
80386 reads a semaphore to determine that a device is available, then writes a new value to
the semaphore to indicate that it intends to take control of the device, the read cycle and
write cycle should be locked to prevent another bus master from reading from or writing to
the semaphore in between the two cycles. The erroneous condition that could result from
unlocked cycles is illustrated in Figure 3-17.

3-30

LOCAL BUS INTERFACE

BUS MASTER 1
READS

VALUE 0 = NOT BUSY

BUS MASTER 1
WRITES

VALUE 1 = BUSY

BUS MASTER
HAS CONTROL

OF DEVICE

SEMAPHORE

-~}
-E]

NO ERROR

SEMAPHORE

BUS MASTER 1 G
READS - 0

VALUE 0 = NOT BUSY
I

I

LOCKED
CYCLES

BUS MASTER 2
READS

VALUE 1 = BUSY

BUS MASTER 2
WAITS FOR

VALUE TO CHANGE

UNLOCKED / r;l_
CYCLES , L.:J

BUS MASTER 2
READS

VALUE O=NOT BUSY
\

BUS MASTER 1 'EJ
WRITES - 1

VALUE 1 = BUSY

E]-

ERROR
BOTH BUS MASTERS

TRY TO CONTROL DEVICE

BUS MASTER 2
WRITES

VALUE 1 = BUSY

Figure 3-17. Error Condition Caused by Unlocked Cycles

G30107

The LOCK# output of the 80386 signals the other bus masters that they may not gain
control of the bus. In addition, an 80386 with LOCK# asserted will not recognize a HOLD
request from another bus master.

3.5.1 Locked Cycle Activators

The LOCK# signal is activated explicitly by the LOCK prefix on certain instructions. LOCK#
is also asserted automatically for an XCHG instruction, a descriptor update, interrupt
acknowledge cycles, and a page table update.

3-31

LOCAL BUS INTERFACE

3.5.2 Locked Cycle Timing

LOCK# is activated on the CLK2 edge that begins the first locked bus cycle. LOCK# is
deactivated when READY # is sampled low at the end of the last bus cycle to be locked.

LOCK# is activated and deactivated on these CLK2 edges whether or not address pipelining
is used. If address pipelining is used, LOCK# will remain active until after the address bus
and bus cycle status signals have been asserted for the pipelined cycle. Consequently, the
LOCK# signal can extend into the next memory access cycle that does not need to be locked.
(See Figure 3-18). The result is that the use of the bus by another bus master is delayed by
one bus cycle.

3.5.3 LOCK# Signal Duration

The maximum duration of the LOCK# signal affects the maximum HOLD request latency
because HOLD is not recognized until LOCK# goes inactive. The duration of LOCK#
depends on the instruction being executed and the number of wait states per cycle.

CLK

BE3#-BEOII
A31-A2

LOCK#

NA#

READY#

UNLOCKED LOCKED LOCKED UNLOCKED
BUS CYCLE BUS CYCLE BUS CYCLE BUS CYCLE

Figure 3-18. LOCK# Signal during Address Pipelining

3-32

G30107

LOCAL BUS INTERFACE

The longest duration of LOCK# in real mode is two bus cycles plus approximately two
clocks. This occurs during the XCHG instruction and in LOCKed read-modify-write opera
tions. The longest duration of LOCK# in protected mode is five bus cycles plus approxi
mately fifteen clocks. This occurs when an interrupt (hardware or software interrupt) occurs
and the 80386 performs a LOCKed read of the gate in the IDT (8 bytes), a read of the
target descriptor (8 bytes), and a write of the accessed bit in the target descriptor.

3.6 HOLD/HLDA (Hold Acknowledge)

The 80386 provides on-chip arbitration logic that supports a protocol for transferring control
of the local bus to other bus masters. This protocol is implemented through the HOLD input
and HLDA output.

3.6.1 HOLD/HLDA Timing

To gain control of the local bus, the requesting bus master drives the 80386 HOLD input
active. This signal must be synchronous to the CLK2 input of the 80386. The 80386 responds
by completing its current bus cycle (plus a second locked cycle or a second cycle required
by BSI6#). Then the 80386 sets all outputs but HLDA to the three-state OFF condition to
effectively remove itself from the bus and drives HLDA active to signal the requesting bus
master that it may take control of the bus.

The requesting bus master must maintain HOLD active until it no longer needs the bus.
When HOLD goes low, the 80386 drives HLDA low and begins a bus cycle (if one
is pending).

For valid system operation, the requesting bus master must not take control of the bus before
it receives the HLDA signal and must remove itself from the bus before de-asserting the
HOLD signal. Setup and hold times relative to CLK2 for both rising and falling transitions
of the HOLD signal must be met.

When the 80386 receives an active HOLD input, it completes the current bus cycle before
relinquishing control of the bus. Figure 3-19 shows the state diagram for the bus including
the HOLD state.

During the HOLD state, the 80386 can continue executing instructions in its Prefetch Queue.
Program execution is delayed if a read cycle is needed while the 80386 is in the HOLD
state. The 80386 can queue one write cycle internally, pending the return of bus access; if
more than one write cycle is needed, program execution is delayed until HOLD is released
and the 80386 regains control of the bus.

HOLD has priority over most bus cycles, but HOLD is not recognized between two interrupt
acknowledge cycles, between two repeated cycles of a BS 16 cycle, or during locked cycles.
For the 80386, HOLD is recognized between two cycles required for misaligned data trans
fers; for the 8086 and 80286 HOLD it is not recognized. This difference should be consid
ered if critical misaligned data transfers are not locked.

3-33

Bus States:

LOCAL BUS INTERFACE

HOLD ASSERT(O

R[AOYI/ ASSERTEO
HOLD NEGATED·

NO REQUEST

T1-first clock of a non-pipelined bus cycle (80386 drives new address aod
asserts ADS #).
T2-subsequent clocks of a bus cycle when NA # has not been sampled
asserted in the current bus cycle.
T21-subsequent clocks of a bus cycle when NA # has been sampled as
serted in the current bus cycle but there is not yet an internal bus request
pending (80386 will not drive new address or assert ADS # I.
T2P-subsequent clocks of a bus cycle when NA # has been sampled
asserted in the current bus cycle and there IS an internal bus request pend
ing (80386 drives new address and asserts ADS # I.
T1 P-first clock of a pipellned bus cycle.
TI-Idle state.
Th-hold acknowledge state (80386 asserts HLDAI.
Asserting NA # for pipelined address gives access to three more bus
states: T21, T2P and T1 P.
Using pipelined address, the fastest bus cycle consists of T1 P and T2P.

READY# NEGATED

Figure 3-19. Bus State Diagram with HOLD State

231630-24

HOLD is not recognized while RESET is active, but is recognized during the time between
the high-to-low transition of RESET and the first instruction fetch.

All inputs are ignored while the 80386 is in the HOLD state, except for the following:

HOLD is monitored to determine when the 80386 may regain control of the bus.

• RESET takes precedence over the HOLD state. An active RESET input will reinitialize
the 80386.

• One NMI request is recognized and latched. It is serviced after HOLD is released.

3-34

inter LOCAL BUS INTERFACE

3.6.2 HOLD Signal Latency

Because other bus masters such as DMA controllers are typically used in time-critical appli
cations, the amount of time the bus master must wait (latency) for bus access can be a
critical design consideration.

The minimum possible latency occurs when the 80386 receives the HOLD input during an
idle cycle. HLDA is asserted on the CLK2 rising edge following the HOLD active input
(synchronous to CLK2). The latency is at least

One CLK2 period
+ HOLD setup time (minimum)
+ HLDA output delay (minimum)

31.25 nanoseconds
25 nanoseconds
4 nanoseconds

60.25 nanoseconds

Because a bus cycle must be terminated before HLDA can go active, the maximum possible
latency occurs when a bus-cycle instruction is being executed. Wait states increase latency,
and HOLD is not recognized between certain types of bus cycles.

3.6.3 HOLD State Pin Conditions

LOCK#, M/IO#, D/C#, W /R#, ADS#, A31-A2, BE3#-BEO#, and D31-DO enter the three
state OFF condition in the HOLD state. Note that external pullupresistors may be required
on ADS#, LOCK# and other signals to guarantee that they remain inactive during transi
tions between bus masters.

3.7 RESET

RESET starts or restarts the 80386. When the 80386 detects a low-to-high transition on
RESET, it terminates all activities. When RESET goes low again, the 80386 is initialized
to a known internal state and begins fetching instructions from the reset address.

3.7.1 RESET Timing

The 82384 Clock Generator generates the RESET signal to initialize the 80386 and other
system components. The 82384 has a Schmitt-trigger RES# input signal used to generate
the RESET signal from an active-low pulse. The hysteresis on the RES# input prevents the
RESET output from entering an indeterminate state, so a simple RC circuit can be used to
generate the RES# input on power-up. Figure 3-20 shows an RC circuit that satisfies timing
requirements for the RES# input.

The RESET input of the 80386 must remain high for a.t least 15 CLK2 periods to ensure
proper initialization (at least 80 CLK2 periods if self-test is to be performed). The CLK
output of the 82384 is initialized with the rising edge of RESET. When RESET goes low,
the 80386 adjusts the falling edge of its internal clock (CLK) to coincide with the start of
the first CLK2 cycle after the high-to-Iow transition of RESET. The 82384 times

3-35

LOCAL BUS INTERFACE

11'1914

RESET H
1

G30107

Figure 3-20. Typical RC RESET Timing Circuit

high-to-Iow edge of RESET (synchronous to CLK2) so that the phase of the internal CLK
of the 80386 matches the phase of the CLK output of the 82384. This relationship is shown
in Figure 3-21.

On the high-to-Iow transition of RESET, the BUSY # pin is sampled. If BUSY # is low, the
80386 will perform a self-test lasting approximately 220 + 60 CLK2 cycles before it begins
executing instructions. The 80386 continues with initialization after the test, regardless of
the test results.

The 80386 fetches its first instruction from linear address OFFFFFFFOH, sometime between
350 and 450 CLK2 cycles after the high-to-Iow transition of RESET (or, if self-test is
performed,after completion of self-test). Because paging is disabled, linear address
OFFFFFFFOH is the same as physical address OFFFFFFFOH. This location normally contains
a JMP instruction to the beginning of the bootstrap program.

3.7.2 80386 Internal States

RESET should be kept high for at least one millisecond after Vee and CLK2 have reached
their DC and AC specifications.

The 80386 samples its ERROR# input during initialization to determine the type of proces
sor extension present in the system. This sampling occurs at some time at least 20 CLK2
periods after the high-to-Iow transition of RESET and before the first instruction fetch. If
the ERROR# input is low, the 80386 assumes that an 80387 numeric coprocessor is being
used, and the programmer must issue a command (FINIT) to reset the ERROR# input after
initialization. If ERROR# is high, an 80287 or no processor extension is assumed. In this
case, a software test must be run to determine whether an 80287 is actually present and to
set the corresponding flag in the 80386. This test is described in Chapter 5.

3-36

W
I

W
-.j

I </>1 I </>2 I </>1 I </>2 I </>1 </>2 I "l1 I </>2 I
CLK2 [

RES#[\ s ~ 110m

elK [

82384 ENSURES THAT ITS
RESET OUTPUT FALLING EDGE
OCCURS DURING PHASE TWO

RESET [ISS {"" _____ _

Figure 3-21. RESET, ClK, and ClK2 Timing

80386 ASSUMES RESET
FALLING EDGE OCCURS DURING

PHASE TWO, AND SETS ITS
OWN INTERNAL PHASE TO MATCH

231659-7

cl

r o o
:I> r
aJ
c:
(J)

Z
-I
m
:D
"'11
:I> o
m

LOCAL BUS INTERFACE

3.7.3 80386 External States

RESET causes the 80386 output pins to enter the states shown in Table 3-7. Data bus pins
enter the three-state condition.

Prior to its first instruction fetch, the 80386 makes no internal requests to the bus, and,
therefore, will relinquish bus control if it receives a HOLD request (see Section 3.7 for a
complete description of HOLD cycles).

Interrupt requests (INTR and NMI) are not recognized before the first instruction fetch.

Table 3-7. Output Pin States during RESET

Pin Name Pin State

LOCK#, OjC#, AOS#, A31-A2 High

WjR#, MjIO#, HLDA, BE3#-BEO# Low

031-00 Three-State

3-38

Performance Considerations 4

CHAPTER 4
PERFORMANCE CONSIDERATIONS

System performance measures how fast a microprocessing system performs a given task or
set of instructions. Through increased processing speed and data throughput, an 80386
operating at the heart of a system can improve overall performance immensely. The design
of supporting logic and devices for efficient interaction with the 80386 is also important in
optimizing system performance.

This chapter describes considerations for achieving high performance in 80386-based systems.
A variety of examples illustrate the potential performance levels for a number of
applications.

4.1 WAIT STATES AND PIPELINING

Because a system may include devices whose response is slow relative to the 80386 bus cycle,
the overall system performance is often less than the potential performance of the 80386.
Two techniques for accommodating slow devices are wait states and address pipelining. The
designer must consider how to use one or both of these techniques to minimize the impact
of device performance on system performance.

The impact of memory device speed on performance is generally much greater than that of
I/O device speed because most programs require more memory accesses than I/O accesses.
Therefore, the following discussion focuses on memory performance.

Wait states are extra eLK cycles added to the 80386 bus cycle. External logic generates
wait states by delaying the READY # input to the 80386. For an 80386 operating at 16
MHz, one wait state adds 62.5 nanoseconds to the time available for the memory to respond.
Each wait state increases the bus cycle time by 50 percent of the zero wait-state cycle time;
however, overall system performance does not vary in direct proportion to the bus cycle
increase. The second column of Table 4-1 shows the performance impact (based on an
example simulation) for memory accesses requiring different numbers of wait states; one
wait state results in an overall performance decrease of 19 percent.

Table 4-1. 80386 Performance with Wait States and Pipelining

Wait States Wait States Performance Relative
Bus

When Address When Address to Non-Pipelined
Utilization

is Pipelined is Not Pipelined o Wait-State

0 0 1.00 73%
0 1 0.91 79%
1 1 0.81 86%
1 2 0.76 89%
2 2 0.66 91%
2 3 0.63 92%
3 3 0.57 93%

4-1

Intel PERFORMANCE CONSIDERATIONS

Unlike a wait state, address pipelining increases the time that a memory has to respond by
one CLK cycle without lengthening the bus cycle. This extra eLK cycle eliminates the output
delay of the 80386 address and status outputs. Address pipelining overlaps the address and
status outputs of the next bus cycle with the end of the current bus cycle, lengthening the
address access time by one or more CLK cycles from the point of view of the accessed
memory device. An access that requires two wait states without address pipelining would
require one wait state with address pipelining. The third column of Table 4-1 shows
performance with pipelining for different wait-state requirements.

Address pipelining is advantageous for most bus cycles, but if the next address is not avail
able before the current cycle ends, the 80386 cannot pipeline the next address, and the bus
timing is identical to a non-pipelined bus cycle. Also, the first bus cycle after an idle bus
must always be non-pipelined because there is no previous cycle in which to output the address
early. If the next cycle is to be pipelined, the first cycle must be lengthened by at least one
wait state so that the address can be output before the end of the cycle.

With the 80386, address pipelining is optional so that bus cycle timing can be closely tailored
to the access time of the memory device; pipelining can be activated once the address is
latched externally or not activated if the address is not latched.

The 80386 NA# input controls address pipe lining. When the system no longer requires the
80386 to drive the address of the current bus cycle (in most systems, when the address has
been latched), the system can activate the 80386 NA# input. The 80386 outputs the address
and status signals for the next bus cycle on the next eLK cycle.

The system must activate the NA# signal without knowing which device the next bus cycle
will access. In an optimal 80386 system, address pipelining should be used even for fast
memory that does not require pipelining, because if a fast memory access is followed by a
pipelined cycle to slower memory, one wait state is saved. If a fast memory access is followed
by another fast memory access, the extra time is not used, and no processor time is lost.
Therefore, all devices in a system must be able to accept both pipelined and non-pipelined
cycles.

Consider a system in which a non-pipelined memory access requires one wait state and a
non-pipelined I/O access requires four wait states. The bus control logic reads chip select
signals from the address decoder to determine whether one or four wait states are required
for the bus cycle. The bus control logic also determines whether the address has been
pipelined, because a pipelined cycle requires one less wait state. The system includes logic
for generating a Bus Idle signal that indicates whether the bus cycle has ended. The bus
control logic can therefore detect that the address has been pipelined if the Address Status
(ADS#) signal goes active while the Bus Idle signal is inactive.

Address pipelining is less effective for I/O devices requiring several wait states. The larger
the number of wait states required, the less significant the elimination of one wait state
through pipelining becomes. This fact coupled with the relative infrequency of I/O accesses
means that address pipelining for I/O devices usually makes little difference to system
performance.

4-2

PERFORMANCE CONSIDERATIONS

A third and less common approach to accommodating memory speed is reducing the 80386
operating frequency. Because a slower clock frequency increases the bus cycle time, fewer
wait states may be required for particular memory devices. At the same time, however,
system performance depends directly on the 80386 clock frequency; execution time increases
in direct proportion to the increase in clock period (reduction in clock frequency). A
12.S-MHz 80386 requires almost 33 percent more time to execute a program than a
16-MHz 80386 operating with the same number of wait states.

The design and application determine whether frequency reduction makes sense. In some
instances, a slight reduction in clock frequency reduces the wait-state requirement and
increases system performance. Table 4-2 shows that a 12.S-MHz 80386 operating with zero
wait states yields better performance than a 16-MHz 80386 operating with two wait states.

Table 4-2. Wait States versus Operating Frequency

Number of 16 MHz Without 16 MHz With 12.5 MHz Without 12.5 MHz With
Wait States Pipelining Pipelining Pipe!ining Pipelining

0 1.00 0.91 0.78 0.71

1 0.81 0.76 0.64 0.59

2 0.66 0.63 0.52 0.49

3 0.57 - 0.45 -

4-3

Coprocessor Hardware Interface 5

CHAPTER 5
COPROCESSOR HARDWARE INTERFACE

A numeric coprocessor enhances the performance of an 80386 system by performing numeric
instructions in parallel with the 80386. The 80386 automatically passes on these instructions
to the coprocessor as it encounters them.

Intel offers two numeric coprocessors:

• The 80287 performs 16-bit data transfers. With the proper interface, the 80386 supports
the 80287.

• The 80387 performs 32-bit data transfers and interfaces directly with the 80386. The
80387 supports the instruction set of both the 80287 and the 8087, offering additional
enhancements that include full compatibility with the IEEE Floating-Point Standard, draft
10. The performance of a 16-MHz 80387 is about eight times faster than that of a
5-MHz 80287.

Either an 80287 or an 80387 numeric coprocessor can be included in an 80386 system. The
80386 samples its ERROR# input during initialization to determine which coprocessor is
present. As mentioned above, the 80287 and 80387 require different interfaces and therefore
slightly different protocols. The 80287 data bus is 16 bits wide, whereas the 80387 data bus
is 32 bits wide.

Data transfers to and from a coprocessor are accomplished through I/O addresses
800000F8H and 800000FCH; these addresses are automatically generated by the 80386 for
coprocessor instructions and allow simple chip-select generation using A31 (high) and
M/IO# (low). Because A3l is high for coprocessor cycles, the coprocessor addresses lie
outside the range of the programmed I/O address space and are easy to distinguish from
programmed I/O addresses. Coprocessor usage is independent of the I/O privilege level of
the 80386.

The 80386 has three input signals for controlling data transfer to and from an 80287 or
80387 coprocessor: BUSY #, Coprocessor Request (PEREQ), and ERROR#. These signals,
which are level-sensitive and may be asynchronous to the CLK2 input of the 80386, are
described as follows:

• BUSY # indicates that the coprocessor is executing an instruction and therefore cannot
accept a new one. When the 80386 encounters any coprocessor instruction except FNINIT
and FNCLEX, the BUSY # input must be inactive (high) before the coprocessor accepts
the instruction. A new instruction therefore cannot overrun the execution of the current
coprocessor instruction. (Certain 80387 instructions can be transferred when BUSY # is
active (low). These instructions are queued and do not interfere with the current
instruction.)

• PEREQ indicates that the coprocessor needs to transfer data to or from memory. Because
the coprocessor is never a bus master, all input and output data transfers are performed
by the 80386. PEREQ always goes inactive before BUSY # goes inactive.

5-1

COPROCESSOR HARDWARE INTERFACE

• ERROR# is asserted after a coprocessor math instruction results in an error that is not
masked by the coprocessor's control register. The data sheets for the 80287 and 80387
describe these errors and explain how to mask them under program control. If an error
occurs, ERROR# goes active before BUSY# goes inactive, so that the 80386 can take
care of the error before performing another data transfer.

5.1 80287 NUMERIC COPROCESSOR INTERFACE

The 80287 is described in this section only as it relates to the 80386. For a complete functional
description of the 80287, see the 80287 Data Sheet.

5.1.1 80287 Connections

The connections between the 80386 and the 80287 are shown in Figure 5-1. These connec
tions are made as follows:

• The 80287 BUSY #, ERROR#, and PEREQ outputs are connected to corresponding 80386
inputs.

• The 80287 RESET input is connected to the 82384 RESET output.

• The 80287 Numeric Processor Select chip-select inputs (NPSl# and NPS2) are connected
to the latched M/IO# and A31 outputs, respectively. For coprocessor cycles, M/IO# is
always low; A31, high.

• The 80287 Command inputs (CMDI and CMDO) differentiate data from commands.
These inputs are connected to ground and the latched A2 output, respectively. The 80386
outputs address 800000F8H when writing a command, address 800000FCH when writing
or reading data.

• The lower half of the data bus connects to the 16 data bits of the 80287. The 80386
transfers data to and from the 80287 only over the DI5-DO lines.

• The 80287 Numeric Processor Read (NPRD#) and Numeric Processor Write (NPWR#)
inputs are connected to I/O read and write signals from local bus control logic. The
configuration of this logic depends on the overall system.

• The 80287 Processor Extension Acknowledge (PEACK#) input is pulled high. In an 80286
system, the 80286 generates PEACK# to disable the PEREQ output of the 80287 so that
extra data is not transferred. Because the 80386 knows the length of the operand and will
not transfer extra data, PEACK# is not needed or used in 80386 systems.

5.1.2 80287 Bus Cycles

When the 80386 encounters a coprocessor instruction, it automatically generates one or more
I/O cycles to I/0 addresses 800000F8H and 800000FCH. The 80386 performs all neces
sary bus cycles to memory and transfers data to and from the 80287 on the lower half of the

5-2

82384
CLOCK

GENERATOR

CLK2 RESET

J 1
l

CLK2 RESET
-
BUSY

ERROR

PEREa

-
MilO

A31

A2

80386
CPU

015:0

--
READY

ADS, Mlio
Ole, W/R

COPROCESSOR HARDWARE INTERFACE

r------ -- -----,
I I
I

74F373
I

LATCH
I I
I I
I t I
I

A I I A I I

74F245

'4 I "

~i
,
I t I
I iOR

I
LOCAL I

~ BUS
CONTROLLER lOW I

~ I
I

LOCAL BUS LOGIC
" SHARED WITH OTHER I
L- __ M~O~ ~D~O __ ..J

8284A
CLOCK

GENERATOR

CLOCK I

+ l
RESET CLK

BUSY CKM

ERROR

PEREa

NPS1

NPS2

L!
CMD1

CMDO

"-
015:0 PEACK

" 80287
NUMERIC

COPROCESSOR

NPRD

NPWR

" ..

"

Figure 5-1. 80386 System with 80287 Coprocessor

Vee

Vee

G30107

data bus. The 80386 automatically converts 32-bit memory transfers to 16-bit 80287 trans
fers and vice versa. Because the 80386 automatically performs 80287 transfers as 16 bits
wide, the BS16# input of the 80386 does not need to be activated for transfers to and from
the 80287.

Bus control logic must guarantee 80287 timing requirements, particularly the minimum
command inactive time (TcMDI). Depending on the design of the bus controller, command
delays may be required.

5-3

COPROCESSOR HARDWARE INTERFACE

5.1.3 80287 Clock Input

The 80287 can operate from the CLK or CLK2 output of the 82384 or a dedicated clock
oscillator. To operate the 80287 from CLK or CLK2, the Clock Mode (CKM) pin of the
80287 must be tied to ground. In this configuration, the 80287 divides the system clock
frequency internally by three.

The CKM pin of the 80287 is tied high to operate the 80287 from a dedicated MOS-Ievel
clock. In this configuration, the 80287 does not internally divide the clock frequency; it
operates directly from the external clock. An 8284A clock driver and an appropriate crystal
can be used to provide the 80287 with the desired clock frequency.

5.2 80387 NUMERIC COPROCESSOR INTERFACE

The 80387 achieves significant enhancements in performance and instruction capabilities
over the 80287. It runs at internal clock rates of up to 16 MHz. To achieve maximum speed,
the interface with the 80386 is synchronous and includes a full 32-bit data bus. Detailed
information on other 80387 enhancements can be found in the 80387 Data Sheet.

The 80387 is designed to run either fully synchronously or pseudosynchronously with the
80386. In the pseudosynchronous mode, the interface logic of the 80387 runs with the clock
signal of the 80386, whereas internal logic runs with a different clock signal.

5.2.1 80387 Connections

The connections between the 80386 and the 80387 are shown in Figure 5-2 and are described
as follows:

• The 80387 BUSY #, ERROR#, and PEREQ outputs are connected to corresponding 80386
inputs.

• The 80387 RESETIN input is connected to the 82384 RESET output.

• The 80387 Numeric Processor Select chip-select inputs (NPS1# and NPS2) are connected
directly to the 80386 MjIO# and A31 outputs, respectively. For coprocessor cycles,
MjIO# is always low; A31, high.

• The 80387 Command (CMDO#) input differentiates data from commands. This input is
connected directly to the 80386 A2 output. The 80386 outputs address 800000F8H when
writing a command or reading status, address 800000FCH when writing or reading data .

• All 32 bits (D31-DO) of the 80386 data bus connect directly to the data bus of the 80387.
Because the data lines are connected directly, any local data bus transceivers must be
disabled when the 80386 reads data from the 80387.

o The 80387 READY #, ADS#, and W jR# inputs are connected to the corresponding pins
on the 80386. READY # and ADS# are used by the 80387 to track bus activity and
determine when W jR#, NPSl#, NPS2, and Status Enable (STEN) can be sampled.

5-4

inter COPROCESSOR HARDWARE INTERFACE

32 MHz CLOCK GENERATOR

: ~
~

f

"-
'----

l l 1 1
X1 X2 EFI F/C.

ADSOII

82384

CLK2

RES. CLK

RESET

ADS.

t
HLDA

D/CII
RESET

LOCKII
READY#

BEOII-BE311
CLK2

BS1611 M/IOII

NAil A31

HOLD A30-A3

INTR
80386

A2

NMI W/RII

ADSII

00-031

BUSYII

ERRORII

PEREa

FROM OTHER PERIPHERALS

~>-r-
80387 ..

CLOCK
GENERATOR
(OPTIONAL)

r--

WAIT STATE -GENERATOR
(OPTIONAL)

ANDOR LOGIC

f--
r---
r---

-
... 32

(5·2) 80386-80387 PSEUDO SYNCHRONOUS
HARDWARE INTERFACE

CKM

387CLK2

386CLK2

RESET IN

READY.

READYO.

NPS1.

NPS2

CMDII

W/R.

ADSII

00-031

BUSY'

ERRORII

PEREa

Figure 5-2. 80386 System with 80387 Coprocessor

5-5

80387

:~
STEN r-

G30107

COPROCESSOR HARDWARE INTERFACE

• STEN is an 80387 chip select and can be pulled high. If multiple 80387s are used by the
same 80386, STEN can be used to activate one 80387 at a time.

• Ready Out (READYO#) is an optional output that can be used to generate the wait
states required for a coprocessor. External logic can generate these wait states easily as
well, because the number of wait states is constant.

5.2.2 80387 Bus Cycles

When the 80386 encounters a coprocessor instruction, it automatically generates one or more
I/O cycles to addresses 800000F8H and 800000FCH. The 80386 will perform all necessary
bus cycles to memory and transfer data to and from the 80387. All 80387 transfers are
32 bits wide. If the memory subsystem is only 16 bits wide, the 80386 automatically performs
the necessary conversion before transferring data to or from the 80387.

Read cycles (transfers from the 80387 to the 80386) require at least one wait state, whereas
write cycles to the 80387 require no wait states. This requirement is automatically reflected
in the state of the READYO# output of the 80387, which can be used to generate the
necessary wait state.

5.2.3 80387 Clock Input

The 80387 can be operated in two modes. In either mode, the CLK2 signal must be connected
to the 386CLK2 input of the 80387 because the interface to the 80386 is always synchron
ous. The state of the 80387 CKM input determines its mode:

• In synchronous mode, CKM is high and the 387CLK2 input is not connected. The 80387
operates from the CLK2 signal. Operation of the 80387 is fully synchronous with that of
the 80386.

• In pseudo-synchronous mode, CKM is low and a frequency source for the 387CLK2 input
must be provided. Only the interface logic of the 80387 is synchronous with the 80386.
The internal logic of the 80387 operates from the 387CLK2 clock source, whose frequency
may be 10/16 to 16/10 times the speed of CLK2. Figure 5-3 depicts pseudo
synchronous operation.

5.3 LOCAL BUS ACTIVITY WITH THE 80287/80387

Both 80287 and 80387 coprocessors use two distinct methods to interact with the 80386:

• The 80386 initiates coprocessor operations during the execution of a coprocessor instruc
tion (an ESC instruction). These interactions occur under program control.

• The coprocessor uses the PEREQ signal to request the 80386 to initiate operand transfers
to or from system memory. These operand transfers occur when the 80287/80387 requests
them; thus, they are asynchronous to the instruction execution of the 80386.

5-6

COPROCESSOR HARDWARE INTERFACE

1 L CLK2
INTERFACE SYNCHRONOUS

BUS -------
NUMERIC ASYNCHRONOUS CORE

80386 80387

387CLK2

G30107

Figure 5-3. Pseudo-Synchronous Interface

When the 80386 executes an ESC instruction that requires transfers of operands to or from
the coprocessor, the 80386 automatically sets an internal memory address base register,
memory address limit register, and direction flag. The coprocessor can then request operand
transfers by driving PEREQ active. These requests occur only when the coprocessor is
executing an instruction (when BUSY#is active).

Two, three, four or five bus cycles may be necessary for each operand transfer. These cycles
include one coprocessor cycle plus one of the following:

• One memory cycle for an aligned operand

• Two memory cycles for a misaligned operand

• Two or three memory cycles for misaligned 32-bit operands to l6-bit memory

• Four memory cycles for misaligned 64-bit operands to 16-bit memory

Data transfers for the coprocessor have the same bus priority as programmed data transfers.

5.4 DESIGNING AN UPGRADABLE 80386 SYSTEM

It is relatively simple to design an 80386 system with an 80287 that may be later upgraded
to an 80387. The advantage of such a system is that two performance levels may be addressed
by one system at minimal additional cost.

5-7

COPROCESSOR HARDWARE INTERFACE

5.4.1 80287/80387 Recognition

The 80386 samples its ERROR# input during initialization (after RESET goes low and
before execution of the first instruction) to determine the type of coprocessor present. The
80387 holds its ERROR# output low after reset, whereas the 80287 holds its ERROR#
output high. Therefore, if the 80386 samples ERROR# low, it assumes that an 80387 is
present. If it samples ERROR# high, it assumes that either an 80287 is present or that a
coprocessor is not used.

If the 80386 determines that an 80387 is present, the 80386 must be programmed to execute
the FNINIT instruction to reset the ERROR# output of the 80387 before any coprocessor
transaction takes place. Software can determine the coprocessor type by testing the ET bit
in the machine status word. If ET= 1, the 80387 is present.

If the 80386 determines that either an 80287 is present or a coprocessor is not used, it must
then execute a routine to determine the presence of an 80287 in order to set its internal
status. Figure 5-4 shows an example of a recognition routine. In order to use this routine,
the designer must connect a pullup resistor to at least one of the lower eight bits of the data
bus if a coprocessor is not used.

In the example routine, the 80386 assumes that the 80287 is present, and executes an
FNINIT instruction. Following the FNINIT instruction, the 80386 reads the 80287 status
word. If an 80287 is present, the lower eight bits of this word (the exception flags) are all
zeros. If an 80287 is not present, these data lines are floating. If a pullup resistor is connected
to at least one of these lines, the absence of an 80287 is confirmed by at least one high bit
in the lower eight bits of the status word. The routine then sets or resets the Emulate Copro
cessor (EM) bit of the CRO register (shown in Figure 5-5) of the 80386, depending on
whether or not an 80287 is present.

; initialization routine to detect an 80287 Numeric Processor

FMD 287: F N I NIT
FSTSW
OR

JZ

SMSW
OR
LMSW
JMP

GOT 287: SMSW
OR
LMSW

CONTINUE:

A X
A L , A L

GOT 287

A X
A X , 04 H
A X
CONTINUE

A X
A X , 02 H
A X

initialize NumeriC Processor
retrieve 80287 statu~ word
test low-byte 80287 exception flags
if all zero, then 80287 present and
properly initielized
if not all zero, then 80287 absent.
branch if 80287 present

No numeric processor
set EM bit in machine status word
to enable software emulation of 80287

Numeric Procesor present
set MP bit in machine status word
to permit normal 80287 operation

and off we 90.

Figure 5-4. Routine to Detect 80287 Presence

5-8

COPROCESSOR HARDWARE INTERFACE

NOTE: • INDICATES INTEL RESERVED: DO NOT DEFINE.

PG: PAGING ENABLE
ET: PROCESSOR EXTENSION TYPE
TS: TASK SWITC/fED
EM: EMULATE COPROCESSOR
MP: MONITOR COPROCESSOR
PE: PROTECTION ENABLE

MSW

Figure 5-5. 80386 Machine Control Register (CRO)

5.4.2 80387 Emulator

G30107

The 80387 emulator circuit makes a lO-MHz 80287 appear to the 80386 as an 80387. The
schematic is shown in Figure 5-6. An 80387 socket (80387 PGA Adapter) is connected to
the 80386 (connections not shown) as described earlier in this chapter.

The 80287 sends signals to the 80386 through the socket. The inputs coming to the socket
from the 80386 are decoded by the PAL16L8 (Math Control) to provide the buffered CMDO,
NPRD#, and NPWR# inputs for the 80287. The PAL equations for the Math Control PAL
are listed in Appendix B of this manual.

The data lines of the 80287 are connected to the lower half of the 80386 data bus through
the socket; the BUSY #, ERROR#, and PEREQ signals are returned to the 80386 through
the socket as well. Note that while this circuit allows the 80386 to use an 80387 interface
with the 80287, the 80287 still performs only 16-bit data transfers. Therefore, during initial
ization, the ERROR# output of the 80287 is high to indicate the presence of an 80287, not
an 80387.

5-9

A2

READY-

A31 A31

LRESET
ADO- ADS-

MltO- MIIO-

~
AVALlO- 1

DVALlD-

ClKI6-
~

J
0'1
.!...
0 ~2

RESET

+,v

1
2.2K

TP2
+,v

019111
19 READVOD-

10 .0

0181t 18 IOWCD-
2' 20

r-8 NPSlt1
CMDO

f-~ NPS2
IOWC- ,.

NPWR#

13 DI7ft 17 IDROS- 30
IORB- 27 NPRD#

14 D161t " ..
:~ D1511 15 AVAL 100- 13 .0

" 01411 14 OVALIDD- '0 6Q 15

17 om 7' m 18 ,. 01211 '0 aa "

READYO-

II ~ v""' AVAlID- " eMOO

~ ~
CMDl

CLK16-
~ Vss10

LRESET I
~ v§'"

'" oep
PAl16LO

MATH CONTROL 74AS374

READVO-

rm

......--........

eKM
elK

'-+-++--::=-1 RESET

PEACK

ClKl-=r=--------------..J
L.....-

387 MATH EMULATOR

80287

" DO
PDO poo 14

DO
D1 22 PD. PD. 13

D2
21 PD2 PD2 12

D2

D3 " PO, PO, 11
03

04 19 PO, PO, ,
D4

DO " PO, PDO ,
os

DB
11 PDB PDB 4

DB
D1 " PD1 PD1 ,

D1
PDB .

0'

D8~ PD. oo
09 14 POg POtO 67

12 POlO P011 68
010

11 !E.!!..----1
PD12 :: I :~:

,- "014 ~'-lD14
P013 D15 D13 P014

014 POlS

015 13 56 018

Ne13 55 019

Ne4 53 D20

BUSY# S2 D21

51 022

50 023
48 024

41 025

46 026
45 D21

42 D28

41 D29

.. D30

39 031

20 READVOIt +--""'Q-....!!!.J
--::;;ow - -'!rI BUSYIt

--"'iOR"'--!!d ERRORIt

Yee7

Vecl

" Vee1S

Vcc25
25

Vce28 "
Vee44

44

VecS"
..

Vcc60 60

Vcc85

Vss2

v~'
,

Yss'0 10
Vss15 15

Vss24 24
30

Vss30
Vss43 43

Vss49
49

Vss59 "

eKM I-..!L
386CLK2

38

381CLK2 I-..!L
WIRfil

23

AOSIII "
51EN ~
NPSI "
NPS2

21

CMDII
30

READvt 31

RESETIN "

80387 PGA ADAPTER

Figure 5-6. 80387 Emulator Schematic

(

0
0
"tJ
:0
0
0
m
(/)
(/)

0
:0
:::t »
:0
C
=:

•• 0 »
:0

386CLK2 m
~ Z

WiR -I
ADS m
MiiO

:0
"'1'1

A31 »
A2 0

m
READY

RESET

G30107

Memory Interfacing 6

CHAPTER 6
MEMORY INTERFACING

The 80386 high-speed bus interface has many features that contribute to high-performance
memory interfaces. This chapter outlines approaches to designing memory systems that utilize
these features, describes memory design considerations, and lists a number of useful examples.
The concepts illustrated by these examples apply to a wide variety of memory system
implementations.

6.1 MEMORY SPEED VERSUS PERFORMANCE AND COST

In a high-performance microprocessing system, overall system performance is linked to the
performance of memory subsystems. Most bus cycles in a typical microprocessing system
are used to access memory because memory is used to store programs as well as the data
used in processing.

To realize the performance potential of the 80386, a system must use relatively fast memory.
A high-performance processor coupled with low-performance memory provides no better
throughput than a less expensive low-performance processor. Fast memory devices, however,
cost more than slow memory devices.

The cost-performance tradeoff can be mediated by partitioning functions and using a combi
nation of both fast and slow memories. If the most frequently used functions are placed in
fast memory and all other functions are placed in slow memory, high performance for most
operations can be achieved at a cost significantly less than that of a fast memory subsystem.
For example, in a RAM~based system that uses read-only memory devices primarily during
initialization, the PROM or EPROM can be slow (requiring three to four wait states) and
yet have little effect on system performance. RAM memory can also be partitioned into fast
local memory and slower system memory. Other performance considerations are described
in detail in Chapter 4.

The relationship between memory subsystem performance and the speed of individual memory
devices is determined by the design of the memory subsystem. Cache systems, which couple
a small cache memory with a larger main memory, are described in Chapter 7. Basic memory
interfaces are described in this chapter.

6.2 BASIC MEMORY INTERFACE

The high performance and flexibility of the 80386 local bus interface plus the availability of
programmable and semi-custom logic (programmable logic arrays, for example) make it
practical to design custom bus control logic that meets the requirements of a particular
system. Standard logic components can generate the bus control signals needed to interface
the 80386 with memory and I/O devices. The basic memory interface is discussed in this
chapter; the basic I/O interface is presented in Chapter 8.

6-1

MEMORY INTERFACING

The block diagram of the basic memory interface is shown in Figure 6-1. The bus control
logic provides the control signals for the address latches, data buffers, and memory devices;
it also returns READY # active to end the 80386 bus cycle and NA# to control address
pipelining. The address decoder generates chip-select signals and the BS16# signal based on
the address outputs of the 80386. This interface is suitable for accessing ROMs, EPROMs,
and static RAMs (SRAMs).

6.2.1 PAL Devices

Many design examples in this manual use PAL (Programmable Array Logic) devices, which
can be programmed by the user to implement random logic. A PAL device can be used as a
state machine or a signal decoder, for example. The advantages of PALs include the
following:

• Programmability allows the PAL functions to be changed easily, simplifying prototype
development.

• The designer determines PAL pinout and can simplify the board layout by moving signals
as required.

+
BUS -

CONTROL r-
LOGIC -

ADDRESS r--
-A DECODER ,....--

~ !" -V I-

~
ADDRESS " MEMORY

DEVICE
LATCH

READY# NA# BUSSTATUS
" ~

#1

- BS16# ADDRESS 1-"---) -,I I'

80386

- -.A ~ DATA -
~

MEMORY
DATA TRANSCEIVER DEVICE

~ / '--- #2 ..
.,

030107

Figure 6-1. Basic Memory Interface Block Diagram

6-2

MEMORY INTERFACING

• PALs are inexpensive compared to dedicated bus controllers.

• Once a PAL design has been tested, Hard Array Logic (HAL) devices, which are mask
programmed PALs, can be used in production quantities (several thousand units).

PALs also have the following disadvantages:

• Pin counts or speeds of available PALs can restrict some designs.

• Most PALs do not have buried (not connected to outputs) state registers; therefore, in
state-machine implementations, registered output pins must be used to store the current
state.

• The drive capability of PALs may be insufficient for some applications. In these cases,
buffering is required.

A PAL device consists logically of a programmable AND array whose output terms feed a
fixed OR array. Any sum-of-products equation, within the limits of the number of PAL
inputs, outputs, and equation terms, can be realized by specifying the correct AND array
connections. Figure 6-2 shows an example of two PAL equations and the corresponding logic
array. Note that every horizontal line in the AND array represents a multi-input AND gate;
every vertical line represents a possible input to the AND gate. The X at the intersection of
a horizontal line and a vertical line represents a connection from the input to the AND gate.

Programming a PAL device consists of determining where the XS must be placed in the
AND array. This task is simplified by the use of a PAL assembler program. Such a program
accepts input in the form of sum-of-products equations. The assembled code is then applied
to a PAL device using a standard PROM programmer equipped with a special PAL
enhancement.

The following conventions apply to TTL and PAL devices described in this section:

• TTL devices are specified by number (function), but not by family (speed). Virtually any
family of a device can be used if it meets the performance requirements of the applica
tion. For example, a 74xOO device might be implemented with a 74FOO or 74ASOO.
Generally, the F and AS families provide the highest performance.

• PAL devices are specified by part number. A PAL part number generally consists of a
number, a letter, and a second number, and is interpreted as shown in Figure 6-3. PALs
are manufactured for a number of performance levels. Standard PALs are suitable unless
otherwise specified.

6.2.2 Address Latch

Latches maintain the address for the duration of the bus cycle and are necessary to pipeline
addresses because the address for the next bus cycle appears on the address lines before the
current cycle ends. In this example, 74x373 latches are used. Although the 80386 can be
run without address pipelining to eliminate the need for address latching, the system will
usually run less efficiently.

6-3

Sample equations:

IQ ~ A" IB
+ A" IR
+ IA"·B"R

IR:~ A" IR
+ IB

• Sample block diagram:

CLOCK -t:>

A-

B

MEMORY INTERFACING

16R6

p ~ J f.-

~ 1 ~

-

Q

~ IJ. ~ ~
>--

B~ ...
R

. D Q ~

G30107

Figure 6-2. PAL Equation and Implementation

The 74x373 Latch Enable (LE) input is controlled by the Address Latch Enable (ALE or
ALE#) signal from the bus control logic that goes active at the start of each bus cycle. The
74x373 Output Enable (OE#) is always active.

6.2.3 Address Decoder

In this example, the address decoder, which converts the 80386 address into chip-select
signals, is located before the address latches. In general, the decoder may also be placed
after the latches. If it is placed before the latches, the chip-select signal becomes valid as
early as possible but must be latched along with the address. Therefore, the number of address
latches needed is determined by the location of the address decoder as well as the number
of address bits and chip-select signals required by the interface. The chip-select signals are
routed to the bus control logic to set the correct number of wait states for the accessed
device.

6-4

16R8

MEMORY INTERFACING

Number of Outputs
Output Type'
Number of Internal and External Inputs

'Output types are designated as follows:

H
L
C
R
X
A

Active High
Active Low
Complementary
Registered
Exclusive-OR Registered
Arithmetic Registered

Figure 6-3. PAL Naming Conventions

The decoder consists of two one-of-four decoders, one for memory address decoding and one
for I/O address decoding. In general, the number of decoders needed depends on the memory
mapping complexity. In this basic example, the A31 output is sufficient to determine which
memory device is to be selected.

6.2.4 Data Transceiver

Standard 8-bit transceivers (74x245, in this example) provide isolation and additional drive
capability for the 80386 data bus. Transceivers are necessary to prevent the contention on
the data bus that occurs if some devices are slow to remove read data from the data bus
after a read cycle. If a write cycle follows a read cycle, the 80386 may drive the data bus
before a slow device has removed its outputs from the bus, potentially causing reliability
problems. Transceivers can be omitted only if the data float time of the device is short enough
and the load on the 80386 data pins meets device specifications.

A bus interface must include enough transceivers to accommodate the device with the most
inputs and outputs on the data bus. Normally, 32-bit-wide memories, which require four
8-bit transceivers, are used in 80386 systems.

The 74x245 transceiver is controlled through two input signals:

• Data Transmit/Receive (DT/R#)-When high, this input enables the transceiver for a
write cycle. When low, it enables the transceiver for a read cycle. This signal is just a
latched version of the 80386 W /R# output.

• Data Enable (DEN#)-When low, this input enables the transceiver outputs. This signal
is generated by the bus control logic.

6-5

MEMORY INTERFACING

6.2.5 Bus Control Logic

Bus control logic is shown in Figure 6-4. The bus controller is implemented in two PALs.
One PAL (PAL-I) follows the 80386 bus cycles and generates the overall bus cycle timing.
The second PAL (PAL-2) generates most of the bus control signals. The equations for these
PALs are listed in Appendix A of this manual.

The bus controller decodes the 80386 status outputs (W /R#, M/IO#, and D/C#) and
activates a command signal for the type of bus cycle requested. The command signal corre
sponds to the bus cycle types (described in Chapter 3) as follows:

• Memory data read and memory code read cycles generate the Memory Read Command
(MRDC#) output. MRDC# commands the selected memory device to output data.

• I/O read cycles generate the I/O Read Command (IORC#) output. 10RC# commands
the selected I/O device to output data.

• Memory write cycles generate the Memory Write Command (MWTC#) output. MWTC#
commands the selected memory device to receive the data on the data bus.

• I/O write cycles generate the I/O Write Command (IOWC#) output. IOWC# commands
the selected memory device to receive the data on the data bus.

• Interrupt-acknowledge cycles generate the Interrupt Acknowledge (INTA#) output, which
is returned to the 8259A Interrupt Controller. The second INTA cycle commands the
8257 A to place the interrupt vector on the bus.

Figure 6-5 shows the timings of bus control signals for various memory accesses.

The bus controller also controls the READY # input to the 80386 that ends each bus cycle.
The PAL-2 bus control PAL counts wait states and returns READY# after the number of
wait states required by the accessed device. The design of this portion of the bus controller
depends on the requirements of the system; relatively simple systems need less wait-state
logic than more complex systems. The basic interface described here uses a PAL device to
generate READY #; other designs may use counters and/or shift registers.

The bus controller generates one of two bus cycles depending on which memory is being
accessed. Two inputs to PAL-l (CSOWS and CSIWS) from the address decoder determine
the bus control signal timings. Table 6-1 shows the number of wait states, the command
delay time, and the data float time for each bus cycle.

Table 6-1. Bus Cycles Generated by Bus Controller

WAIT-STATES
Command Chip-Select Cycle Type

Delay Data-Float
Pipelined UnPipelined

CSOWS read 0 1 1 CLK2 2 CLK2
write 1 2 1 CLK2 -

CS1WS any 1 2 2 CLK2 4CLK2

6-6

MEMORY INTERFACING

10 i~ ~

I~ N ,

H------+-t--~-++'1. ~ -,~
g;~.~I; I~I~
"" 12 « to

~

~ ... ~~~~~~
"- I <I til

'-j"---~

~ ;f

'~.~'~ I~

6-7

o
"01
o

....I

'0
C
o o
rn
::::J
III

IDLE 150 ns SRAM/EPROM READ 100 ns SRAM READ 150NS 150 ns SRAM WRITE 150 ns SRAM/EPROM READ IDLE
NON·PIPELINED PIPELINED SRAM/EPROM PIPELINED PIPELINED

READ PIPELINED

1 2 3 4 1 2 3 1 2 3 1 2 3 4 1 2 3 4

CLK :; U ~ Cf If U" 'J Cf ~ Cf (f Cf J (f Y, Cf (f J Cf Cf
ADS# \l W \l W \ \ /I \l Ir1J \l. Ir1J
AD DR rm. 'f:fti rm
DATA 'tt.

READ READ READ WRITE READ

SEL xxxmx
en ALE
I

CD
\ V\ i--h In In

DEN# 1\ II IL rl\ II 1\ J t--[\ 11

MRDC# 1\ I, 1\ 1,1\ II 1\ II

MWTC. 1\ 11

NA# IU IV IV IV IV
READY# ILV IL-IJ ILV ILV ILl!

t t t t t
FLOAT NO FLOAT FLOAT FLOAT FLOAT
I I I I I I

Figure 6-5. Bus Control Signal Timing

150 ns SRAM/EPROM READ
NON·PIPELINED

1 2 3 4

r; U J U' u-1'-

u.. W \

IV'

'lift.. 'if{
READ

lAl

I, h
1\ I, I--

1\ I, I--

IU
IL 1,--l-

G30107

(

~
m
~
o
::u
-<
Z
-I
m
::u
"II » o
Z
C)

MEMORY INTERFACING

6.2.6 EPROM Interface

Figure 6-6 shows the signal timing for bus cycles from an 80386 operating at 16 MHz to a
27128-1 EPROM, which has a ISO-nanosecond access time. Faster lID-nanosecond EPROMs
are also available but in this design, they require the same number of wait states as the
ISO-nanosecond EPROMs require. Timings for a ISO-nanosecond SRAM are included for
comparison.

In the EPROM interface, the OE# input of each EPROM devices is connected directly to
the MRDC# signal from the bus controller. The wait state requirement is calculated by
adding up worst-case delays and comparing the total with the 80386 bus cycle time.

The bus cycle timings can be calculated from the waveforms in Figure 6-6. In the following
example, the timings for I/0 accesses are calculated for CLK2 = 32 MHz and B-series
PALs. All times are in nanoseconds. Check the most recent 80386 Data Sheet to confirm
all parameter values.

tAR: Address stable before Read (MRDC# fall)

(1 x CLK2 period)- PAL RegOut Max- Latch Enable Max
- PAL RegOut Min
(1 x 31.2S) - 12 - 11.5
+0

= 7.7S nanoseconds

tRR: Read (MRDC#) pulse width

(4 x CLK2 period)
(4 x 31.2S)

= 113 nanoseconds

- PAL RegOut Max
-12

+ PAL RegOut Min
+0

tRA: Address hold after Read (MRDC# rise)

(0 x CLK2 period) - PAL RegOut Max + PAL RegOut Min
+ Latch Enable Min
(0 x 31.2S) - 12 + 0
+ S

= -7 nanoseconds (This is acceptable because latched addresses are held for at
least as long as the end of the bus cycle.)

tAD: Data delay from Address

(6 x CLK2 period)
- xcvr. prop. Min
(6 x 31.2S)
- 6

= 148 nanoseconds

- PAL RegOut Max - Latch Enable Max
- 80386 Data Setup Min

12 - 11.5
-10

6-9

IDLE

eLK V
ADS#

ADDR

DATA

SEL

en
~ ALE

0

DEN#

MRDCN

MWTC#

NA#

READY#

150 ns SRAM/EPROM READ 100 ns SRAM READ I 150 NS 150 ns SRAM WRITE 150 ns SRAM/EPROM READ IDLE 1150 ns SRAM/EPROM READI
NON-PIPELINED PIPELINED SRAM/EPROM PIPELINED PIPELINED NON-PIPELINED

READ PIPELINED

123412312,3 1 I 2 3 4 1 2 3 4 1 I 2 3 4

rJf;(!vCf~!fJfj-rJff (fUClfJ llUf!U lJffl!fJvUI~
\i W \l W \ \ /I \l jJJ \l lfl \l W \

rm.. rJfi '(fjj I n m
,

y XX 'fj , XA 'rtfJ, ¥Xi
READ READ READ WRITE READ READ

XX l'ItfJiJ:J.
I I

h-I--
In In In: II 1\
1/1\

i r +--~ I, t--1\ II IL II 1\ If
i

r\

1\ II h I/~ II 1\ II [\ I t-

1\ II I I I i

IU IU IU IU IU
I

IU I
ILl! IL.-V ILV LV IL II r-

t t
rJATI I t

I
t I

I I ~LOATI NO FLOAT FLOAT FLOAT I , , I I I I

G30107

Figure 6-6. 150-Nanosecond EPROM Timing Diagram

(

s::
m
s::
o
XI
-<
Z
-i
m
XI
"11 »
Q
z
G)

inter MEMORY INTERFACING

tRD: Data delay from Read (MRDC#)

(4 x CLK2 period) - PAL RegOut Max - xcvr. prop Min
- 80386 Data Setup Min
(4 x 31.25) - 12 - 6
- 10

= 97 nanoseconds

tDF: read (MRDC# rise) to Data Float

(4 x CLK2 period) - PAL RegOut Max + PAL RegOut Min
+ xcvr. Enable Min
(4x 31.25) - 12 + 0
+ 3

= 116 nanoseconds

To pipeline the address outputs for sequential EPROM accesses, the address decoder logic
must generate the Next Address (NA#) signal. Note that the initial EPROM cycle follow
ing the idle cycle cannot be address pipelined because there is no previous bus cycle. In
addition, the bus cycle following the last EPROM access is pipelined regardless of which
device it accesses, because the address is output before the bus cycle destination can be
determined.

6.2.7 SRAM Interface

In the SRAM interface, the OE# input of each SRAM device is connected to the MRDC#
signal from the bus controller; the WE# input of each SRAM device is driven by the MWTC#
signal. Because it is possible to write to only some bytes of a doubleword, the MWTC#
signal cannot connect directly to the WE# inputs. Each WE# input must be qualified by the
latched 80386 byte-enable signals (BE3#-BEO#).

Figure 6-7 shows the signal timing for bus cycles to an Intel SRAM, which has a
lOO-nanosecond access time. The timing is essentially the same as for an EPROM.

The bus cycle timings can be calculated from the waveforms in Figure 6-7. In the following
example, the timings for I/O accesses are calculated for CLK2 = 32 MHz and B-series
PALs. All times are in nanoseconds. Check the most recent 80386 Data Sheet to confirm
all parameter values.

tAR: Address stable before Read (MRDC# fall)
tA W: Address stable before Write (MWTC# fall)

(1 x CLK2 period) - PAL RegOut Max - Latch Enable Max
+ PAL RegOut Min
(1 x 31.25) - 12 - 11.5
+ 0

= 7.75 nanoseconds

6-11

IDLE SRAM READ SRAM READ SRAM WRITE SRAM READ NON·lOCAL SRAM READ IDLE
NON·PIPELINED PIPELINED PIPELINED PIPELINED BUS CYCLE PIPELINED

1 2 3 1 2 1 2 I 3 1 2 1 2 1 2

W W W W S N N N 5 N N N 5 N N N N N 5 N N N S N N N S N N N W W

ClK
-.... J' IF ~ U' Lr J' Lr Lr J' J' Lr' J J' Jl J' J

ADS# \l. JI \l IJI ~ W \ \ IT ru-JI \l '.JJ
ADDR XYJ ~'IYJ.ff.: rt!J.. rtf!:j 'f:f:f$ Imm: mn /'JJX 'tJJ. 'xxm :XXXXt

DATA fJV 'IN\jX mm '/JJJ., WM 'tJ 'fA XIfj m "f1tX XXX" _""XlI xxxx
READ READ WRITE REtD READ READ

SEL 'tIJ ~ rfffftlJ.. 1'tftfX rx 'IJ't!X KX I XXXXX: [XXXXX;:X 1'ffttItj f/fltlj 'f1tf1
NONE SELECTED

0>

.!...
I\) ALE I{\ In {\ !'Lv \ I

DEN# IL V-L V-~ / Lv :LI

MRDC# \ in II \ II V

MWTC# \

NAN

I---V V IU U IU
READY# IL J L i} L J ~ I/IL I LJI

I

GENERATED
BY NON·lOCAl

I I DEVICE

Figure 6-7. 100-Nanosecond SRAM Timing Diagram

SRAMWRITE
NON·PIPELINED

1 2 3

W W S N N N

J J' Lr
\l.. JJ

lXYJ, 1m

:xxx
WRITE

:u 1'tttIfv

\

\

U

4

N N

Lr '--
\l. J

X

yt/lJli

If

r I--

IL-l[

G30107

cl

3:
m
3:
o
:c
-<
z
m
:c
" »
Q
z
C)

MEMORY INTERFACING

tRR: Read (MRDC#) pulse width

(3 x CLK2 period) - PAL RegOut Max + PAL RegOut Min
(3 x 31.25) - 12 + 0

= 81.75 nanoseconds

tWW: Write (MWTC#) pulse width

(4 x CLK2 period) - PAL RegOut Max+ PAL RegOut Min
(4 x 31.25) - 12 + 0

= 113 nanoseconds

tRA: Address Hold after Read (MRDC# rise)

(0 x CLK2 period)
+ Latch Enable
(Ox 31.25)

- PAL RegOut Max + PAL RegOut Min

- 12 + 0
+ 5

= -7 nanoseconds (This is acceptable because latched addresses are held for at
least as long as the end of the bus cycle.)

tWA: Address hold after Write (MWTC# rise)

(1 x CLK2 period) - PAL RegOut Max + PAL RegOut Min
+ Latch Enable Min
(1 x 31.25) - 12 + 0
+ 5

= 24.25 nanoseconds

tAD: Data delay from Address

(4 x CLK2 period)
- xcvr. prop. Min
(4 x 31.25)
- 6

= 85.5 nanoseconds

- PAL RegOut Max - Latch Enable Max
- 80386 Data Setup Min
- 12 - 11.5
- 10

tRD: Data delay from Read (MRDC#)

(3 x CLK2 period) - PAL RegOut Max - xcvr. prop Min
- 80386 Data Setup Min
(3x31.25) -12 - 6
- 10

= 65.75 nanoseconds

6-13

MEMORY INTERFACING

tDF: read (MRDC# rise) to Data Float

(2 x CLK2 period) - Pal RegOut Max + PAL RegOut Min
+ xcvr. Enable Min
(2 x 31.25) - 12 + 0
+ 3

= 47.5 nanoseconds

tDW: Data setup before write (MWTC# rise)

(3 x CLK2 period) - PAL RegOut Max - xcvr. Enable Max
+ PAL RegOut Min
(3 x 31.25) - 12 - 11
+ 0

= 70.75 nanoseconds

tWD: Data hold after write (MWTC# rise)

(1 x CLK2 period) - PAL RegOut Max + PAL RegOut Min
+ xcvr. Disable Min
(1 x 31.25) 12 + 0 + 2

= 21.25 nanoseconds

6.2.8 16-Bit Interface

The use of a 16-bit data bus can be advantageous for some systems. Memory implemented
as 16-bits wide rather than 32-bits wide reduces chip count. I/O addresses located at word
boundaries rather than doubleword boundaries can be software compatible with some systems
that use 16-bit microprocessors.

For example, if BS16# is asserted for EPROM accesses, only two byte-wide EPROMs are
needed. Overall performance is reduced because 32-bit data accesses and all code prefetches
from the EPROMs are slower (requiring two bus cycles instead of one). However, this
reduction is acceptable in certain applications. A system that uses EPROMs only for power
on initialization and runs programs entirely from SRAM or DRAM has only a power-on
time increase over the 32-bit EPROM system; its main programs run at the same speed as
the 32-bit system.

The 80386 BS16# input directs the 80386 to perform data transfers on only the lower
16 bits of the data bus. In systems in which 16-bit memories are used, the address decoder
logic must generate the BS16# signal for 16-bit accesses. Since NA# cannot be asserted
during a bus cycle in which BS 16# is asserted (because the current address may be needed
for additional cycles), the decoder logic should also guarantee that the NA# signal is not
generated. When the 80386 samples BS16# active and NA# inactive, it automatically
performs any extra bus cycles necessary to complete a transfer on a 16-bit bus. The 80386
response is determined by the size and alignment of the data to be transferred, as described
in Chapter 3.

6-14

MEMORY INTERFACING

6.3 DYNAMIC RAM (DRAM) INTERFACE

This section presents a dynamic RAM (DRAM) memory subsystem design that is both cost
effective and fast. The design can be adapted for a wide variety of speed and system require
ments to provide high throughput at minimum cost.

6.3.1 Interleaved Memory

DRAMs provide relatively fast access times at a low cost per bit; therefore, large memory
systems can be created at low cost. However, DRAMs have the disadvantage that they require
a brief idle time between accesses to precharge; if this idle time is not provided, the data in
the DRAM can be lost. If back-to-back accesses to the same bank of DRAM chips are
performed, the second access must be delayed by the precharge time. To avoid this delay,
memory should be arranged so that each subsequent memory access is most likely to be
directed to a different bank. In this configuration, wait time between accesses is not required
because while one bank of DRAMs performs the current access, another bank precharges
and will be ready to perform the next access immediately.

Most programs tend to make subsequent accesses to adjacent memory locations during code
fetches, stack operations, and array accesses, for example. If DRAMs are interleaved (i.e.,
arranged in multiple banks so that adjacent addresses are in different banks), the DRAM
precharge time can be avoided for most accesses. With two banks of DRAMs, one for even
32-bit doubleword addresses and one for odd doubleword addresses, all sequential 32-bit
accesses can be completed without waiting for the DRAMs to precharge.

Even if random accesses are made, two DRAM banks allow 50 percent of back-to-back
accesses to be made without waiting for the DRAMs to precharge. The precharge time is
also avoided when the 80386 has no bus accesses to be performed. During these idle bus
cycles, the most recently accessed DRAM bank can precharge so that the next memory
access to either bank can begin immediately.

The DRAM memory system design described here uses two interleaved banks of DRAMs.
The DRAM controller keeps track of the most recently accessed bank in order to guarantee
the precharge time for both banks while allowing memory accesses to begin as soon as
possible.

6.3.2 DRAM Memory Performance

Table 6-2 shows the performance that can be obtained using this DRAM design with a
variety of processor and DRAM speeds. Performance is indicated by the number of wait
states per bus cycle (the number of CLK cycles in addition to the two-CLK minimum time
required to complete the access).

The performance for each processor and DRAM speed combination is given for both the
case of an access to the opposite bank of interleaved memories, in which no precharge time
is required, and the case of an access to the same bank, in which the precharge time is
factored in.

6-15

MEMORY INTERFACING

Table 6-2. DRAM Memory Performance

DRAM
Bus Cycle Wait-States

80386 Access Time
Clock Rate (Nanoseconds) Interleaved

Same Bank Piped:Unpiped

12 MHz 120 o • : 1 • 1 •
12 MHz 200 1 :2 3
16 MHz 80 O' : 1 • 1 '
16 MHz 100 O' : 1 • l'
16 MHz 150 1 :2 3

'Add one additional wait-state to these times for write accesses.

Note: The numbers for the 1 DO-nanosecond DRAM are based on the assumption that no data transceivers
are used.

The number of wait states required for interleaved accesses is based on the assumption that
the address for the next access is pipelined. For cycles in which the address is not pipelined,
one extra wait-state must be added to the number in Table 6-2. This requirement applies to
all cycles that follow an idle bus state because these cycles can never be pipelined.

The number of wait states for same-bank accesses applies only to back-to-back cycles (without
intervening idle bus time) to the same bank of DRAMs. Because the controller must allow
the DRAMs to precharge before starting the access, address pipelining does not speed up
the same-bank cycle; the number of wait states is identical with or without address
pipelining.

The numbers in Table 6-2 are affected by DRAM refresh cycles. All DRAMs require periodic
refreshing of each data cell to maintain the correct voltage levels. An access to a memory
cell, called a refresh cycle, accomplishes the refresh. During one of these periodic refresh
cycles, the DRAM cannot respond to processor requests.

Although the distributed DRAM refresh cycles occur infrequently, they can delay the current
access so that the current access requires a total of up to four wait states (for the cases
marked with an asterisk (*)) or eight wait states (for the other cases).

6.3.3 DRAM Controller

The performances shown in Table 6-2 are derived from two DRAM controller designs that
differ in the number of CLKs they allow for read/refresh access and precharge times. The
two designs are designated by the number of CLKs required for a read cycle. The 2-CLK
design is used for the cases in Table 6-2 that are marked with an asterisk (*); the 3-CLK
design is used for the other cases.

6-16

MEMORY INTERFACING

6.3.3.1 3-ClK DRAM CONTROllER

Figure 6-8 shows a schematic of the 3-CLK DRAM controller. The DRAM array contains
two banks of 32-bit-wide DRAMs. The top and bottom halves of the pictured array repre
sent the two banks, which are each divided vertically along the four bytes for each
doubleword.

The DRAM chips used to create the DRAM banks can be of any length (N), and they can
be either one bit or four bits wide. If Nxl DRAM chips are used, 64 chips are required for
the two banks; if Nx4 DRAM chips are used, only 16 chips are required. The banks in
Figure 6-8 are made from sixteen 64Kx4 DRAMs, but another type of DRAM can be
substituted easily.

Two Row Address Strobe (RAS) signals are generated by the controller, one for each bank.
The top bank is activated by RASO# and contains the DRAM memory locations for which
the 80386 address bit A2 is low. The bottom bank is activated by RASI#, which corresponds
to 80386 addresses for which A2 is high.

Four Column Address Strobe (CAS) signals are used, one for each byte of the 80386 data
bus. These CAS signals are shared by both banks. The 80386 Byte Enable signals
(BE3#-BEO#) map directly to the CAS signals (CAS3#-CASO#). CASO# is mapped directly
from BEO# and enables the least-significant byte (D7-DO). Similarly, CAS3# is mapped
directly from BE3# and enables the most-significant byte (D31-D24).

Each of the 32 data lines of the 80386 are connected to one DRAM chip from each bank.
If Nxl DRAMs are used, the corresponding data line is connected to both the Din and Dout
pins. If Nx4 DRAMs are used, each data line is connected only to the corresponding
I/O pin.

The Write Enable (WE#) signal and the multiplexed address signals are connected to every
DRAM chip in both banks. Nx4 DRAMs also require an Output Enable (OE#) signal for
every DRAM chip in both banks.

A single WE# control signal and four CAS control signals ensure that only those DRAM
bytes selected for a write cycle are enabled. All other data bytes maintain their outputs in
the high-impedance state. A common design error is to use a single CAS# control signal and
four WE# control signals, using the WE# signals to write the DRAM bytes selectively in
write cycles that use fewer than 32 bits. However, although the selected bytes are written
correctly, the un selected bytes are enabled for a read cycle. These bytes output their data to
the unselected bits of the data bus while the data transceivers output data to every bit of the
data bus. When two devices simultaneously output data to the same bus, reliability problems
and even permanent component damage can result. Therefore, a DRAM design should use
CAS signals to enable bytes for a write cycle.

DRAMs require both the row and column addresses to be placed sequentially onto the
multiplexed address bus. A set of 74F258 multiplexers accomplishes this function.

6-17

0'>

.!..
CO

62384
CLOCK

GENERATOR

"'0 II II gc~~" BYTE ENABLES, vi

~
l----+-----'~I CSi

~

A2

80366
MICROPROCESSOR

I I L8 REFACKO

REFACKI RFRQ

REFRESH
INTERVAL
COUNTER

PAL
~20X10A

CLK

I
A18:11

COLUMN ADDRESS

DRA.M
STATE

PAL
16RSB

ROWSEll _I
MUXOE

CLK

W/R

8E3:0

DRAM
CONTROL

PAL
l6R8B

DISABLE

CAS3

CASl

CASO

DENt-- ~ DT/A.

~

DT/R DEN "--

74F245
TRANSCEIVERS

MULTIPLEXED ADDRESS

r r

V<--
V... "II ,

Figure 6-8. 3-CLK DRAM Controller Schematic

J-

-LCAS
AAS

WE
5E

64Kx4
DRAMs

RAS
WE
5E

64Kx4
DRAMs

CAS CAS

TWO TWO
64Kx4 64K,,4 64Kx4
DRAMs DRAMs DRAMs

TWO TWO
64Kx4 64Kx 4 64K)(4
DRAMs DRAMs DRAMs

G30107

(

s::
m
s::
o
:::0
-<
Z
-i
m
:::0
"T1
l>
(')

Z
C)

MEMORY INTERFACING

Four 74F245 octal transceivers buffer the DRAM from the data bus. Most DRAMs used in
the 3-CLK design require these transceivers to meet the read-data float time. When a DRAM
read cycle is followed immediately by an 80386 write cycle, the 80386 drives its data bus
one CLK2 period after the read cycle completes. If the data transceivers are omitted, the
RAS inactive delay plus the DRAM output buffer turn-off time (t-OFF) must be less than
a CLK2 period to avoid data bus contention.

PALs are used to monitor the 80386 status signals and generate the appropriate control
signals for the DRAM, multiplexer, and transceivers. PAL codes and pin descriptions for
the 3-CLK design are listed in Appendix C of this manual.

The DRAM State PAL performs the following functions:

• Monitors the 80386 DRAM chip-select logic

• Receives DRAM refresh requests and responds with the necessary DRAM cycles

• Keeps track of DRAM banks requiring precharge time

A DRAM read or write access is requested when all the chip-select signals of the DRAM
State PAL are sampled active simultaneously. These signals become active when all of the
following conditions exist at once:

• M/IO#, W /R#, and D/C# outputs of the 80386 indicate either a memory read, memory
write, or code fetch.

• The bus is idle or the current bus cycle is ending (READY# active).

• ADS# is active.

• A31 is low (in this design, the lower half (two gigabytes) of 80386 memory space is
mapped to the DRAM controller).

If the DRAM controller is not already performing a cycle, it begins the access immediately.
However, if the DRAM controller is performing a refresh cycle, or if it is waiting for the
DRAM bank to precharge, the request is latched and performed when the controller is not
busy.

The DRAM Control PAL generates the majority of the DRAM control signals. The Refresh
Interval Counter PAL is a timer that generates refresh requests at the necessary intervals.
The Refresh Address Counter PAL maintains the next refresh address. Both the Refresh
Interval Counter PAL and the Refresh Address Counter PAL are simple enough to be
replaced by TTL counter chips; however, the use of PALs reduces the total chip count. If
there is a spare timer or counter in the system, it can be used to replace one or both of these
PALs.

Figure 6-9 shows the timing of DRAM control signals for the 3-CLK design for the follow
ing five sequential DRAM cycles:

1. Read cycle

2. Write cycle to the opposite bank (no precharge)

6-19

IDLE DRAM READ BANK 0 DRAM READ BANK 1 DRAM WRITE BANK 1 DRAM REFRESH
NON·PIPElINED PIPELINED PIPELINED (ALWAYS BOTH BANKS)

1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 4

ClK2

ClK

M ~ N\ (v\ fv\ N\ ~ N\ N\ N\ N\ N\ (v\ fv\. M M. tv\.
w-W- ILF V V ILF V ILF ILF W-V ILF V V tv-ILF jLr

ADS# "\XX). mJ XX IJJ.l y XY:1 Y\

SELECT

ROWSEL r hi I \

ADDR y y x X X
ROW COLUMN ROW COLUMN ROW COLUMN REFRESH

RASO#

RAS1#

Ol CASx# I
N

Ir-l\ \
LOW ONLY FOR ENABLED BYTES

a we \

WE# I

DATA

DEN#
REAir--

READ WRITE
I 1\

DT/R#

RDY I.

NA# I

RFRQ

MUXOE#

Figure 6-9. 3-CLK DRAM Controller Cycles

DRAM READ BANK 1
PIPELINED

5 1 2 3

(v\ tv\. tv\. Mr
V (Lr V V~

'-I-
y

ROW COlUM N

IL-l-

I'

1.<7
I'"

1\

II

'"

G30107

cl

3:
m
3:
o
::0
-<
Z
-I
m
::0
"T1
>
(')

z
G')

MEMORY INTERFACING

3. Read cycle to that same bank (requires precharge)

4. Refresh cycle (always requires precharge)

5. Read cycle (cycle after refresh always requires precharge)

During a normal DRAM access, only the RAS signal that corresponds to the selected bank
is activated. During a refresh cycle, both RAS signals are activated. During write cycles,
only the CAS signals corresponding to the enabled bytes are activated. During read cycles,
all CAS signals are enabled.

6.3.3.2 2-CLK DRAM CONTROLLER

Figure 6-10 is a schematic of the 2-CLK design, which provides zero wait-state operation
for pipelined interleaved accesses. The design differs from the 3-CLK controller in several
ways.

Read and refresh cycles are completed in only two CLKs; write cycles require three CLKs
to ensure that the 80386 write data is valid.

In general, the PALs that generate RAS and CAS signals can be either registered or combi
natorial on the RAS and/or CAS outputs. If external registers are used, these PAL outputs
must be combinatorial so that the output has time to set up the external register on the same
CLK2 cycle. If the PAL outputs are used without external registers, the PAL outputs must
be registered internally. When the CAS signals are registered internally, the DRAM Control
PAL can sample and save the state of the Byte Enable (BE3#-BEO#) lines internally. When
the CAS signals are registered externally, the BE3#-BEO# lines must be latched externally
so that the DRAM Control PAL inputs maintain the valid byte enables.

For the 2-CLK design, the RAS and CAS signals are registered externally. The delay (from
CLK2) for these signals is reduced, and more time is available for the DRAMs to respond.
If more drive is required on these signals, multiple TTL registers can be used, each driving
a small group of RAS or CAS lines. For example, in a design using Nxl DRAMs, RASO#
must drive 32 DRAMs. To reduce the worst-case skew (caused by the heavy loading), RASO#
can be output on four register outputs, each of which drives eight DRAMs.

In the 3-CLK design, the column address does not need to be latched because the Next
Address (NA#) signal is not activated until after the CAS signals go active, so the 80386
address remains valid for the memory access. Because a 2-CLK design has a shorter cycle
time, NA# must be activated before the CAS signals go active to output the next address
one CLK early. This early address necessitates a latch for the column addresses. In many
cases, with a generalized LE control, this latch can be shared with the I/O subsystem, which
usually must latch the address.

In the 2-CLK design, NA# is generated from the DRAM State PAL outputs and is there
fore active in both the CLK2 cycle in which the 80386 samples NA# and the next CLK2
cycle. However, the 80386 does not sample NA# active twice. Once the 80386 outputs the
next address, the address must be valid for at least two CLKs before NA# is sampled again.

6-21

'" I
I\)
I\)

82384
CLOCK

GENERATOR

1
ClK - OTHERREADYlO~ FlESET elK:;:

l cjz-
CLK2 ROY

ClK WC

RESET
Wlfl

CAS3

~
CAS:!

NA _ CASt

.~
8E3:0 _

CAsa
DRAM

'-- CLK2 COfmIOL
PAL

ClK 16Ras WE
READY .~

BUSIDLE »--+ cso ROWSEL 1 r---- ROWSEL D'EH f--
ADS CS1 r---- DISABLE OTiFj MUXOE
WIR »---+ CS3

DTIR

OIC
.... DRAM STATE

PAL

- l 16RBB

MIlO ADOR 74F138 CS2 - DECODER J
A2 A2 RAsa

.... RfRQ RASl I

J I ~:
D

80388
MICROPROCESSOR If REfACKO ~

CLOCK
0

L;t 0.
FlEFACKI RfRQ

REFRESH
REFRESH ADDRESS
INTERVAL COUNTER
COUNTER PAL

PAL

I
l6RS

'--- 20Xl0A
A7:0

ClK '-

~} A20:12 ROW ADDRESS
OE m "h

! V MULTIPLEXED ADDRESS

V +
74F258

~ MUXES

-" DE LE

A11:3 COLUMN ADDRESS

L 74f373 I LATCHES

SE3:G BYTE·ENABLES
OTIR DEH

V I 74F245
TRANSCEIVERS

-" (- "-
D31:[1 "- 80386 DATA BUS

/ DRAM DATA BUS

Figure 6-10. 2-CLK DRAM Controller Schematic

D D D

74A5374 OCTAL REGISTER

0 0 0

CAS CAS CAS
ill
WE

EIGHT EIGHT EIGHT
256K xl 255K Xl 256K x 1
DRAMs DRAMs DRAMs

A8:0

DIN DOUl

iiAs
WE

EIGHT EIGHT EIGHT
2S6K xl 256Kx1 256K,,1
Ot1AMs DRAMs DRAMs

A8:0

DINOOUl

D

0

CAS

EIGHT
256K xl
DRAMs

EIGHT
256K x 1
DRAMs

G30107

cl

s:
m s:
o
~
-<
Z
-I
m
~
'TI
l>
()

Z
G')

MEMORY INTERFACING

In the 2-CLK design, the four data transceivers are optional because fast DRAMs with
short read-data-float times are used. The DRAM data pins and can be connected directly to
the 80386 data bus. The strong drive capability of the 80386 data bus can handle the load
of one DRAM from each bank plus a transceiver load for the other peripherals.

PAL codes and pin descriptions for the 2-CLK design are listed in Appendix C of this manual.
Figure 6-11 shows the timing of DRAM control signals for the 2-CLK design for the follow
ing five sequential DRAM cycles:

1. Read cycle

2. Write cycle to the opposite bank (no precharge)

3. Read cycle to that same bank (requires precharge)

4. Refresh cycle (always requires precharge)

5. Read cycle (cycle after refresh always requires precharge)

6.3.4 DRAM Design Variations

Some of the possible variations of the 2-CLK and 3-CLK designs are as follows:

• Both the 3-CLK and 2-CLK designs can use any length DRAM in Nxl and Nx4 widths.

• Both 3-CLK or 2-CLK designs can use the internal PAL registers or external TTL regis
ters on the RAS and/or CAS signals. A conservative design usingNxl DRAMs might
externally register each RAS (which drives 32 DRAMs) and internally register each CAS
(which drives only 16 DRAMs).

Because internal registers have a greater maximum delay time and potentially less drive, the
choice between registered PALs or external registers affects all of the DRAM timing
parameters based on RAS and CAS. Some of the DRAM parameters are also affected by
the minimum delay time of the internally registered PALs. Because PALs do not guarantee
a minimum delay time, external TTL registers, which do guarantee a minimum delay time,
can help meet these timing parameters, as well as provide greater drive capability.

• Data transceivers are optional for both designs. If a data transceiver is used, the DRAM
read access must meet the 80386 read-data setup time. If no data transceiver is used, the
DRAM read-data-float time must not interfere with the next 80386 cycle, particularly if
it is a write cycle, and the 80386 data pin loading must not be exceeded.

• By including the column address latch and other circuitry, the DRAM controller can be
adapted to run either 3-CLK or 2-CLK cycles depending on the speed (and cost) of
DRAMs installed. To switch between the 3-CLK and 2-CLK controllers, the user should
plug in a different set of DRAMs, a different DRAM State PAL, and a different DRAM
Control PAL, and jumper the NA# logic.

• The choice of chip-select logic in '1oth of the designs is arbitrary. Other DRAM memory
mapping schemes can be implemented by modifying the address decoding to the DRAM
State PAL chip-selects.

6-23

I I
DRAM READBANKD DRAM READ BANK 1 DRAM WRITE BANK D DRAM READ BANK D DRAM REFRESH

IDLE NON·PIPElINED PIPELINED PIPELINED PIPELINED (ALWAYS BOTH BANKS)

1 2 3 1 2 1 2 3 1 2 3 1 2 3

CLK2 I\.!\.i rv'J ~ 'V\J IV\J ~ rvv \IV I\A 'V\J IVU V\..i IV\.I iVV \IV
CLK \...J ~ W \...J Lr w-~ '----F w-Lr l.r '----F ~ l.r \..F

ADS. un I/.XV ~ n:tI '1m 1m '<X':O.. I:IJl \W. f.}.}J
,

SELECT

ROWSEL

'--' ~ W-h , '- ---1 L ---1

ADDR x X X X X X X xxx: IXXXX
RASD.

ROW COLUMN ROW COLUMN ROW COLUMN

~
COLUMN v---REFRESH

RAS1.
m 1\
I

!'oJ CASx# .j>.

WEI

r--L- IL-- \ '---
LOW ONLY FIR EN,ABLED BYTES

1
DATA om VJ.J" IA 1 ~AJ

DEN. ~V- REAr-- WRITE READ

~I' '---

DT/R# I '<lOO)00(},. u:

RDY \... \ I \

NA# n··\ n··· '-
.,-- ('iC. .

~ '---

RFRQ

MUXOE# J

I

Figure 6-11. 2-CLK DRAM Controller Cycles

DRAM READ BANK 1
PIPELINED

rvv V\J rvv
~ \..F ~\

\}\j

L -..I
X m

ROW COLUMN

1/

Ir-- I

,---I

CI.Y.Y.Y.
READ,

\...--

r--

'-~

\

G30107

l

3!:
m
3!:
o
:D
-<
Z
-I
m
:D
"TI »
o
Z
C)

MEMORY INTERFACING

• For a single DRAM bank rather than two, the user should tie the DRAM State PAL A2
input low, leave RASl# unconnected (only RASO# is used), and feed the 80386 address
bit A2 into the address multiplexer. The DRAM State PAL equations can be modified
to change the RASI# output to duplicate the RASO# output for more drive capability,
and the A2 input can be used as another chip-select input. When only one bank is used,
no accesses can be interleaved, and back-to-back accesses run with one wait state with
the 2-CLK design and three wait states with the 3-CLK design (independent of address
pipelining).

6.3.5 Refresh Cycles

All DRAMs require periodic refreshing of their data. For most DRAMs, periodic activation
of each of the row address signals internally refreshes the data in every column of the row.
Almost all DRAMs allow a RAS-only refresh cycle, the timing of which is the same as a
read cycle, except that only the RAS signals are activated (no CAS signals), and all of the
data pins are in the high impedance state.

Both the 3-CLK and 2-CLK designs use RAS-only refresh. The address multiplexer is placed
in the high impedance state, and the Refresh Address Counter PAL is enabled to output the
address of the next row to be refreshed. Then the DRAM State PAL activates both RASO#
and RASl# to refresh the selected row for both banks at once. Mter the refresh cycle is
complete, the Refresh Address Counter PAL increments so that the next refresh cycle
refreshes the next sequential row.

The frequency of refreshing and the number of rows to be refreshed depend on the type of
DRAM. For most larger DRAMs (64KxN and larger), only the lower eight multiplexed
address bits (A 7-AO, 256 rows) must be supplied for the refresh cycle; the upper address
bits are ignored. The Refresh Address Counter PAL must output only eight bits and only
the lower eight bits of the address multiplexer must be placed in the high impedance state.
The OE# ·signals of the higher order address multiplexers can be tied low. Larger DRAMs
generally require refresh every 4 milliseconds. The following sections describe refresh specif
ically for larger DRAMs, although the concepts apply to smaller DRAMs.

6.3.5.1 DISTRIBUTED REFRESH

In distributed refresh, the 256 refresh cycles are distributed equally within the 4-millisecond
interval. Every 15.625 microseconds (4 milliseconds/256), a single row refresh is performed.
After 4 milliseconds all 256 rows have been refreshed, and the pattern repeats. Both the
3-CLK and 2-CLK designs use distributed refresh.

The Refresh Interval Counter PAL is programmed to request a single distributed refresh
cycle at intervals slightly under 15.625 microseconds. The counter requests a new refresh
cycle after a preset number of CLK cycles. This number is dependent on the CLK frequency
and can be calculated as follows for a 16-MHz CLK signal:

16 MHz x 15.625 microseconds - 4/256 = 249.98
= 249 CLK cycles

6-25

inter MEMORY INTERFACING

The term 4/256 is subtracted to allow for the time it takes the DRAM State PAL to respond
to the request. Refresh requests are always given highest priority; however, if a DRAM
access is already in progress, it must finish before the refresh cycle can start. The 3-CLK
controller responds within 1-5 CLKs of the refresh request; the 2-CLK controller responds
within 1-4 CLKs. The maximum latency (the difference between the longest and shortest
responses) for either design is therefore 4 CLKs. This time is spread out among all 256
accesses, so 4/256 is subtracted in the above equations to account for the latency period.
The counter immediately resets itself after it reaches the maximum count, regardless of this
latency period.

Distributed refresh has two advantages over other types of refresh:

• Refresh cycles are spread out, guaranteeing that the 80386 access is never delayed very
long for refresh cycles. Most programs execute in approximately the same time, regard
less of when they are run with respect to DRAM refreshes.

• Distributed refresh hardware is typically simpler than hardware required for other types
of refresh.

6.3.5.2 BURST REFRESH

Burst refreshes perform all 256 row refreshes consecutively once every 4 milliseconds rather
than distributing them equally over the time period. Once a refresh is performed, the next
4-millisecond period is guaranteed free of refresh cycles. Time-critical sections of code can
be executed during this time.

The 3-CLK and 2-CLK designs can be modified for burst refreshes by lengthening the
maximum count of the Refresh Interval Counter to cover a 4"millisecond interval and holding
the Refresh Request (RFRQ) signal active for 256 refresh cycles instead of a single refresh
cycle. The completion of 256 refresh cycles can be determined by clearing the Refresh Address
Counter PAL before the first refresh cycle and monitoring the outputs until they reach the
zero address again. The Row Select (ROWSEL) signal can be. used to clock the Refresh
Address Counter PAL. The longer interval counter and extra logic requires another PAL
device.

6.3.5.3 DMA REFRESH

With DMA refresh, the highest priority DMA channel is dedicated to perform refresh cycles
through DMA rather than through extra logic in the DRAM controller. A periodic timer is
used to initiate a DMA request; the DMA performs memory accesses to different DRAM
rows to accomplish refreshes. Either distributed or burst refresh techniques can be used.

DMA refresh can be used for both 3-CLK and 2-CLK designs. The Refresh Interval Counter
PAL or another timer periodically initiates a DMA request, and the DMA Controller supplies
the refresh address. To activate both banks, the DMA Acknowledge(DACK) signal should
be connected to the RFRQ input of the DRAM State PAL and activated one CLK2 cycle
before chip selects are sampled by the DRAM State PAL. In this way, the DMA controller
does not need to activate chip selects. If it does activate the chip selects, the DRAM State
PAL must be modified to ignore them. This modification prevents the PAL from attempting
to run a normal access cycle after the refresh cycle is complete.

6-26

MEMORY INTERFACING

In addition, the DRAM Control PAL must be modified so that the Ready (RDY) signal is
generated on refresh accesses. Finally, the OE# input of the address multiplexer should be
tied low so that it never enters the high-impedance state, and the row address should include
the least-significant address bits (AI, AO).

For efficient refreshes, a DMA controller that can perform 32-bit .accesses is required.
Otherwise, consecutive accesses are made to the same row, requiring more refresh cycles
than necessary for a complete DRAM refresh.

Unlike the refresh logic for the 3-CLK and 2-CLK designs, DMA accesses often require a
few clock cycles to acquire and release the 80386 bus. They also require a dedicated 32-bit
DMA channel. DMA refresh requires only one less PAL device than other refresh methods.
In most cases, therefore, it is advisable to use dedicated hardware for refresh rather than
DMA.

6.3.6 Initialization

Once the system is initialized, the integrity of the DRAM data and states is maintained,
even during an 80386 halt or shutdown state or hardware reset, because all DRAM system
functions are performed in hardware.

The controller PALs contain some state and counter information that is not implicitly reset
during a power-up or hardware reset. The state machines are designed so that they enter the
idle state within 18 CLK2 cycles regardless of whether they powerup in a valid state. The
counters can start in any state. Thus, even though the state machines and counters can
powerup into any state, they are ready for operation before the 80386 begins its first bus
access.

Some DRAMs require a number of warm-up cycles before they can operate. Either method
listed below can provide these cycles:

• Performing several dummy DRAM cycles as part of the 80386 initialization process.
Setting up the 80386 registers and performing a REP LODS instruction is one way to
perform these dummy cycles.

• Activating the RFRQ signal, using external logic, for a preset amount of time, causing
the DRAM control hardware to run several refresh cycles.

6.3.7 Timing Analysis

The DRAM design (2-CLK or 3-CLK) for six combinations of DRAM speed and CLK
frequency is listed in the Table 6-3. The table also indicates for each DRAM type whether
data transceivers and/or external registers on the PAL outputs must be used with the design.

Appendix C of this manual contains a timing analysis of all 2-CLK and 3-CLK circuit
parameters for all six DRAM types.

6-27

MEMORY INTERFACING

Table 6-3. Designs for Six DRAM Types

DRAM 386 CLK PAL External Data
Access Time Rate Circuit Registers xcvrs

80 nS 16 MHz 2-CLK optional optional
100 nS 16 MHz 2-CLK optional no
120 nS 12 MHz 2-CLK optional optional
150 nS 16 MHz 3-CLK optional yes
150 nS 16 MHz 3-CLK yes yes
200 nS 12 MHz 3-CLK optional yes

6-28

Cache Subsystems 7

CHAPTER 7
CACHE SUBSYSTEMS

Operating at 16 MHz, the 80386 can perform a complete bus cycle in only 125 nanoseconds,
for a maximum bandwidth of 32 megabytes per second. To sustain this maximum speed, the
80386 must be matched with a high-performance memory system. The system must be fast
enough to complete bus cycles with no wait states and large enough to allow the 80386 to
execute large application programs.

Traditional memory systems have been implemented with dynamic RAMs (DRAMs), which
provide a large amount of memory for a small amount of board space and money. However,
no common low-cost DRAMs are available that can complete every bus cycle in
125 nanoseconds. Faster static RAMs (SRAMs) can meet the bus timing requirement, but
they offer a relatively small amount of memory at a higher cost. Large SRAM systems can
be prohibitively expensive.

A cache memory system contains a small amount of fast memory (SRAM) and a large
amount of slow memory (DRAM). The system is configured to simulate a large amount of
fast memory. Cache memory therefore provides the performance of SRAMs at a cost
approaching that of DRAMs. A cache memory system (see Figure7-l) consists of the
following sections:

• Cache-fast SRAMs between the processor and the (slower) main memory

• Main memory-DRAMs

• Cache controller-logic to implement the cache

r--------------------,
DRAM

SRAM

80386 .1 CACHE L MAIN

I 1 MEMORY

1
CACHE

CONTROLLER

--------------------~
CACHE MEMORY SYSTEM

G30107

Figure 7-1. Cache Memory System

7-1

CACHE SUBSYSTEMS

7.1 INTRODUCTION TO CACHES

In a cache memory system, all the data is stored in main memory and some data is dupli
cated in the cache. When the processor accesses memory, it checks the cache first. If the
desired data is in the cache, the processor can access it quickly, because the cache is a fast
memory. If the data is not in the cache, it must be fetched from the main memory.

A cache reduces average memory access time if it is organized so that the code and data
that the processor needs most often is in the cache. Programs execute most quickly when
most operations are transfers to and from the faster cache memory. If the requested data is
found in the cache, the memory access is called a cache hit; if not, it is called a cache miss.
The hit rate is the percentage of accesses that are hits; it is affected by the size and physical
organization of the cache, the cache algorithm, and the program being run. The success of
a cache system depends on its ability to maintain the data in the cache in a way that increases
the hit rate. The various cache organizations presented in Section 7.2 reflect different strat
egies for achieving this goal.

7.1. 1 Program Locality

Predicting the location of the next memory access would be impossible if programs accessed
memory completely at random. However, programs usually access memory in the neighbor
hood of locations accessed recently. This principle is known as program locality or locality
of reference.

Program locality makes cache systems possible. The same concept, on a larger scale, allows
demand paging systems to work well. In typical programs, code execution usually proceeds
sequentially or in small loops so that the next few accesses are nearby. Data variables are
often accessed several times in succession. Stacks grow and shrink from one end so that the
next few accesses are all near the top of the stack. Character strings and vectors are often
scanned sequentially.

The principle of program locality pertains to how programs tend to behave, but it is not a
law that all programs always obey. Jumps in code sequences and context switching between
programs are examples of behavior that may not uphold program locality.

7.1.2 Block Fetch

The block fetch uses program locality to increase the hit rate of a cache. The cache control
ler partitions the main memory into blocks. Typical block sizes (also known as line size) are
2, 4, 8, or 16 bytes. A 32-bit processor usually uses two or four words per block. When a
needed word is not in the cache, the cache controller moves not only the needed word from
the main memory into the cache, but also the entire block that contains the needed word.

A block fetch can retrieve the data located before the requested byte (lookbehind), follows
the requested byte (lookahead), or both. Generally, blocks are aligned (2-byte blocks on
doubleword boundaries, 4-word blocks on doubleword boundaries). An access to any byte in
the block copies the whole block into the cache. When memory locations are accessed in

7-2

CACHE SUBSYSTEMS

ascending order (code accesses, for example), an access to the first byte of a block in main
memory results in a lookahead block fetch. When memory locations are accessed in descend
ing order, the block fetch is look-behind.

Block size is one of the most important parameters in the design of a cache memory system.
If the block size is too small, the lookahead and look-behind are reduced, and therefore the
hit rate is reduced, particularly for programs that do not contain many loops. However, too
large a block size has the following disadvantages:

• Larger blocks reduce the number of blocks that fit into a cache. Because each block fetch
overwrites older cache contents, a small number of blocks results in data being overwrit
ten shortly after it is fetched.

• As a block becomes larger, each additional word is further from the requested word,
therefore less likely to be needed by the processor (according to program locality).

• Large blocks tend to require a wider bus between the cache and the main memory, as
well as more static and dynamic memory, resulting in increased cost.

As with all cache parameters, the block size must be determined by weighing performance
(as estimated from simulation) against cost.

7.2 CACHE ORGANIZATIONS

7.2.1 Fully Associative Cache

Most programs make reference to code segments, subroutines, stacks, lists, and buffers located
in different parts of the address space. An effective cache must therefore hold several
noncontiguous blocks of data.

Ideally, a 128-block cache would hold the 128 blocks most likely to be used by the processor
regardless of the distance between these words in main memory. In such a cache, there
would be no single relationship between all the addresses of these 128 blocks, so the cache
would have to store the entire address of each block as well as the block itself. When the
processor requested data from memory, the cache controller would compare the address of
the requested data with each of the 128 addresses in the cache. If a match were found, the
data for that address would be sent to the processor. This type of cache organization, depicted
in Figure 7-2, is called fully associative.

A fully associative cache provides the maximum flexibility in determining which blocks are
stored in the cache at any time. In the previous example, up to 128 unrelated blocks could
be stored in the cache. Unfortunately, a 128-address compare is usually unacceptably slow,
expensive, or both. One of the basic issues of cache organization is how to minimize the
restrictions on which words may be stored in the cache while limiting the number of required
address comparisons.

7-3

CACHE SUBSYSTEMS

31 24 23 2 1 0

PRJ~:~;OR I CACHE/DRAM I TAG I +-BYTE
ADDRESS. SELECT • ENABLE

TAG ~
22 BITS

FFFFFC

000000

FFFFF4

16339C

FFFFF8

'------2B16 BIT SRAM

1_16 MEGABYTE DRAM ~ 24 BITS-I

DATA

24682468
DATA ~ J 11223344 4 BYTES ,..... 33333333

24682468

12345678 I--
33333333

,..... 87654321

87654321

11223344

4096 BIT SRAM

12345678

i-32BITS-t

16 MEGABYTE DRAM

Figure 7·2. Fully Associative Cache Organization

7.2.2 Direct Mapped Cache

FFFFFC

FFFFFB

FFFFF4

1633AO

16339C

16339B

OOOOOC

OOOOOB

000004

000000

G30107

In a direct mapped cache, unlike a fully associative cache, only one address comparison is
needed to determine whether requested data is in the cache.

The many address comparisons of the fully associative cache are necessary because any
block from the main memory can be placed in any location of the cache. Thus, every block
of the cache must be checked for the requested address. The direct mapped cache reduces
the number of comparisons needed by allowing each block from the main memory only one
possible location in the cache.

Each direct mapped cache address has two parts. The first part, called the cache index field,
contains enough bits to specify a block location within the cache. The second part, called
the tag field, contains enough bits to distinguish a block from other blocks that may be
stored at a particular cache location.

7-4

CACHE SUBSYSTEMS

For example, consider a 64-kilobyte direct mapped cache that contains 16K 32-bit locations
and caches 16 megabytes of main memory. The cache index field must include 14 bits to
select one of the 16K blocks in the cache, plus 2 bits (or 4 byte Enables) to select a byte
from the 4-byte block. The tag field must be 8 bits wide to identify one of the 256 blocks
that can occupy the selected cache location. The remaining 8 bits of the 32-bit 80386 address
are decoded to select the cache subsystem from among other memories in the memory space.
The direct-mapped cache organization is shown in Figure 7-3.

32.BIT 131 24123

PROCESSOR I CACHE/DRAM I TAG
ADDRESS SELECT INDEX

j.--64K CACHE= 16 BITS--+-I

1--16 MEGABYTE DRAM = 24 BITS~

DATA INDEX

FFFC
11223344 FFF8

0010
INDEX TAG DATA 0000

FFFC 01 12345678
0008

~ 0004 FFF8 FF 11223344
0000

0010
oooc
0008 00 87654321 P- ~ 0004 01 11235813 12345678 FFFC

0000 00 13579246 r-- FFF8

(14 BITS) f.8 BITS.j 1-32BITS.j
0010
oooe
0008

64K SRAM CACHE - 11235813 0004
0000

FFFC
FFF8

0010
OOOC

87654321 0008
0004

13579246 0000

1+32BITS+I

16 MEGABYTE DRAM

Figure 7-3. Direct Mapped Cache Organization

7-5

TAG

1
FF

I "
00

030107

CACHE SUBSYSTEMS

In a system such as shown in Figure 7-3, a request for the data at the address 12FFE9H in
the main memory is handled as follows:

1. The cache controller determines the cache location from the 14 most significant bits of
the index field (FFE8H).

2. The controller compares the tag field (l2H) with the tag stored at location FFE8H in
the cache.

3. If the tag matches, the processor reads the least significant byte from the data in the
cache.

4. If the tag does not match, the controller fetches the 4-byte block at address 12FFE8H in
the main memory and loads it into location FFE8H of the cache, replacing the current
block. The controller must also change the tag stored at location FFE8H to 12H. The
processor then reads the least significant byte from the new block.

Any address whose index field is FFE8H can be loaded into the cache only at location
FFE8H; therefore, the cache controller makes only one comparison to determine if the
requested word is in the cache. Note that the address comparison requires only the tag field
of the address. The index field need not be compared because anything stored in cache
location FFE8H has an index field of FFE8H. The direct mapped cache uses direct address
ing to eliminate all but one comparison operation.

The direct mapped cache, however, is not without drawbacks. If the processor in the example
above makes frequent requests for locations 12FFE8H and 44FFE8H, the controller must
access the main memory frequently, because only one of these locations can be in the cache
at a time. Fortunately, this sort of program behavior is infrequent enough that the direct
mapped cache, although offering poorer performance than a fully associative cache, still
provides an acceptable performance at a much lower cost.

7.2.3 Set Associative Cache

The set associative cache compromises between the extremes of fully associative and direct
mapped caches. This type of cache has several sets (or groups) of direct mapped blocks that
operate as several direct mapped caches in parallel. For each cache index, there are several
block locations allowed, one in each set. A block of data arriving from the main memory
can go into a particular block location of any set. Figure 7-4 shows the organization for a
2-way set associative cache.

With the same amount of memory as the direct mapped cache of the previous example, the
set associative cache contains half as many locations, but allows two blocks for each location.
The index field is thus reduced to 15 bits, and the extra bit becomes part of the tag field.

Because the set associative cache has several places for blocks with the same cache index in
their addresses, the excessive main memory traffic that is a drawback of a direct mapped
cache is reduced and the hit rate increased. A set associative cache, therefore, performs more
efficiently than a direct mapped cache.

7-6

TAG OFF

001

~9 BITS-j

32KS

DATA

24682468 -

77777777
f--32 BITS+!

RAM

CACHE SUBSYSTEMS

32·BIT
PROCESSOR

ADDRESS

31 24

CACHE/DRAM
SELECT

23

TAG

15 14 0

INDEX

1--2 x 32K SRAM ~15 BITS--.J

1---16 MEGABYTE DRAM ~ 24 BITS----I

DATA INDEX

24682468 7FFC
11223344 7FF8

0010
INDEX TAG DATA OOOC

0008
0004
0000

7FFC 001 12345678
7FF8 1FF 11223344I

0010 -
-

OOOC -

7FFC
7FF8

0008 000 87654321
~ -0004 001 11235813 12345678

0000 000 13579246 i"""

0010
OOOC f--9 BITS-j ~32BITS--I

32KSRAM - 0008
11235813 0004
77777777 0000

64K CACHE 7FFC
7FF8

0010
OOOC

87654321 0008
0004

13579246 0000

j.-32 BITS---/

16 MEGABYTE DRAM

Figure 7-4. Two-Way Set Associative Cache Organization

TAG

I 1F

I 00

I 00

G30107

The set associative cache, however, is more complex than the direct mapped cache. In the
2-way set associative cache, there are two locations in the cache in which each block can be
stored; therefore, the controller must make two comparisons to determine in which block, if
any, the requested data is located. A set associative cache also requires a wider tag field,
and thus a larger SRAM to store the tags, than a direct mapped cache with the same amount
of cache memory and main memory. In addition, when information is placed into the cache,
a decision must be made as to which block should receive the information.

7-7

CACHE SUBSYSTEMS

The controller must also decide which block of the cache to overwrite when a block fetch is
executed. There are several locations, rather than just one, in which the data from the main
memory could be written. Three common approaches for choosing the block to overwrite are
as follows:

• Overwriting the least recently accessed block. This approach requires the controller to
maintain least-recently used (LRU) bits that indicate the block to overwrite. These bits
must be updated by the cache controller on each cache transaction.

• Overwriting the blocks in sequential order.

• Overwriting a block chosen at random.

The performance of each strategy depends upon program behavior. Any of the three strate
gies is adequate for most set associative cache designs.

7.3 CACHE UPDATING

In a cache system, two copies of the same data can exist at once, one in the cache and one
in the main memory. If one copy is altered and the other is not, two different sets of data
become associated with the same address. A cache must contain an updating system to prevent
old data values (called stale data) from being used. Otherwise, the situation shown in
Figure 7-5 could occur. The following sections describe the write-through and write-back
methods of updating the main memory during a write operation to the cache.

7.3. 1 Write-Through System

In a write-through system, the controller copies write data to the main memory immediately
after it is written to the cache. The result is that the main memory always contains valid
data. Any block in the cache can be overwritten immediately without data loss.

The write-through approach is simple, but performance is decreased due to the time required
to write the data to main memory and increased bus traffic (which is significant in multi
processing systems).

7.3.2 Buffered Write-Through System

Buffered write-through is a variation of the write-through technique. In a buffered write
through system, write accesses to the main memory are buffered, so that the processor can
begin a new cycle before the write cycle to the main memory is completed. If a write access
is followed by a read access that is a cache hit, the read access can be performed while the
main memory is being updated. The decrease in performance of the write-through system is
thus avoided. However, because usually only a single write access can be buffered, two
consecutive writes to the main memory will require the processor to wait. A write followed
by a read miss will also require the processor to wait.

7-8

CACHE SUBSYSTEMS

1. PROCESSOR READ DATA; DATA NOT
FOUND IN CACHE. DATA IS COPIED
INTO CACHE FROM MEMORY.

2. PROCESSOR WRITES A NEW VALUE
FOR THE DATA JUST READ.

3. LATER, ANOTHER READ CAUSES
NEW DATA TO BE OVERWRITTEN.
NEW DATA IS LOST.

4. PROCESSOR READS THE SAME
LOCATION AS IN STEP 1. STALE
DATA IS COPIED INTO CACHE.
PROCESSOR GETS WRONG DATA.

80386

[Jl·~ I

Figure 7-5. Stale Data Problem

7.3.3 Write-Back System

G30107

In a write-back system, the tag field of each block in the cache includes a bit called the
altered bit. This bit is set if the block has been written with new data and therefore contains
data that is more recent than the corresponding data in the main memory. Before overwrit
ing any block in the cache, the cache controller checks the altered bit. If it is set, the control
ler writes the block to main memory before loading new data into the cache.

Write-back is faster than write-through because the number of times an altered block must
be copied into the main memory is usually less than the number of write accesses. However,
write-back has these disadvantages:

• Write-back cache controller logic is more complex than write-through. When a write
back system must write an altered block to memory, it must reconstruct the write address
from the tag and perform the write-back cycle as well as the requested access.

• All altered blocks must be written to the main memory before another device can access
these blocks in main memory.

7-9

inter CACHE SUBSYSTEMS

• In a power failure, the data in the cache is lost, so there is no way to tell which locations
of the main memory contain stale data. Therefore, the main memory as well as the cache
must be considered volatile and provisions must be made to save the data in the cache in
the case of a power failure.

7.3.4 Cache Coherency

Write-through and write-back eliminate stale data in the main memory caused by cache
write operations. However, if caches are used in a system in which more than one device has
access to the main memory (multi-processing systems or DMA systems, for example), another
stale data problem is introduced. If new data is written to main memory by one device, the
cache maintained by another device will contain stale data. A system that prevents the stale
cache data problem is said to maintain cache coherency. Three cache coherency approaches
are described below:

• Hardware transparency-Hardware guarantees cache coherency by ensuring that all
accesses to memory mapped by a cache are seen by the cache. This is accomplished either
by routing the accesses of all devices to the main memory through the same cache or by
copying all cache writes both to the main memory and to all other caches that share the
same memory (a technique known as broadcasting). Hardware transparent systems are
illustrated in Figure 7-6.

• Non-cacheable memory - Cache coherency is maintained by designating shared memory
as non-cacheable. In such a system, all accesses to shared memory are cache misses,
because the shared memory is never copied into the cache. The non-cacheable memory
can be identified using chip-select logic or high-address bits. Figure 7-7 illustrates non
cacheable memory.

OTHER
BUS CACHE

MASTER
MAIN

J
MEMORY

~
80386

CACHE ~

G30107

Figure 7-6. Hardware Transparency

7-10

CACHE SUBSYSTEMS

- OTHER BUS
MASTER

H "OO"~
~ } NON·CACHEABLE

l
80386

CACHE - MEMORY
CACHEABLE

G30107

Figure 7-7. Non-Cacheable Memory

Software can offset the reduction in the hit rate caused by non-cacheable memory by
using the string move instruction (REP MOYS) to copy data between non-cache able
memory and cacheable memory and by mapping shared memory accesses to the cache a
ble locations. This technique is especially appropriate for systems in which copying is
necessary for other reasons (as in some implementations of UNIX for example).

• Cache flushing - A cache flush writes any altered data to the main memory (if this has
not been done with write-through) and clears the contents of the cache. If all the caches
in the system are flushed before a device writes to shared memory, the potential for stale
data in any cache is eliminated.

An advantage of cache flushing is that is uses simpler hardware than the other two
approaches. A disadvantage of this approach is that the memory accesses that follow the
cache flush will be misses until the cache is refilled with new data. Ifflushes can be minimized,
however, this disadvantage may be minor compared to the advantages of cache flushing.

Combinations of various cache coherency techniques may offer the optimal solution for a
particular system. For example, a system might use hardware transparency for time-critical
1(0 operations such as paging and non-cacheable memory for slower 1(0 such as printing.

7.4 SYSTEM STRUCTURE AND PERFORMANCE

Performance data for various cache organizations is shown in Table 7-1. This data should
be weighed against other considerations, such as hardware complexity, in selecting a cache
organization.

7-11

CACHE SUBSYSTEMS

Table 7-1. Cache System Performance

Cache Configuration Cache Performance

Size Associativity Line Size Hit Rate Performance Ratio
Over Non-Cached DRAM

1K direct 4 bytes 41% 0.91
8K direct 4 bytes 73% 1.25
16K direct 4 bytes 81% 1.35
32K direct 4 bytes 86% 1.38
32K 2-way 4 bytes 87% 1.39
32K direct 8 bytes 91% 1.41
64K direct 4 bytes 88% 1.39
64K 2-way 4 bytes 89% 1.40
64K 4-way 4 bytes 89% 1.40
64K direct 8 bytes 92% 1.42
64K 2-way 8 bytes 93% 1.42
128K direct 4 bytes 89% 1.39
128K 2-way 4 bytes 89% 1.40
128K direct 8 bytes 93% 1.42

no cache-2 ClK SRAM access (100%) 1.47
no cache-4 ClK piplined DRAM - 1.00

7.5 DMA THROUGH· CACHE

Cache coherency is especially relevant to the placement of a DMA controller in a 80386
system. Because the DMA controller has access to the main memory, it can introduce stale
data problems. Stale data can be avoided in the following ways:

• Implementing a transparent cache; that is, directing memory accesses from both the 80386
and the DMA controller through the cache.

• Allowing the DMA controller direct access to memory while guaranteeing cache coher
ency through non-cache able memory or cache flushing (see the previous section for expla
nations of these techniques).

The first method is more desirable than the second because it does not require extra hardware
to guarantee cache coherency. However, with this method, the 80386 and the DMA control
ler must contend for memory access. With the second method, the 80386 can access the
cache while the DMA controller is accessing the memory; as long as the 80386 access is a
cache hit, the DMA controller does not interfere with the performance of the 80386. Each
method has advantages. Deciding which method is more suitable depends on the perform
ance of the DMA controller.

In general, if a DMA controller's activity is significantly more time-consuming than that of
the 80386, it is better to allow the controller direct access to memory. DMA accesses through
the cache would cause significant delays for the 80386. A 16-bit, 8-MHz Advanced DMA
(ADMA) controller requires eight CLK2 cycles to write a 32-bit doubleword into memory,
plus five CLK2 cycles to gain and release control of the bus (using the HOLD signal). In

7-12

CACHE SUBSYSTEMS

contrast, an 80386 could ensure cache coherency by transferring data between cacheable
and non-cacheable memory at four CLK2 cycles for each doubleword (no wait states) using
the REP MOVS instruction.

7.6 CACHE EXAMPLE

The cache system example described in this section illustrates some of the decisions a cache
designer must make. The requirements of a particular system may result in different choices
than the ones made here. However, the issues presented in this example are likely to arise in
the process of designing any cache system.

7.6.1 Example Design

The cache system uses a direct mapped cache. In previous generations of computers, it was
often practical to use a 2-way or 4-way associative cache. SRAMs had low memory capac
ity, so many of them were needed to construct a reasonable cache. By comparison, the cost
of comparators and control logic for implementing the associativity (in terms of both dollars
and board space) was negligible. Today, however, SRAMs hold more memory, cost less, and
take up less space. It is now more economical to increase cache effectiveness by increasing
cache size (SRAMs) rather than associativity C.;ontrollogic and comparators).

The main memory is updated using write-through. Buffered write-through and write-back
systems require more logic and are usually cost-effective only if the DRAM response is
relatively slow (as with a dual-port DRAM shared with other processors or a DMA
controller).

The block size is four bytes, which is most convenient for the 32-bit data bus of the 80386.
An 8-byte block size would transfer twice as much data for every DRAM access, but would
require a wider bus and more SRAMs and DRAMs. In most cases, the extra cost outweighs
the extra performance.

The cache in this example accesses both code and data, rather than only code. Code-only
caches are easier to implement because there are no write accesses. They can be useful if
data accesses are infrequent and widely spaced in memory. In general, however, most
programs make frequent data accesses. The code prefetch function of the 80386 makes the
access time for code not critical to overall performance, so the performance gain of a code
only cache is unimportant.

7.6.2 Example Cache Memory Organization

The example cache is organized as shown in Figure 7-8. The cache holds 64 kilobytes
(16K locations of 4-byte blocks) of data and code and requires 16K 8-bit tag locations. The
main memory holds 16 megabytes (4M locations of 4-byte blocks).

7-13

CACHE SUBSYSTEMS

32.BIT 131 24 23 16 15 01
PROCESSOR ICACHEIDRAM

ADDRESS SELECT TAG INDEX I
/--64K CACHE = 16 BITS-I

~16 MEGABYTE DRAM = 24 BITS-----.j

DATA INDEX

FFFC
11223344 FFF8

INDEX TAG DATA
0010
OOOC

FFFC 01
FFF8 FF

12345678
11223344 ~

0008
0004
0000

0010 -
OOOC -

-
0008 00
0004 01
0000 00

I I
87654321

~ 11235813 12345678
13579246 f-

FFFC
FFF8

1-32 BITS...j (14 BITS) 1+8 BITS...j 0010
OOOC
0008

64KSRAM CACHE '----- 11235813 0004
0000

FFFC
FFF8

0010
OOOC

87654321 0008
0004

13579246 0000

1+32BITS~

16 MEGABYTE DRAM

Figure 7-8. Example of Cache Memory Organization

TAG

FF

I 01

I '"

The 32-bit address from the 80386 is divided into the following three fields:

G30107

• Select-Bits A31-A24 are decoded by chip-select logic to select the cache memory
subsystem.

Tag-Bits A23-A16 identify one of the 256 64-kilobyte sections in the main memory
(DRAM).

• Index-Bits A15-A2 identify one of the 16K doubleword locations in the cache.

7-14

CACHE SUBSYSTEMS

Each doubleword location of the cache can be occupied by one of 256 blocks from the main
memory (one block from each 64-kilobyte section).

The 80386 bits A23-A2 are interpreted as follows:

1. Index bits A15-A2 select the cache location.

2. Tag bits A23-A16 are matched with the 8 bits of the tag for that location to determine if
the block in the cache is the block needed by the 80386.

a. If the tag matches, the 80386 either reads the data in the cache or writes new data to
the location. In the case of a write, the data is also written to the main memory.

b. If the tag does not match, a data transfer to or from the main memory is performed.
Bits A23-A16 (the tag) select one of the 256 64-kilobyte sections of the DRAM, and
bits A15-A2 select one 4-byte block from that section to transfer to the cache and to
the processor. The 80386 Byte Enable signals select the requested bytes from the block.
The new tag for the cache location is written to the tag SRAM.

7.6.3 Example Cache Implementation

Figure 7-9 shows the logic for implementing the example cache. The index field (A15-A2)
is latched early in the cycle to select the tag from the tag RAM. The tag field (A23-A16) is
latched later in the cycle and compared with the tag from the RAM in the 74F521 compar
ator. The output of the comparator is sent to the cache controller to enable either the cache
or the DRAM for the bus cycle.

In the case of a hit, the controller enables the cache for the bus cycle. If the access is a write,
the controller then enables the DRAM for the write-through cycle. In the case of a miss, the
controller enables the DRAM to update the cache before the access is performed.

7-15

.....

.!....
m

80386

USENA#PIN
FOR ADDRESS

PIPELINING

80387

TAG

A23-A16

INDEX

A15-A2

BE311-BEOII

031-00

(2) 16K x 4

PIPELINED
TAG

LOOKUP

ADDRESS

SYSTEM DATA

74F245

A23-A16

HIT
~ I" TO CACHE CONTROLLER

MISS TO ENABLE CACHE

74F521

OR MAIN MEMORY

A23-A2

16K x4
kZ««Z\C«(CC"

EPROM AND
PERIPHERALS

74AS258

BYTE ENABLES

Figure 7-9. Cache Memory System Implementation

MULTIPLEXED
ADDRESS

(64)
256K x8

G30107

(

o
l> o
::E:
m
en
c:
to en
-< en
-I m
s::: en

/fO Interfacing 8

CHAPER 8
I/O INTERFACING

The 80386 supports 8-bit, 16-bit, and 32-bit I/O devices that can be mapped into either the
64-kilobyte I/O address space or the 4-gigabyte physical memory address space. This chapter
presents the issues to consider when designing an interface to an I/O device. Mapping as
well as timing considerations are described. Several examples illustrate the design concepts.

8.1 I/O MAPPING VERSUS MEMORY MAPPING

I/O mapping and memory mapping of I/O devices differ in the following respects:

• The address decoding required to generate chip selects for I/O-mapped devices is often
simpler than that required for memory-mapped devices. I/O-mapped devices reside in the
I/O space of the 80386 (64 kilobytes); memory-mapped devices reside in a much larger
memory space (4 gigabytes) that makes use of more address lines.

• Memory-mapped devices can be accessed using any 80386 instruction, so I/O-to-memory,
memory-to-I/O, and I/O-to-I/O transfers as well as compare and test operations can be
coded efficiently. I/O-mapped devices can be accessed only through the IN, OUT, INS,
and OUTS instructions. All I/O transfers are performed via the AL (8-bit), AX (16-bit),
or EAX (32-bit) registers. The first 256 bytes of the I/O space are directly addressable.
The entire 64-kilobyte I/O space is indirectly addressable through the DX register.

• Memory mapping offers more flexibility in protection than I/O mapping does. Memory
mapped devices are protected by memory management and protection features. A device
can be inaccessible to a task, visible but protected, or fully accessible, depending on where
the device is mapped in the memory space. Paging provides the same protection levels for
individual 4-kilobyte pages and indicates whether a page has been written to. The I/O
privilege level of the 80386 protects I/O-mapped devices by either preventing a task from
accessing any I/O devices or by allowing a task to access all I/O devices. A virtual-8086-
mode I/O permission bitmap can be used to select the privilege level for a combination
of I/O bytes.

8.2 8-BIT, 16-BIT, AND 32-BIT I/O INTERFACES

The 80386 can operate with 8-bit, 16-bit, and 32-bit peripherals. The interface to a periph
eral device depends not only upon data width, but also upon the signal requirements of the
device and its location within the memory space or I/O space.

8.2.1 Address Decoding

Address decoding to generate chip selects must be performed whether I/O devices are
I/O-mapped or memory-mapped. The decoding technique should be simple to minimize the
amount of decoding logic.

8-1

110 INTERFACING

One possible technique for decoding memory-mapped I/O addresses is to map the entire
I/O space of the 80386 into a 64-kilobyte region of the memory space. The address decoding
logic can be configured so that each I/O device responds to both a memory address and an
I/O address. Such a configuration is compatible for both software that uses I/O instructions
and software that assumes memory-mapped I/O.

Address decoding can be simplified by spacing the addresses of I/O devices so that some of
the lower address lines can be omitted. For example, if devices are placed at every fourth
address, the 80386 Byte Enable outputs (BE3#-BEO#) can be ignored for I/O accesses and
each device can be connected directly to the same eight data lines. The 64-kilobyte I/O
space is large enough to allow the necessary freedom in allocating addresses for individual
devices.

Addresses can be assigned to I/O devices arbitrarily within the I/O space or memory space.
Addresses for either I/O-mapped or memory-mapped devices should be selected to minimize
the number of address lines needed.

8.2.2 8-Bit I/O

Eight-bit I/O devices can be connected to any of the four 8-bit sections of the data bus.
Table 8-1 illustrates how the address assigned to a device determines which section of the
data bus is used to transfer data to and from the device.

In a write cycle, if BE3# and/or BE2# is active but not BEl# or BEO#, the write data on
the top half of the data bus is duplicated on the bottom half. If the addresses of two devices
differ only in the values of BE3#-BEO# (the addresses lie within the same doubleword
boundaries), BE3#-BEO# must be decoded to provide a chip select signal that prevents a
write to one device from erroneously performing a write to the other. This chip select can be
generated using an address decoder PAL device or TTL logic.

Another technique for interfacing with 8-bit peripherals is shown in Figure 8-1. The 32-bit
data bus is multiplexed onto an 8-bit bus to accommodate byte-oriented DMA or block
transfers to memory-mapped 8-bit I/O devices. The addresses assigned to devices connected
to this interface can be closely spaced because only one 8-bit section of the data bus is
enabled at a time.

Table 8-1. Data Lines for 8-Bit 1/0 Addresses

Address 4N + 3 4N + 2 4N + 1 4N

Byte 031-024 023-016 015-08 07-00

Word 031-016 015-00

Ooubleword 031-00

8-2

1/0 INTERFACING

8·BIT 110 DEVICE

DEN

BE3#

BE2# DECODE 1-----1
BE1#

BEON

G30107

Figure 8-1. 32-Bit to a-Bit Bus Conversion

8-3

1/0 INTERFACING

8.2.3 16-Bit 1/0

To avoid extra bus cycles and to simplify device selection, 16-bit I/O devices should be
assigned to even addresses. If I/O addresses are located on adjacent word boundaries, address
decoding must generate the Bus Size 16 (BSI6#) signal so that the 80386 performs a 16-bit
bus cycle. If the addresses are located on every other word boundary (every doubleword
address), BS16# is not needed.

8.2.4 32-Bit 1/0

To avoid extra bus cycles and to simplify device selection, 32-bit devices should be assigned
to addresses that are even multiples of four. Chip select for a 32-bit device should be condi
tioned by all byte enables (BE3#-BEO#) being active.

8.2.5 Linear Chip Selects

Systems with 14 or fewer I/O ports that reside only in the I/O space or that require more
than one active select (at least one high active and one low active) can use linear chip selects
to access I/O devices. Latched address lines A2-A15 connect directly to I/O device selects
as shown in Figure 8-2.

8.3 BASIC 1/0 INTERFACE

In a typical 80386 system design, a number of slave I/O devices can be controlled through
the same local bus interface. Other I/O devices, particularly those capable of controlling the
local bus, require more complex interfaces. This section presents a basic interface for slave
peripherals.

The high performance and flexibility of the 80386 local bus interface plus the increased
availability of programmable and semi-custom logic make it feasible· to design custom bus
control logic that meets the requirements of particular system.

The basic I/O interface shown in Figure 8-3 can be used to connect the 80386 to virtually
all slave peripherals. The following list includes some common peripherals compatible with
this interface:

8259A Programmable Interrupt Controller
8237 DMA Controller (remote mode)
82258 Advanced DMA Controller (remote mode)
8253, 8254 Programmable Interval Timer
8272 Floppy Disk Controller
82062, 82064 Fixed Disk Controller
8274 Multi-Protocol Serial Controller
8255 Programmable Peripheral Interface
8041,8042 Universal Peripheral Interface

8-4

inter I/O INTERFACING

ADDRESS =IDs LINE

10RC RD

10WC WR

I/O DEVICE

A15

A14

fORC

rowe

(A) ONE CHIP SELECT

CS

CS

RD

,---c WR

CS

CS
RD

WR

(B) MULTIPLE CHIP SELECTS

Figure 8-2. Linear Chip Selects

1/0 DEVICE

110 DEVICE

210760-97

The bus interface control logic presented here is identical to the one used in the basic memory
interface described in Chapter 6. In most systems, the same control logic, address latches,
and data buffers can be used to access both memory and I/O devices. The schematic of the
interface is shown in Figure 8-4 and described in the following sections.

8.3.1 Address Latch

Latches maintain the address for the duration of the bus cycle. In this example, 74x373
latches are used.

The 74x373 Latch Enable (LE) input is controlled by the Address Latch Enable (ALE)
signal from the bus control logic that goes active at the start of each bus cycle. The 74x373
Output Enable (OE#) is always active.

8-5

1/0 INTERFACING

I

BUS
ADDRESS CONTROL

I ~
LOGIC -

~
DECODER

WAIT·STATE
GENERATOR

'\ 110

./ DEVICE
#1

..... - ~
ADDRESS

READY# BUS ~ LATCH

STATUS r-v I- -ADDRESS
J..

80386 110
DEVICE

~ #2

DATA
A "- TRANSCEIVER

DATA '" ..
'" ..

G30107

Figure 8-3. Basic 1/0 Interface Block Diagram

8.3.2 Address Decoder

In this example, the address decoder, which converts the 80386 address into chip-select
signals, is located before the address latches. In general, the decoder may also be placed
after the latches. If it is placed before the latches, the chip-select signal becomes valid as
early as possible but must be latched along with the address. Therefore, the number of address
latches needed is determined by the location of the address decoder as well as the number
of address bits and chip-select signals required by the interface. The chip-select signals are
routed to the bus control logic to set the correct number of wait states for the accessed
device.

The decoder consists of two one-of-four decoders, one for memory address decoding and one
for I/O address decoding. In general, the number of decoders needed depends on the memory
mapping complexity. In this basic example, an output of the memory address decoder
activates the I/O address decoder for I/O accesses. The addresses for the I/O devices are
located so that only address bits A4 and A5 are needed to generate the correct chip-select
signal.

8-6

1/0 INTERFACING

",

{"
~~ c

~
!~ 0

0 I~ 1\3 ~

I~ ",

f
I~ ~~

~
c

~~
I~ 1r5 ~

"

~
I< ~~ ~

,~ Q
0

I~ I~ ~

~~
~ g IW

I~ "

~
2

I~ I~!i

i~ I ~l

8-7

,;
o C

"

-·S
~
(3

CD
U
ell
't:
CD -C

o
'-

I/O INTERFACING

8.3.3 Data Transceiver

Standard 8-bit transceivers (74x245, in this example) provide isolation and additional drive
capability for the 80386 data bus. Transceivers are necessary to prevent the contention on
the data bus that occurs if some devices are slow to remove read data from the data bus
after a read cycle. If a write cycle follows a read cycle, the 80386 may drive the data bus
before a slow device has removed its outputs from the bus, potentially causing bus contention
problems. Transceivers can be omitted only if the data float time of the device is short enough
and the load on the 80386 data pins meets device specifications.

A bus interface must include enough transceivers to accommodate the device with the most
inputs and outputs on the data bus. If the widest device has 16 data bits and if the I/O
addresses are located so that all devices are connected only to the lower half of the data bus,
only two 8-bit transceivers are needed.

The 74x245 transceiver is controlled through two input signals:

• Data Transmit/Receive (DT /R#)-When high, this input enables the transceiver for a
write cycle. When low, it enables the transceiver for a read cycle. This signal is just a
latched version of the 80386 W /R# output.

• Data Enable (DEN#)-When low, this input enables the transceiver outputs. This signal
is generated by the bus control logic.

8.3.4 Bus Control Logic

The bus control logic for the basic I/O interface is the same as the logic for the memory
interface described in Section 6.2. The bus controller decodes the 80386 status outputs
(W /R#, M/IO#, and D/C#) and activates a command signal for the type of bus cycle
requested. The command signal corresponds to the bus cycle types (described in Chapter 3)
as follows:

• Memory data read and memory code read cycles generate the Memory Read Command
(MRDC#) output. MRDC# commands the selected memory device to output data.

• I/O read cycles generate the I/O Read Command (IORC#) output. 10RC# commands
the selected I/O device to output data.

• Memory write cycles generate the Memory Write Command (MWTC#) output. MWTC#
commands the selected memory device to receive the data on the data bus.

o I/O write cycles generate the I/O Write Command (IOWC#) output. IOWC# commands
the selected memory device to receive the data on the data bus.

Interrupt-acknowledge cycles generate the Interrupt Acknowledge (INTA#) output, which
is returned to the 8259A Interrupt Controller.

The bus controller also controls the READY # input to the 80386 that ends each bus cycle.
The PAL-2 bus control PAL counts wait states and returns READY# after the number of
wait states required by the accessed device. The design of this portion of the bus controller
depends on the requirements of the system; relatively simple systems need less wait-state

8-8

1/0 INTERFACING

logic than more complex systems. The basic interface described here uses a PAL device to
generate READY #; other designs may use counters and/or shift registers.

If several I/O devices reside on the local bus, READY # logic can be simplified by combin
ing into a single input the chip selects for devices that require the same number of wait
states. The CSIO# input of PAL-l generates the same number of wait states for all I/O
accesses. Adding wait states to some devices to make the wait-state requirements of several
devices the same does not significantly impact performance. If the response of the device is
already slow (four wait states, for example), the additional wait state amounts to a relatively
small delay. Typically, I/O devices are used infrequently enough that the access time is not
critical.

8.4 TIMING ANALYSIS FOR I/O OPERATIONS

In this section, timing requirements for devices that use the basic I/O interface are discussed.
The values of the various device specifications are examples only; for correct timing analysis,
always refer to the latest data sheet for the particular device.

Timing for 80386 I/O cycles is identical to memory cycle timing in most respects; in partic
ular, timing depends on the design of the interface. The worst-case timing values are calcu
lated by assuming the maximum delay in the address latches, chip select logic, and command
signals, and the longest propagation delay through the data transceivers (if used). These
calculations yield the minimum possible access time for an I/O access for comparison with
the access time of a particular I/O device. Wait states must be added to the basic worst
case values until read and write cycle times exceed minimum device access times.

The timing requirement for the address decoder dictates that the logic be combinational (not
latched or registered) with a propagation delay less than the maximum delay calculated
below.

The CSIWS signal requires a maximum decoder delay of 38.75 nanoseconds:

(3 x CLK2 period)
(3 x 31.25)

- 80386 Addr Valid
- 40

= 38.75 nanoseconds
(CLK2 = 32 MHz)

- PAL setup
- 15

The CSOWS signal must be slightly faster in order to activate NA#:

(3 x CLK2 period) - 80386 Addr Valid - (2 x OR prop. delay)
- 80386 NA# setup
(3 x 31.25) -40 -(2x6)
- 10

= 31.75 nanoseconds
(CLK2 = 32 MHz)

8-9

1/0 INTERFACING

The timings of the other signals can be calculated from the waveforms in Figure 8-5. In the
following example, the timings for I/O accesses are calculated for CLK2 = 32 MHz and
B-series PALs. All times are in nanoseconds.

tAR: Address stable before Read (IORC# fall)
tAW: Address stable before Write (IOWC# fall)

(5 x CLK2 period) -PAL RegOut Max -Latch Enable Max
+ PAL RegOut Min
(5 x 31.25) - 12 - 11.5
+ 0

= 132.75 nanoseconds

tRR: Read (IORC#) pulse width

(9 x CLK2 period) - PAL RegOut Max + PAL RegOut Min
(9x31.25) -12 +0
= 269.25 nanoseconds

tWW: Write (IOWC#) pulse width

(10 x CLK2 period) - PAL RegOut Max + PAL RegOut Min
(10 x 31.25) - 12 + 0

= 300.5 nanoseconds

tRA: Address hold after Read (IORC# rise)

(6 x CLK2 period) - PAL RegOut Max + PAL RegOut Min
+ Latch Enable Min
(6 x 31.25) - 12 + 0
+ 5

= 180.5 nanoseconds

tWA: Address hold after Write (IOWC# rise)

(7 x CLK2 period) - PAL RegOut Max + PAL RegOut Min
+ Latch Enable Min
(7 x 31.25) -12 + 0
+ 5

= 211.75 nanoseconds

8-10

PERIPHERA~ PERIPHERAL ---...j
_RECOVERY ~RECOVERY

IDLE PERIPHERAL READ
.. PERIPHERAl-l :- PERIPHERAL.,

FLOAT PER~~~~I~i~EAD FLOAT
NON:PIPELINED

SRAM READ PIPEllNED

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1

ClK U-if If V ~ V If if :; J Cf cr ~ y If ~ if ~ if If
FW S II II II S C

li J' V IF
ADS# r----II ~ \l JJ \.l. f1-/ \.l. IJJ
ADDR WXX m m [XXX [XXX

DATA XX
READ READ READ

(l)
SEl .!... UJ !XI IX: l/JJJJ/J..

....
ALE

\ I \ I !\. V\ ~

DEN#
\ I \ if IL II

IORD# \ / \ 1/
IOWT#

MRDCN \. -II
NA# IU iU 'J

READYN IL ILII Li

Figure 8-5. Basic I/O Timing Diagram

PERIPHERAL WRITE
PIPELINED

2 3 4 5 6

I I I I I I I I I E

J' u-J' V J'

WRITE

\

\

U

7

E F F F

V J
\l. .r

XX

F -

IL I

G30107

l

'-o
Z
-I
m
:2:1
"II
> o
Z
C)

110 INTERFACING

tAD: Data delay from Address

(12 x CLK2 period)
- xcvr. prop Min
(12 x 31.25)

- PAL RegOut Max + Latch Enable Max
- 80386 Data Setup Min
- 12 - 11.5

- 6
-10

= 335.5 nanoseconds

tRD: Data delay from Read (IORC#)

(9 x CLK2 period) - PAL RegOut Max - xcvr. prop Min
- 80386 Data Setup Min
(9x31.25) -12 - 6
-10

= 253.25 nanoseconds

tDF: read (IORC# rise) to Data Float

(8 x CLK2 period) - PAL RegOut Max + PAL RegOut Min
+ xcvr. Enable Min
(8 x 31.25) - 12 + 0
+ 3

= 241 nanoseconds

tDW: Data setup before write (IOWC# rise)

(lOx CLK2 period) - PAL RegOut Max - xcvr. Enable Max
+ PAL RegOut Min
(10 x 31.25) - 12 - 11
+ 0

= 289.5 nanoseconds

tWD: Data hold after write (IOWC# rise)

(2 x CLK2 period)
+ xcvr. Disable

- PAL RegOut + PAL RegOut

(2 x 31.25) - 12 + 0
+ 2

= 52.5 nanoseconds

tRY: command recovery time

(11 x CLK2 period) - PAL RegOut Max + PAL RegOut Min
(llx31.25) -12 + 0

= 331.75 nanoseconds

8-12

I/O INTERFACING

Many peripherals require a minimum recovery time between back-to-back accesses. This
recovery time is usually provided in software by a series of NOP instructions. A JMP to the
next instruction also provides a delay because it flushes the 80386 Prefetch Queue; this
method has a more predictable execution time than the NOP method.

In 80386 systems, the instructions that provide recovery time are executed more quickly
than in earlier systems. For software compatibility with earlier microprocessor generations,
hardware must guarantee the recovery time. However, the circuitry to delay bus commands
selectively for the specific instance of back-to-back accesses to a particular device is typically
more complex than the frequency of such accesses justifies. Therefore, the preferred solution
is to delay all I/O cycles by the minimum recovery time. Because most I/O accesses are
relatively infrequent, performance is not degraded.

The I/O access timings of the basic interface are compatible with all of the currently avail
able Intel peripherals. (In some cases, the high-speed versions of these peripherals are
required). Table 8-2 compares several peripheral timings with the timings provided by bus
controller.

Only two peripherals do not meet the bus controller specifications: the 8041 and 8042 UPls
(Universal Peripheral Interface 8-bit Microcomputers). These intelligent peripherals meet
all but the command recovery specification, so they can be used if this delay is implemented
in software.

8.5 BASIC 1/0 EXAMPLES

In this section, two examples of the interface to slave I/O devices are presented. Typically,
several of these devices exist on the 80386 local bus. The basic I/O interface presented above
is used for both examples.

Table 8-2. Timings for Peripherals Using Basic 1/0 Interface

tAR tAW tRR tWW tRA tWA tAO tRO tDF tOW tOWF tWO tRY

bus cntrlr 39 39 269 300 180 211 335 253 241 289 - 52 331
8259-2 0 0 160 190 0 0 200 120 85 160 - 0 190
8254-2 30 0 95 95 0 0 185 85 65 85 - 0 165
82C54-2 0 0 95 95 0 0 185 85 65 85 - 0 165
82C55-2 0 0 150 100 0 20 - 120 75 100 - 30 300
8272 0 0 250 250 0 0 - 200 100 150 - 5 -
82064 0 0 200 200 0 0 - 70 200 1.60 - 0 300
8041 0 0 250 250 0 0 225 225 100 150 - 0 2500
8042 0 0 160 160 0 0 130 130 85 130 - 0 1120
8251 0 0 250 250 0 0 - 200 100 150 - 20 -
8273-4 0 0 250 250 0 0 300 200 100 150 - 0 1920
8274 0 0 250 250 0 0 200 200 120 150 - 0 300
8291 0 0 140 170 0 0 250 100 60 130 - 0 -
8292 0 0 250 250 0 0 225 225 100 150 - 0 -

8-13

1/0 INTERFACING

8.5.1 8274 Serial Controller

The 8274 Multi-Protocol Serial Controller (MPSC) is designed to interface high-speed serial
communications lines using a variety of communications protocols, including asynchronous,
IBM bisynchronous, and HDLC/SDLC protocols. The 8274 contains two independent full
duplex channels and can serve as a high-performance replacement for two 8251A Universal
Synchronous/ Asynchronous Receiver Transmitters (USARTs).

Figure 8-6 shows connections from the basic I/O interface through which the 80386
communicates with the 8274. The 8274 is accessed as a sequence of four 8-bit I/O addresses
(I/O-mapped or memory-mapped). The Serial I/O (SERIO#) signal is a chip select gener
ated by address decoding logic. RD# and WR# signals are provided by the bus control logic.
DB7-DBO inputs connect to the lower eight outputs of the data transceiver (D7-DO).

The 8274 Al and AO inputs are used for channel selection and data or command selection.
These inputs are connected to two address lines that are determined by the 8274 addresses.
The addresses must be chosen so that the Al and AO inputs receive the correct signals for
addressing the 8274.

The 8274 requires a minimum recovery time between back-to-back accesses that is provided
for in the basic I/O interface hardware.

8.5.2 8259A Interrupt Controller

The 8259A Programmable Interrupt Controller is designed for use in interrupt-driven
microcomputer systems. A single 8259A can process up to eight interrupts. Multiple 8259As
can be cascaded to accommodate up to 64 interrupts. A technique to handle more than
64 interrupts is discussed at the end of this section.

8274

FROM DATA D7-DO~ TRANSCEIVER DB7-DBO

FROM ADDRESS (A3 Al

LATCH A2 AO A "-
MODEM INTERFACE

FROM
'I ADDRESS SERIO#

DECODER CSH

FROM BUS (RD# RD#
CONTROLLER WR# WRH

G30107

Figure 8-6. 8274 Interface

8-14

1/0 INTERFACING

The 8259A handles interrupt priority resolution and returns a preprogrammed service routine
vector to the 80386 during an interrupt-acknowledge cycle. Intel Application Note AP-59
contains detailed information on configurations of the 8259A.

8.5.2.1 SINGLE INTERRUPT CONTROLLER

Figure 8-7 shows the connections from the basic I/O interface used for the 80386 and a
single 8259A. Programmable Interrupt Controller (PIC#) is a chip-select signal from the
address decoding logic. INT A#, RD#, and WR# are generated by the bus control logic.
BD7-BDO are connected to the lower eight outputs of the data transceiver. The A2 bit,
connected to the 8259A AO input, is used by the 80386 to distinguish between the two inter
rupt acknowledge cycles; 8259A register addresses must therefore be located at two consec
utive doubleword boundaries.

When an interrupt occurs, the 8259A activates its Interrupt (INT) output, which is connected
to the Interrupt Request (INTR) input of the 80386. The 80386 automatically executes two
back-to-back interrupt-acknowledge cycles, as described in Chapter 3. The 8259A timing
requirements are as follows:

• Each interrupt-acknowledge cycle must be extended by at least one wait state. Wait-state
generator logic must provide for this extension.

• Four idle bus cycles must be inserted between the two interrupt-acknowledge cycles. The
80386 automatically inserts these idle cycles.

INTER

A2
(FROM ADDRESS

LATCH)

PIC# (CHIP SELECT
FROM ADDRESS DECODER

FROM {IOWC#
BUS IORC#

CONTROL INTA#

B259A

~ IRO :>+ IR1 DO
11

IR2
10

FROM ~ D1

D2
9

RUPTING -..."::.- IR3
DEVICES ~ D3

8
IR4

~ IR5 D4
7

~ IR6.
6

D5

~ IR7 D6
5

27
AO D7

4

NIC 12
CASO

NIC 13 - 16
CAS1 SPEN

NIC 15 17
CAS2 INT

1 Cs
2

WR
3 RD

26
INTA

Figure 8-7. Single 8259A Interface

8-15

~1

I TO
DATA
TRANSCEIVERS

TO B0386
INTR INPUT

G30107

I/O INTERFACING

8.5.2.2 CASCADED INTERRUPT CONTROLLERS

Several 8259As can be cascaded to handle up to 64 interrupt requests. In a cascaded config
uration, one 8259A is designated as the master controller; it receives input from the other
8259As, called slave controllers. The interface between the 80386 and mUltiple cascaded
8259As is an extension of the single-8259A interface with the following additions:

• The cascade address outputs (CAS2#-CASO#) are output to provide address and chip
select signals for the slave controllers.

• The interrupt request lines (IR7-IRO) of the master controller are connected to the INT
outputs of the slave controllers.

Each slave controller resolves priority between up to eight interrupt requests and transmits
a single interrupt request to the master controller. The master controller, in turn, resolves
interrupt priority between up to eight slave controllers and transmits a single interrupt request
to the 80386.

The timing of the interface is basically the same as that of a single 8259A. During the first
interrupt-acknowledge cycle, all the 8259As freeze the states of their interrupt request inputs.
The master controller outputs the cascade address to select the slave controller that is gener
ating the request with the highest priority. During the second interrupt-acknowledge cycle,
the selected slave controller outputs an interrupt vector to the 80386.

Chapter 9 describes the interface to slave controllers that reside on a MUL TIBUS I system
bus.

8.5.2.3 HANDLING MORE THAN 64 INTERRUPTS

If an 80386 system requires more than 64 interrupt request lines, a third level of 8259As in
polled mode can be added to the configuration described above. When a third-level control
ler receives an interrupt request, it drives one of the interrupt request inputs to a slave
controller active. The slave controller sends an interrupt request to the master controller,
and the master controller interrupts the 80386. The slave controller then returns a service
routine vector to the 80386. The service routine must include commands to poll the third
level of interrupt controllers to determine the source of the interrupt request.

The only additional hardware required to handle more than 64 interrupts are the extra 8259As
and the chip-select logic. For maximum performance, third-level interrupt controllers should
be used only for noncritical, infrequently used interrupts.

8.6 80286-COMPATIBLE BUS CYCLES

Some devices (the 82258, for example) require an 80286-compatible interface in order to
communicate with the 80386. An 80286-compatible interface must generate the following
signals:

• Address bits Ai and AO, and Byte High Enable (BHE#) from the 80386 BE3#-BEO#
outputs

8-16

1/0 INTERFACING

• Bus cycle definition signals SOl andSl# from the 80386 M/IO#, W /R#, and D/C#
outputs

• Address Latch Enable (ALE#), Device Enable (DEN), and Data Transmit/Receive
(DT /R#) signals

• I/O Read Command (IORC#) and I/O Write Command (IOWC#) signals for I/O cycles

• Memory Read Command (MRDC#) and Memory Write Command (MWTC#) signals
for memory cycles

• Interrupt Acknowledge (INTA#) signal for interrupt-acknowledge cycles

In the following example, the interface is constructed using the 80286-compatible bus
controller (82288) and bus arbiter (82289). The 82289, along with the bus arbiters of other
processing subsystems, coordinates control of the bus between the 80386 and other bus
masters. The 82288 provides the control signals to perform bus cycles. Communication
between the 80386 and these devices is accomplished through PALs that are programmed
to perform all necessary signal translation and generation. Latching and buffering of the
data and address buses is performed by TTL logic.

Figure 8-8 shows a block diagram of the interface, which consists of the following parts:

• AO / A 1 generator-Generates the lower address bits from 80386 BEO#-BE3# outputs

• Address decoder-Determines the device the 80386 will access

• Address latches-Connect directly to 80386 address pins A19-A2 and the outputs of the
AO/ Al generator

• Data transceivers-Connect directly to 80386 data pins DIS-DO

• SO#/SI# generator-Translates 80386 outputs into the SO# and SI# signals

• Wait-state generator-Controls the length of the 80386 bus cycle through the READY #
signal

• 82288 Bus Controller-Generates the bus command signals

• 82289 Bus Arbiter-Arbitrates contention for bus control between the 80386 and other
bus masters

8.6.1 AOI A 1 Generator

The AO, AI, and BHE# signals are 80286-compatible. These signals are generated from the
80386 byte enables (BEO#-BE3#) as shown in Table 8-3. The truth table can be imple
mented with the logic shown in Figure 8-9.

8.6.2 50#/51# Generator

SO# and S 1 # are 80286-compatible status signals that must be provided for the 82288 and
82289. The SO#/SI# logic in Figure 8-10 generates these signals from 80386 status outputs
(D/C#, M/IO#, and W /R#) and wait-state generator outputs. WSI and WS2 are wait
state generator outputs that correspond to the first and second wait states of the 80386 bus
cycle. These signals ensure that SO# and SI# are valid for two CLK cycles.

8-17

1/0 INTERFACING

I..

II
BYTE ENABLES " AO/A1

V LOGIC

ADDRESS LATCHED ADDRESS
LATCH

80386 ADDRESS
I----

~
y

ADDRESS

~1..
DECODER

y

80386
A DATA vt 80386 DATA TRANSCEIVER

~
DATA

'of y

....
80386 STATUS 50#/51#

v' LOGIC

~ 82288

~ r- BUS
CONTROLLER

~
WAIT·STATE
GENERATOR

"---I 82289 - BUS
ARBITER

Figure S-S. S02S6-Compatible Interface

8.6.3 Wait-State Generator

....

y

....

Y

•

•

TO 80286
COMPATIBLE
PERIPHERALS

G30107

The wait-state generator PAL shown in Figure 8-11 controls the READY # input of the
80386. For local bus cycles, the wait-state generator produces signal outputs that correspond
to each wait state of the 80386 bus cycle, and the PAL READY# output uses these signals
to set READY # active after the required number of wait states. Two of the wait-state signals,
WSI and WS2, are also used to generate SO# and Sl#, as described above.

The PCLK signal, which necessary for producing 80286-compatible wait states, is generated
by dividing the CLK signal from the 82384 by two.

8-18

I/O INTERFACING

Table 8-3. AO, A 1, and BHE# Truth Table

80386 Signals 16-Bit Bus Signals
Comments

BE3# BE2# BE1# BEO# A1 BHE# BlE# (AO)

H* H* H* H* x x x x-no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L* H* L* x x x x-not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L* H* H* L* x x x x-not contiguous bytes
L* H* L* H* x x x x-not contiguous bytes
L* H* L* L* x x x x-not contiguous bytes
L L H H H L L
L* L* H* L* x x x x-not contiguous bytes
L L L H L L H
L L L L L L L

BLE# asserted when 00-07 of 16-bit bus is active.
BHE# asserted when 08-015 of 16-bit bus is active.
A 1 low for all even words; A 1 high for all odd words.

Key:
x = don't care
H = high voltage level
L = low voltage level
* = a non-occurring pattern of Byte Enables; either none are asserted, or the pattern has Byte Enables

asserted for non-contiguous bytes

To meet the READY# input hold time requirement (25 nanoseconds) for the 82288 Bus
Controller, the READY # signal must be two CLK cycles long. Therefore, two PAL equations
are required to generate READY #. The first equation generates the Ready Pulse
(RDYPLSE) output. RDYPLSE is fed into the READY# equation to extend READY# by
an additional CLK cycle. These signals are gated by PCLK.

RDYPLSE : = ARDY * PCLK

jREADY := ARDY * PCLK + RDYPLSE

8.6.4 Bus Controller and Bus Arbiter

Connections for the 82288 and 82289 are shown in Figure 8-12. The 82288 MB input is tied
low so that the 82288 operates in local-bus mode. Both the 82288 and the 82289 are selected
by an output of the address decoder that selects 80286-compatible cycles. The AEN # signal
from the 82289 enables the 82288 outputs.

8-19

110 INTERFACING

BEO#

L H

L x H L L

8E2#

L
L x H L

H
L L X L

H -~~ BE3# BE1#~

BEO#

x x H x L

L H L

BE1#

K-map for A 1 signal (same as Figure 5-3) 231630-8

BEO#

L H

L x L L L

BE2#

L
L x H L

H
L H x L

H

[.~BHE BE3# BE3#
--L-....

BE1#

x x L x L

L H L

BE1#

K-map for 16-t>it BHE'" signal 231630-9

BEO#

L H

L x L H L
L BLE# (OR AO)

L x L H
BE2# H

L L)(H
BE3#

H
x x H x L

L H L

BE1#

K-map for 16-bit BLE'" signal (same as AO signal in Figure 5-3) 231630-10

Figure 8-9. AO, A 1, and BHE# Logic

8.6.5 82258 ADMA Controller

The 82258 Advanced Direct Memory Access (ADMA) controller performs DMA transfers
between main memory and an I/O device, typically a magnetic disk or communications
channel, without intervention from the 80386. Shifting the I/O processing function from the
80386 to the 82258 improves overall system performance because the 80386 doesn't have to
switch context for every transfer.

The 82258 operates from the CLK output of the 82384 and provides the following advanced
features that are not available in previous generations of DMA controllers:

• Command chaining to perform multiple commands sequentially

• Data chaining to scatter data to separate memory locations and to gather data from
separate locations (this feature is useful for demand paging)

• Auto-assembly and disassembly to convert from 16-bit memory to 8-bit I/O or vice versa

8-20

1/0 INTERFACING

M/ION

D/CN

W/RN

CHIP SELECT ----... ___ "
FOR B02B6

COMPATIBLES

WS1

WS2 -----------------~~_'

Figure 8-10. SO#/S1# Generator Logic

~
WS1

J Q

K 16R8 ADSO#

ClK

82288 ALE
---r)--

.... CLK#
PClK

CHIP SELECT
FOR 80286

COMPATIBLES

Figure 8-11. Wait-State Generator Logic

• Compare, translate, and verify functions

SON

(THESE OUTPUTS
SHOULD BE
lATCHED BY ClK)

S1#

WS1

G30107

WS2

}
TOSO/S1
GENERATOR

READY#
TO 80386

G30107

• The option to use one of the four high-speed channels as a lower-speed, multiplexed
channel. The 82258 gains up to 32 more channels through multiplexing

8-21

SOH

Sl#

MIIO#

READY#

MBEN

LOCK#

1

~

110 INTERFACING

82289

SOH LLOCK# r--
Sl# CBRO# I+--
MIIO# BUSY# r--
READY# BPRO# r--
SYSB BREQ# r---
LOCK#

AEN# f-
BPRNII

82288

- SOH MRDC# I-r-
~ Sl# MWDC# f-r-

MIIO# IORC# I-i--
READY# IOWC# f-r-
CENL INTA# f-i--
MB

ALE
CMDLY

DTIR#

I
AEN#

DEN

CO
80286

MPATIBLE
BUS

TO ADDRESS LATCH

TO DATA TRANSCEIVER

TO DATA TRANSCEIVER

Figure 8-12. 82288 and 82289 Connections

G30107

The 82258, paired with the 82288 Bus Controller, is capable of being a bus master on a
common local bus and/or system bus with the 80386 and its bus controller. The 82258
requires both a local bus interface to act as bus master and an 80386 interface to commu
nicate directly with the 80386.

8.6.5.1 82258 AS BUS MASTER

The 82258 operating mode determines the type of bus interface it generates. In the 80286
mode, the 82258 generates the signals for direct interface with an 80286. In this example,
the 82258 is set to 80286 mode because the 80386 resembles the 80286 more than the 80186
or 8086. The 82258 is initialized to 80286 mode by holding its A23 pin high with a pullup
resistor during reset.

8-22

1/0 INTERFACING

The 82258 interface must include logic for sharing control of the local bus with the 80386.
The HOLD and Hold Acknowledge (HLDA) pins on both the 80386 and the 82258 facili
tate the transfer of bus control between the 80386 and the 82258.

Figure 8-13 shows the logic to transfer bus control. When the 82258 needs bus access, it
asserts its HOLD request signal, which is synchronized to CLK2 to meet the synchronous
setup and hold times of the 80386. The resulting Processor Hold (PHOLD) signal sets the
80386 HOLD input active.

When the 80386 recognizes the HOLD request, it completes the current bus cycle, then
places all its outputs except HLDA in the high impedance state and asserts HLDA. External
logic must use HLDA to disable the output buffers of the 80386 bus controller, data bus,
and address bus, and enable the output buffers of the 82258 and its bus controller, data bus,
and address bus.

The wait-state generator must be started with the ALE output of the 82288 Bus Controller.
Although the 82258 can share wait-state generator logic with the 80386, the logic must be
modified to support longer wait states for 82258 cycles. The 82258 divides its CLK input by
two internally, so that its wait state requires two CLK cycles rather than one. In addition,
the READY # output must meet the 82258 input hold time requirement of 25 nanoseconds.

ClK

ClK2

HlDA

HOLD

62258
00 ~--+--t~>o---. PHOlD

'---------.---1 D1 74F379 Q1

HOLD

HlDA

60366

G30107

Figure 8-13. HOLD and HLDA Logic for 80386-82258 Interface

8-23

1/0 INTERFACING

When the 82258 completes its operation, its HOLD request goes inactive (low), disabling
the 82258 output buffers and re-enabling the 80386 and its output buffer.

8.6.5.2 82258 AS PERIPHERAL

Although most of the communication between the 80386 and the 82258 is achieved indirectly
through memory, the 80386 occasionally performs bus cycles to the 82258. For example, the
80386 performs a direct access to set the general mode register during initialization. The
access occurs asynchronously over the slave mode interface of the 82258 that is shown in
Figure 8-14. The interface consists of the following pins:

• Chip Select (CS#)--enables the slave mode interface

• Control (RD#, WR#)-indicates bus cycle type (asynchronous interface)

• Register Address (A7-AO)-selects an 82258 internal register

• Data (DI5-DO)-transfers data to and from the 82258

With the 82258, asynchronous cycles must be used to allow time for the conversion of 80386
status signals to 80286-compatible inputs. The SO# and S 1 # inputs of the 82258 must there
fore be inactive (high) during slave mode operations. Asynchronous cycles require an address
hold time after a read command or write command, so the address outputs from the 80386
(A7-A2, and decoded AI, AO, and BHE#) that connect to corresponding inputs ofthe 82258
must be latched. Because A 7-AO and BHE# become 82258 outputs after initialization, regis
tered transceivers (74F543) serve as these latches.

ADMA Enable (ADMAEN#) is a chip select generated by address decoding logic during
80386 accesses to the I/0 addresses designated for the 82258. The RD# and WR# command
signals from the 80386 bus control logic must be delayed to provide the proper setup time
from chip select to command inputs. This delay can be generated using wait-state generator
signals.

ADMAEN# cs# A7-

FROM ADDRESS AO

DECODER HIGH SOH 80386
BHE# LOCAL

HIGH S1# BUS
FROM
80386 { RD# RD#

BUS
WR# WRH CONTROL

LOGIC
015-00

82258

G30107

Figure 8-14. 82258 Slave Mode Interface

8-24

1/0 INTERFACING

8.6.6 82586 LAN Coprocessor

The 82586 is an intelligent, high-performance communications controller designed to perform
most tasks required for controlling access to a local area network (LAN). In most applica
tions, the 82586 is the communication manager for a station connected to a LAN. Such a
station usually includes a host CPU, shared memory, a Serial Interface Unit, a transceiver,
and a LAN link (see Figure 8-15). The 82586 performs all functions associated with data
transfer between the shared memory and the LAN link, including:

• Framing

• Link management

• Address filtering

.-----------------,
I I
I I
I I
I I
I I
I I
I I
I I

I
I

CHANNEL I
HOST
CPU

82586 I
~~:::~~~ COPR~~~SSOR I

SERIAL
INTERFACE

82501
ETHERNET

SERIAL
INTERFACE

TRANSCEIVER
CABLE

IEEE 802.3 COMPATIBLE
WORKSTATION

82C502
ETHERNET

TRANSCEIVER
CHIP

I
I
I
I
I
I
I
I
I
I
I
I
I

L __________________ J

IEEE 802.3/ETHERNET LINK

Figure 8-15. LAN Station

8-25

G30107

110 INTERFACING

• Error detection

• Data encoding

• Network management

• Direct memory access (DMA)

• Buffer chaining

• High-level (user) command interpretation

The 82586 has two interfaces: a bus interface to the 80386 local bus and a network interface
to the Serial Interface Unit. The bus interface is described here. For detailed information
on using the 82586, refer to the Local Area Networking (LAN) Component User's Manual.

The 82586, which is a master on the 80386 local bus, communicates directly with the 80386
through the Channel Attention (CA) and interrupt (INT) signals. There are several ways
to design an interface between the 82586 and the 80386. In general, higher performance
interfaces (requiring less servicing time from the 80386) are more expensive. Four types of
interfaces are described in this section:

• Dedicated CPU

• Decoupled dual-port memory

• Coupled dual-port memory

• Shared bus

8.6.6.1 DEDICATED CPU

Dedicating a CPU to control the 82586 results in a high-performance, high-cost interface.
The CPU, typically an 80186, an 80188, or a microcontroller, executes the data link layer
(a functional division) of software and sometimes the network, transport, and session layers
as well. (For definitions of these layers, see the Local Area Networking (LAN) Components
User's Manual). The dedicated CPU relieves the 80386 of these layers and provides a high
level, message-oriented interface that can be treated in software as a standard I/O device.
In hardware, the interface is mapped into a dual-port memory.

8.6.6.2 DECOUPLED DUAL-PORT MEMORY

A decoupled dual-port memory interface, shown in Figure 8-16, contains two sections of
memory:

• 80386 core memory-typically DRAM that provides executable memory space for the
operating system

• 82586 communication channel memory-typically dual-ported SRAM that contains the
commands and buffers of the 82586

8-26

1/0 INTERFACING

82502

LAN

G30107

Figure 8-16. Decoupled Dual-Port Memory Interface

Only the dual-ported SRAM is shared; the 82586 cannot access the 80386 core memory.
The 80386 and 82586 operate in parallel except when both require access to the SRAM. In
this instance, one processor must wait while the other completes its access. At all other
times, the two devices are decoupled.

This interface requires at least one level of data copying to move data between the 80386
core memory and the 82586 communication channel memory. However, usually the data
must be copied to separate the frame header information.

8.6.6.3 COUPLED DUAL-PORT MEMORY

In a coupled dual-port memory interface, the 80386 and the 82586 share a common memory
space as illustrated in Figure 8-17. The 82586, with 24 address bits, can address up to 16
megabytes of memory. If the 80386 memory is larger than 16 megabytes, some memory is
inaccessible to the 82586; this memory must be taken into account in the system design.

The advantage of coupled dual-port memory is that the 82586 can perform DMA transfers
directly into the operating system memory. In this case, other logic must remove the frame
header information from the data prior to the DMA transfer. Through the buffer-chaining
feature of the 82586, the header information can be directed to a separate buffer, as long as
the minimum buffer size requirements are met.

8-27

1/0 INTERFACING

82502

LAN

G30107

Figure 8-17. Coupled Dual-Port Memory Interface

G30107

Figure 8-18. Shared Bus Interface

8.6.6.4 Shared Bus

In a shared bus interface (Figure 8-18), the 80386 and the 82586 share a common address
and data bus. The HOLD and HLDA signals provide bus arbitration. When one device
enters the hold state in response to the HOLD input, the other device can access the bus.

The shared bus interface is probably the simplest and least expensive interface. However,
the performance of the 80386 may drop tremendously because the 80386 must wait for the
82586 to complete its bus operation before it can access the bus. This wait can be several
hundred eLK cycles.

8-28

MUL TIBUS® I and 80386 9

CHAPTER 9
MUL TIBUS® I AND 80386

Previous chapters have presented single-bus systems in which a single 80386 connects to
memory, I/O, and coprocessors. This chapter introduces the system bus, which connects
several single-bus systems to create a powerful multiprocessing system. Two examples of
multiprocessing system buses are the Intel MULTIBUS I, discussed in this chapter, and the
Intel MUL TIBUS II, discussed in Chapter lO.

A system bus connects several processing subsystems (each of which can include a local bus
and private resources) and the resources that are shared between the processing subsystems.
Because all the processing subsystems perform operations simultaneously on their respective
local buses, such a multiprocessing system results in a significant increase in throughput over
a single-bus system.

Another advantage of using a system bus is that the system can be expanded modularly. The
system bus establishes the standard interface through which additional processing subsys
tems communicate with one another. Through this interface, components from different
vendors can be integrated.

A central concern of any multiprocessing system is dividing resources between the system
bus and the individual local buses; that is, determining which resources to share between all
processors and which to keep for only one processor's use. These choices affect system relia
bility, integrity, throughput, and performance. The deciding factors are often the require
ments of the particular target system.

Because local resources are isolated °from failures occurring in other parts of the system,
they enhance the overall reliability of the system. Also, because the processor does not have
to contend with other processors for access to its local resources, bus cycles are performed
quickly. However, local resources add to the system cost because each resource must be
duplicated for each subsystem that requires it.

Resources used by more than one processing subsystem but not used frequently by any
subsystem should be placed on the system bus. The system can minimize the idle time of
such resources. However, this advantage must be weighed against the disadvantage of
increased access time when more than one processor must use a system resource.

9.1 MUL TIBUS® I (IEEE 796)

The Intel MULTIBUS I (IEEE 796 Standard) is a proven, industry-standard, 16-bit multi
processing system bus. A wide variety of MUL TIBUS I compatible I/O subsystems, memory
boards, general purpose processing boards, and dedicated function boards are available from
Intel. Designers who choose the MUL TIBUS I protocols in their system bus have a ready
supply of system components available for use in their products.

9-1

MUL TIBUS® I AND 80386

MULTI BUS I protocols are described in detail in the Intel MULTIBUS® I Architecture
Reference Book.

One method of constructing an interface between the 80386 and the MULTIBUS I is to
generate all MUL TIBUS I signals using only TTL and PAL devices. A simpler method is
to use the 80286-compatible interface described in Chapter 8. The latter option is described
in the MULTIBUS I interface example in this chapter.

9.2 MUL TIBUS® I INTERFACE EXAMPLE

The MULTI BUS I interface presented in the following example consists of the 80286-
compatible 82289 Bus Arbiter and 82288 Bus Controller. The 82289, along with the bus
arbiters of other processing subsystems, coordinates control of the MUL TIBUS I; the 82288
provides the control signals to perform MUL TIBUS I accesses. Communication between
the 80386 and these devices is accomplished through PALs that are programmed to perform
all necessary signal translation and generation. Latching and buffering of the data and address
buses is performed by TTL logic.

Figure 9-1 shows a block diagram of the interface, which consists of the following parts:

• AO/Al generator-Generates the lower address bits from 80386 BEO#-BE3# outputs

• Address decoder-Determines whether the bus cycle requires a MUL TIBUS I access

• MULTIBUS I address latches-Connect directly to 80386 address pins A23-A2 and the
outputs of the AO / A 1 generator

• MULTIBUS I data latch/transceivers-Connect directly to 80386 data pins DI5-DO

• SO#/SI# generator-Translates 80386 outputs into the SO# and SI# signals

• Wait-state generator-Controls the length of the 80386 bus cycle through the READY#
signal

• 82288 Bus Controller-Generates the MULTIBUS I command signals

• 82289 Bus Arbiter-Arbitrates contention for bus control between the 80386 and other
MUL TIBUS I masters

These elements of the 80286-compatible interface are described in detail in Chapter 8. The
block diagram in Figure 9-1 does not include the 80386 local bus interface and local resources.
In a complete system, some logic (for example, the address decoder) is common to both
MUL TIBUS I and local bus interfaces. The following discussion includes only the logic
necessary for the MUL TIBUS I interface.

9.2.1 Address Latches and Data Transceivers

MUL TIBUS I allows up to 24 address lines and 16 data lines. In this example, the
MUL TIBUS addresses are located in a 256-kilobyte range between FOOOOOH and F3FFFFH,
so that all 24 address lines are used. The 16 data lines correspond to the lower half of the
80386 data bus.

9-2

(0
I

'"

II

80366

_to..
BYTE ENABLES

II' ADlA1
I\,.

LOGIC
I\,.

~
ADDRESS MULTIBUS· ADDRESS

LATCH

~386E "
ADDRESS

n~
DECODER

"
A .A I\,.

80366 DATA " TRA~:6:IVER MULTIBUS· DATA
.... " "

I\,.
SO#/S1#

80386 STATUS LOGIC
'" - 82288

~ - BUS
CONTROLLER

l
WAIT.sTATE
GENERATOR

-I 82289
L.-.-.-. BUS

ARBITER

Figure 9-1. 80386-MULTIBUS® I Interface

.

MULTIBUS· I

.

G30107

(

i:
c:
!:j
6i
c:
C/I
€>

» z o
00
o
Co)
00
C»

MUL TIBUS® I AND 80386

Inverting address latches convert the 80386 address outputs to the active-low MULTIBUS
I address bits. MUL TIBUS I address bits are numbered in hexadecimal so that A23-AO on
the 80386 bus become ADRI7#-ADRO# on the MULTIBUS 1. The BHE# signal is latched
to provide the MULTI BUS I BHEN# signal, as shown in Figure 9-2.

MUL TIBUS I requires address outputs to be valid for at least 50 nanoseconds after the
MULTIBUS I command goes inactive; therefore, the address on all bus cycles is latched.
The Address Enable (AEN#) output of the 82289 Bus Arbiter, which goes active when the
82289 has control of the MULTI BUS I, is an output enable for the MULTIBUS I latches.
The ALE# output of the 82288 latches the 80386 address for the MUL TIBUS I, as shown
in Figure 9-2.

Inverting latch/transceivers are needed to provide active-low MULTI BUS I data bits.
MULTIBUS I data bits are numbered in hexadecimal, so DIS-DO convert to DATF#
DATO#. Data is latched only on write cycles. For MULTIBUS I write cycles, the 82288
ALE#, DEN, and DT /R# inputs can control the address latches and data latch/
transceivers. For MULTIBUS I read cycles, the local bus RD# signal can control the latch/
transceivers. If DEN were used, data contention on the 80386 local bus would result when
a MUL TIBUS I read cycle immediately followed a local write cycle.

ADDRESS
A23·AO

INVERTING
LATCH

ALE---...I
(FROM 82288)

INVERTING
LATCHI

TRANSCEIVER

DTN -_

DT/R#----......
(FROM 82288)

Figure 9-2. MUL TIBUS® I Address Latches and Data Transceivers

9-4

G30107

inter MUL TIBUS® I AND 80386

9.2.2 Address Decoder

A MULTI BUS I system typically has both shared and local memory. I/O devices can also
be located either on MUL TIBUS I or a local bus. Therefore, the address space of the 80386
must be allocated between MUL TIBUS I and the local bus, and address decoding logic
must be used to select one bus or the other.

The following two signals are needed for MULTIBUS I selection:

• Bus Size 16 (BS16#) must be returned active to the 80386 to ensure a 16-bit bus cycle.
Additional terms for other devices requiring a 16-bit bus can be added to the BS 16# PAL
equation.

• MUL TIBUS Enable (MBEN) selects the 82288 Bus Controller and the 82289 Bus Arbiter
on the MUL TIBUS I interface. Other outputs of the decoder PAL are programmed to
select memory and I/O devices on the local bus.

The decoding of addresses to select either the local bus or the MUL TIBUS I is straight
forward. In the following example, the system uses the first 64 megabytes of the 80386
memory address space, requiring 26 address lines. The MUL TIBUS I memory is allocated
to the addresses from FOOOOOH to F3FFFFH. The same PAL equation generates the two
PAL outputs BS16# and MBEN:

/A25 * /A24 * A23 * A22 * A21 * A20 * /A19 * /Al8

I/O resources residing on MULTIBUS I can be memory-mapped into the memory space of
the 80386 or I/O-mapped into the I/O address space independent of the physical location
of the devices on MULTI BUS I. The addresses of memory-mapped I/O devices must be
decoded to generate I/O read or I/O write commands for memory references that fall within
the I/O-mapped regions of the memory space. This technique is discussed in Chapter 8
along with the tradeoffs between memory-mapped I/O and I/O-mapped I/O.

9.2.3 Wait-State Generator

The wait-state generator controls the READY # input of the 80386. For local bus cycles, the
wait-state generator produces signal outputs that correspond to each wait state of the 80386
bus cycle, and the PAL READY # output uses these signals to set READY# active after the
required number of wait states. Two of the wait-state signals, WSl and WS2, are also used
to generate SO# and S1#.

READY # generation for MUL TIBUS I cycles is linked to the Transfer Acknowledge
(XACK#) signal, which is returned active by the accessed device on MUL TIBUS I when
the MULTIBUS I cycle is complete. For a system containing a MULTI BUS I interface as
well as a local bus, XACK# must be incorporated into the wait-state generator to produce
the READY # signal. The necessary logic is shown in Figure 9-3.

9-5

82289AEN#

MUl TIBUS® XACK#

(BUS CONTROLLER)
ENDCYC2

ADSO#

ClK

82288 ALE

MUL TIBUS® I AND 80386

J J
J

ARDY
Q

- r- K

- ~

Ii>
WSl

J Q

K
l6R8

- -
1 >---
..... ClK#

.....
PClK

MBEN

Figure 9-3. Wait-State Generator Logic

WSl I TOSO/Sl
GENERATOR

WS2

READY#
TO 80386

G30l07

For MUL TIBUS I accesses, the wait-state generator is started by the ALE# signal from the
82288. When XACK# goes active, it is synchronized to CLK. The resulting Asynchronous
Ready (ARDY) signal, incorporated into the PAL equation for the READY# signal, causes
READY # to be output between two and three CLK cycles after ARDY goes active.

The PCLK signal, which is necessary for producing 80286-compatible wait states, is gener
ated by dividing the CLK signal from the 82384 by two.

To meet the READY# input hold time requirement (25 nanoseconds) for the 82288 Bus
Controller, the READY # signal for MUL TIBUS I cycles must be two CLK cycles long.
Therefore, two PAL equations are required to generate READY #. The first equation gener
ates the Ready Pulse (RDYPLSE) output. RDYPLSE is fed into the READY # equation to
extend READY # by an additional CLK cycle. These signals are gated by MBEN and PCLK.

RDYPLSE:= ARDY * MBEN * PCLK

/READY:= ARDY * MBEN * PCLK + RDYPLSE * MBEN

9-6

MUL TIBUS® I AND 80386

9.2.4 Bus Controller and Bus Arbiter

Connections for the 82288 and 82289 are shown in Figure 9-4. The 82288 can operate in
either local-bus mode or MULTI BUS I mode; a pullup resistor on the 82288 MB input
activates the MUL TIBUS I mode. Both the 82288 and the 82289 are selected by the MBEN
output of the address decoder PAL. The AEN # signal from the 82289 enables the 82288
outputs.

Timing diagrams for MUL TIBUS I read and write cycles are shown in Figures 9-5 and
9-6. The only differences between the timings are that a read cycle controls the data latch/
transceivers using RD# and outputs the MRDC# command signal, whereas a write cycle
controls the data latch/transceivers using DEN and outputs the MWTC# command.

82289 MULTIBUS® I

SOH
SOH LLOCK# LOCK# -Sl#
51# CBRO# - CBRO#

MIIO#
MIIO# BUSY# -- BUSY#

READY#
READY# BPRO# f---- BPRO#

MBEN
SYSB BREO# r----- BREO#

LOCK# - LOCK#
AEN# ,...

r- BPRN#

BPRN#

82288

'--- 50# MRDC# ,...- MRDC#

~ Sl# MWDC# MWTC#

M/IO# laRCH ,...- 10RC# ,...
lK ~

READY# 10WC# ,...- 10WC#

CENL INTA# ,...- INTA#
1

MB
ALE TO MULTIBUS" ® ADDRESS LATCH

,),
CMDLY

DTIRN } I
AEN# TO MULTIB

DEN
US® DATA TRANSCEIVER

G30107

Figure 9-4. MUL TIBUS® Arbiter and Bus Controller

9-7

ClK2

ClK

D/C.W/R.
M/iO

CSYNC

WS2

So-51
(PAll

MRDC
<0
I

00
CPURD

MBAlE

MBADDR.
BHE

DATA

XACK

READY

ENDCYC2

\ J.
\

1""\ jy r I \ F I

II I CD---+--

~----lV-
II h~l-

G30107

Figure 9-5. MUL TIBUS® I Read Cycle Timing

l

:iC
c ...
-t
iii
c
tJ)

€>

:to
Z
C
(Xl
o
Co)
(Xl
0)

CD CD
j W ru-u
-+-Ws-W) I

I

1 ktx I
I I /
I I

i "1

I
I

I \
I j

I i
I I
I 1
I I

I I
I I
I r

I j

I I

I
-~

I

I I

I I
I I
I I
I I

I I I
Ts Te Te (3 Tes

MINIMUM)

ru-u ru-u iLrU ru-u iLrU iL-J0!
U-W) U-U-U-Lr~

I ..
/ \\

..
J-\

~
t'i

\
t~

/ \

\

Figure 9-6. MUL TIBUS® I Write Cycle Timing

I

W
9

I
I
I
I

:

Vl
I
I
I
I
I

I

I

I
I
I
I

~ I
I

iLJ
t---

V-

G30107

l

3:
c:
r
~
til
c:
en
@)

>
Z
C
CD
o
(,0)
CD
en

MUL TIBUS® I AND 80386

9.3 TIMING ANAL VSIS OF MUL TIBUS® I INTERFACE

The timing specifications for the MULTIBUS I are explained in the MULTIBUS® I Speci
fication, Order Number 9800683. Table 9-1 lists the MULTIBUS I parameters that relate
to the 80386 system. These calculations are based on the assumption that 74ALS580 latches
and 74F544 transceivers are used for the MUL TIBUS I address and data interface.

In addition to the parameters in Table 9-1, designers must allow for the following:

• To ensure sufficient access time for the slave device, bus operations must not be termi
nated until an XACK# signal is received from the slave device.

• Following an MRDC# or an IORC# command, the responding slave device must disable
its data drivers within 125 nanoseconds after the return of the XACK# signal. All devices
that meet the MUL TIBUS I specification of 65 nanoseconds meet this requirement.

9.4 82289 BUS ARBITER

In a MULTI BUS I system, several processing subsystems contend for the use of shared
resources. If one processor requests access to MULTIBUS I while another processor is using
it, the requesting processor must wait. Bus arbitration logic controls access to MULTIBUS
I for all processing subsystems.

Each processing subsystem contains its own 82289 Bus Arbiter. The Bus Arbiter directs its
processor onto the bus and allows higher and lower priority bus masters to access the bus.
Once the bus arbiter gains control of MULTIBUS I, the 80386 can access system resources.
The bus arbiter handles bus contention in a manner that is transparent to the 80386.

Table 9-1. MUL TIBUS® I Timing Parameters

Timing MUlTIBUS 80386 System
Parameter Specification Timing

tAS 50 ns 125 ns (2 ClK cycles)
Address setup minimum - 20 ns (ALE max delay)
before command - 22 ns (74AlS580 max. delay)
active + 3 ns (Command min. delay)

86 ns min.

tDS 50 ns 125 ns (2 ClK cycles)
Write data minimum - 30 ns (DEN max. delay)
setup before - 12 ns (74F544 max. delay)
command active + 3 ns (Command min. delay)

86 ns min.

tAH 50 ns 187.5ns (3 ClK cycles)
Address hold minimum - 25 ns (Command inactive max. delay)
after command + 3 ns (ALE max. delay)
inactive ---

165.5ns min

9-10

MUL TIBUS® I AND 80386

Each processor in the multiprocessing system initiates bus cycles as though it has exclusive
use of MUL TIBUS I. The bus arbiter keeps track of whether the subsystem has control of
the bus and prevents the bus controller from accessing the bus when the subsystem does not
control the bus.

When the bus arbiter receives control of MUL TIBUS I, it enables the bus controller and
address latches to drive MUL TIBUS I. When the transfer is complete, MUL TIBUS I returns
the XACK# signal, which activates READY # to end the bus cycle.

9.4.1 Priority Resolution

Because a MULTI BUS I system includes many bus masters, logic must be provided to resolve
priority between two bus masters that simultaneously request control of MUL TIBUS I.
Figure 9-7 shows two common methods for resolving priority: serial priority and parallel
priority.

The serial priority technique is implemented by daisy-chaining the Bus Priority In CBPRN#)
and Bus Priority Out (BPRO#) signals of all the bus arbiters in the system. Due to delays
in the daisy chain, this technique accommodates only a limited number of bus arbiters.

The parallel priority technique requires external logic to recognize the BPRN# inputs from
all bus arbiters and return the BPRO# signal active to the requesting bus arbiter that has
the highest priority. The number of bus arbiters accommodated with this technique depends
on the complexity of the decoding logic.

Priority resolution logic need not be included in the design of a single processing subsystem
with a MUL TIBUS I interface. The bus arbiter takes control of MUL TIBUS I when the
BPRN# signal goes active and relinquishes control when BPRN# goes inactive. As long as
external logic exists to control the BPRN# inputs of all bus arbiters, a subsystem can be
designed independent of the priority resolution circuit.

9.4.2 82289 Operating Modes

Following a MULTI BUS I cycle, the controlling bus arbiter can either retain bus control or
release control so that another bus master can access the bus. Three modes for relinquishing
bus control are as follows:

• Mode I-The bus arbiter releases the bus at the end of each cycle.

• Mode 2-The bus arbiter retains control of the bus until another bus master (of any
priority) requests control.

• Mode 3-The bus arbiter retains control of the bus until a higher priority bus master
requests control.

In addition, the bus arbiter can switch between modes 2 and 3, based on the type of bus
cycle.

9-11

MUL TIBUS® I AND 80386

HIGHEST PRIORITY

/

SERIAL PRIORITY RESOLVING TECHNIQUE

BUS im£O

AR~TER r-~~~P~N~t--.~~~~=;~-r~~~~;;l

74148
PRIORITY

4 ENCODER

PARALLEL PRIORITY RESOLVING TECHNIOUE

Figure 9-7. Bus Priority Resolution

9-12

74138 ~
3T08

DECODER 4

210760·132

MUL TIBUS® I AND 8038.6

Figure 9-8 shows the strapping configurations required to implement each of these four
techniques.

The operating mode of one bus arbiter affects the throughput of both the individual subsys
tem as well as other subsystems on MUL TIBUS 1. This is because the delay required to
transfer MULTIBUS I control from one bus arbiter to another affects all subsystems waiting
to use MULTIBUS I. Therefore, the most efficient operating mode depends on how often a
subsystem accesses MUL TIBUS I and how this frequency compares to that of the other
subsystems.

• Mode 1 is adequate for a subsystem that needs MULTI BUS I access only occasionally.
By releasing MUL TIBUS I after each bus cycle, the subsystem minimizes its impact on
other subsystems that use MUL TIBUS 1.

82289

RESET-_~ RESET

MODE 1

82289

RESET~ RESET

L. ALWAYS/~

MODE 3

82289

RESET-_~RESET

~ PA~~~LEL
DATA OR

ADORESSABLE
LATCH

ENA8LE

MODE 2

82289

RESET-'9---_ ..

Q

D

L.---<><ca·---MUl. TIBUS~ BCLK

* WHEN LOW, 82289 IN MODE 3;
WHEN HIGH, 82289 IN MODE 2

210760·117

Figure 9·8. Operating Mode Configurations

9-13

MUL TIBUS® I AND 80386

• Mode 2 is suited for a subsystem that is one of several subsystems that are all equally
likely to require MUL TIBUS I. The performance decrease caused by the delay necessary
to take control of MUL TIBUS I is distributed evenly to all subsystems.

• Mode 3 should be used for a subsystem that uses MULTI BUS I frequently. The delay
required for taking control of MUL TIBUS I and the consequent performance decrease is
shifted to subsystems that use MULTI BUS I less often.

• Switching between modes 2 and 3 is useful if the subsystem demand for MUL TIBUS I
is unknown or variable.

9.4.3 MUL TIBUS® I Locked Cycles

Locked bus cycles for the local bus are described in Chapter 3. In locked bus cycles, the
80386 asserts the LOCK# signal to prevent another bus master from intervening between
two bus cycles. In the same manner, an 80386 processing subsystem can assert the LLOCK#
output of its bus arbiter to prevent other subsystems from gaining control of MUL TIBUS
I. A locked cycle overrides the normal operating mode of the bus arbiter (one of the four
modes mentioned above).

Locked MUL TIBUS I cycles are typically used to implement software semaphores (described
in Chapter 3) for critical code sections or critical real-time events. Locked cycles can also
be used for high-performance transfers within one instruction.

The 80386 initiates a locked MULTI BUS I cycle by asserting its LOCK# output to the
82289 bus arbiter. The bus arbiter outputs its LLOCK# signal to the MUL TIBUS I LOCK#
status line and holds LLOCK# active until the LOCK# signal from the 80386 goes inactive.
The LLOCK# signal from the bus arbiter must be connected to the MUL TIBUS I LOCK#
status line through a tristate driver controlled by the AEN# output of the bus arbiter.

9.5 OTHER MUL TIBUS® I DESIGN CONSIDERATIONS

Additional design considerations are presented in this section. These considerations include
provisions for interrupt handling, 8-bit transfers, timeout protection, and power failure
handling on MUL TIBUS I.

9.5.1 Interrupt-Acknowledge on MUL TIBUS® I

When an interrupt is received by the 80386, the 80386 generates an interrupt-acknowledge
cycle (described in Chapter 3) to fetch an 8-bit interrupt vector from the 8259A Program
mable Interrupt Controller. The 8259A can be located on either MUL TIBUS I or a local
bus.

9-14

MUL TIBUS® I AND 80386

Multiple 8259As can be cascaded (one master and up to eight slaves) to process up to 64
interrupts. Three configurations are possible for cascaded interrupt controllers:

• All of the interrupt controllers for one 80386 reside on the local bus of that processor,
and all interrupt-acknowledge cycles are directed to the local bus.

• All slave interrupt controllers (those that connect directly to interrupting devices) reside
on MULTIBUS 1. The master interrupt controller may reside on either the local bus or
MULTI BUS 1. In this case, all interrupt-acknowledge cycles are directed to
MULTIBUSI.

• Some slave interrupt controllers reside on local buses, and other slave interrupt control
lers reside on MUL TIBUS 1. In this case, the appropriate bus for the interrupt
acknowledge cycle depends on the cascade address generated by the master interrupt
controller.

In the first two configurations, no decoding is needed because all interrupt acknowledge
cycles are directed to one bus. However, if a system contains a master interrupt controller
residing on a local bus and at least one slave interrupt controller residing on MULTIBUS I,
address decoding must select the bus for each interrupt-acknowledge cycle.

The interrupt-acknowledge cycle must be considered in the design of this decoding logic.
The 80386 responds to an active INTR input by performing two bus cycles. During the first
cycle, the master interrupt controller determines which, if any, of its slave controllers should
return the interrupt vector and drive sits cascade address pins (CASO#, CASl#, CAS2#) to
select that slave controller. During the second cycle, the 80386 reads an 8-bit vector from
the selected interrupt controller and uses this vector to service the interrupt.

In a system that has slave controllers residing on MULTIBUS I, the circuit shown in
Figure 9-9 can be used to decode the three cascade address pins from the master controller
to select either MUL TIBUS I or the local bus for the interrupt-acknowledge cycle. If
MUL TIBUS I is selected, the 82289 Bus Arbiter is enabled. The 82289 in turn requests
control of MULTIBUS I and enables the address and data transceivers when the request is
granted.

The bus-select signal must become valid for the second interrupt-acknowledge cycle. The
master controller's cascade address outputs become valid within 565 nanoseconds after the
INT A# output from the bus control logic goes active. Bus-select decoding requires 30
nanoseconds, for a total of 595 nanoseconds from INTA# to bus-select valid. The four idle
bus cycles that the 80386 automatically inserts between the two interrupt-acknowledge cycles
provides some of this time. The wait-state generator must add wait states to the first
interrupt-acknowledge cycle to provide the rest of the time needed for the bus-select signal
to become valid.

The cascade address outputs are gated onto A8, A9, and AlO of the address bus through
three-state drivers during the second interrupt-acknowledge cycle. Bus control logic must
generate a Master Cascade Enable (MCE) signal to enable these drivers. This signal must
remain valid long enough for the cascade address to be captured in MUL TIBUS I address
latches; however it must be de-asserted before the 80386 drives the address bus.

9-15

.A

1<
Ul .
:::>
IX>
"" <.>
0
<D

ll!
lil

1<=

MUL TIBUS® I AND 80386

l 8205

(FROM SLAVE
INTERRUPT CONTROLLER)

CA5VALlDI1i

~82~5~9A~~ O,~
MASTERCASO ---1I---... A • ~

CAS, A~ 07~
INTA CAS2 A2 74S30

£1 E2

+ +
74AL5580

r--------�5TB

___ 'I~OE.E =>
MBSEL(r-" +----t

INTA

OTHER
MULTIBUS'·

DECODE

74500

...----ISY5B/RESB

<
AEN-

82289
BUS

ARBITER

CENLt--------,.. n .. -+-.....,.:S:::E~LE:::C~T_+__+_I CMDLY_
MCE ~ -t>::

)

LOCALMB~ BUS

,:.....r: CENL AEN I-
MBIOI3) Vee ~~E t-......... ----")
~~------_IM/~

CONTROLLER WAIT.STATE 82288
~ GENERATOR BUS

_ READY CONTROLLER

ARDYENI~-----------------------~
ARDYI~ __ ---__ --______ ---____ --~~~A~K~

210760-113

Figure 9-9. Bus .. Select Logic for Interrupt Acknowledge

9.5.2 Byte Swapping during MUL TIBUS® I Byte Transfers

The MUL TIBUS I standard specifies that all byte transfers must be performed on the lower
eight data lines (MULTIBUS I OATO# .. OAT7#), regardless of the address of the data. An
80386 subsystem must swap data from eight of its upper 24 data lines (08-015, 016-023,
or 024-031) to its lower eight data lines (00-07) before transferring data to MULTIBUS
I, and swap data from its lower data lines to the appropriate upper data lines when reading
a byte from MULTI BUS L This byte-swapping requirement maintains compatibility between
8-bit, 16-bit, and 32-bit systems sharing the same MULTIBUS L

9-16

MUL TIBUS® I AND 80386

The BSI6# signal is generated and returned to the 80386 for all MULTIBUS I cycles. The
80386 automatically swaps data between the lower half (015-00) and the upper half
(D31-D16) of its data bus and adds an extra bus cycle as necessary to complete the data
transfer. Therefore, only the logic to swap data from 015-08 to 07-00 is needed to meet
the byte-swapping requirement of MUL TIBUS I.

Figure 9-10 illustrates a circuit that performs the byte-swapping function. The Output Enable
(OE#) inputs of the data latch/transceivers are conditioned by the states of the BHE# and
AO outputs of the address decoder.

9.5.3 Bus Timeout Function for MUL TIBUS® I Accesses

The MUL TIBUS I XACK# signal terminates an 80386 bus cycle by driving the wait-state
generator logic. However, if the 80386 addresses a nonexistent device on MULTI BUS I, the
XACK# signal is never generated. Without a bus-timeout protection circuit, the 80386 waits
indefinitely for an active READY # signal and prevents other processors from using
MULTI BUS I.

Figure 9-11 shows an implementation of a bus-timeout circuit that ensures that all
MUL TIBUS I cycles eventually end. The ALE# output of the bus controller activates a
one-shot that outputs a I-millisecond pulse. The rising edge of the pulse activates the
TIMEOUT # signal if READY # does not go active within 1 millisecond to clear the
TIMEOUT # flip-flop. The TIMEOUT # signal is input to the wait-state generator logic to
activate the READY # signal. When READY # goes active, it is returned to clear the
TIMEOUT # signal.

9.5.4 MUL TIBUS® I Power Failure Handling

The MUL TIBUS I interface includes a Power Fail Interrupt PFIN signal to signal an
impending system power failure. Typically, PFIN# is connected to the non-maskable inter
rupt (NMI) request input of each 80386. The NMI service routine can direct the 80386 to
save its environment immediately, before falling voltages and the MULTIBUS I Memory
Protect (MPRO#) signal prevent any further memory activity. In systems with memory
backup power or nonvolatile memory, the saved environment can be recovered on powerup.

The power-up sequence of the 80386 can check the state of the MULTI BUS I Power Fail
Sense Latch (PFSN #) to see if a previous power failure has occurred. If this signal is active
(low), the 80386 can branch to a power-up routine that resets the latch using the Power Fail
Sense Reset signal (PFSR#), restores the previous 80386 environment, and resumes
execution.

Further guidelines for designing 80386 systems with power failure features are contained in
the Intel MULTIBUS® I SpeCIfication.

9-17

BUS
CONTROL

80386
DATA
BUS

74F373

LE OE

ALE-.-t ":"

MULTIBUS® I AND 80386

=

")O-..... --.. -+-_~ 74ALS580

Figure 9-10. Byte-Swapping Logic

9.6 iLBX™ BUS EXPANSION

MULTIBUS~ ",....J....L-'-__ ---.

BUS
CONTROL

MUL TIBUS® BHEN

MULTIBUS® ADRO

G30107

The iLBX (Local Bus Expansion) is a high-performance bus interface standard that permits
the modular expansion of an 80386-based system. An iLBX interface links the 80386 system
board with additional boards containing memory, I/O subsystems, and other peripheral
devices or bus masters. Any board that conforms to the iLBX standard can be added to the
system as the user's needs dictate. For a 16-MHz 80386-based system, a typical iLBX access
cycle requires six wait states.

9-18

MUL TIBUS® I AND 80386

T

~
~
~ -Q - C Q ~ READY#

ALE D '- -D
CLK2

Q Q - """""-

TlMEOUn

G30107

Figure 9-11. Bus-Timeout Protection Circuit

The iLBX'M Bus Specification describes the iLBX Local Bus Expansion standard in detail.

The iLBX bus interface requires the generation of AI, AO, and BHE# from the 80386
BE3#-BEO# outputs. The iLBX connector contains 24 address bits (AB23-ABO) and 16 data
bits (DBI5-DBO), which are taken from the buffered address lines (A23-AO), and data lines
(DI5-DO) of the 80386 local bus. BHE# is inverted and buffered to provide the Byte High
Enable (BHEN) signal.

The Read/Write (R/W#), Data Strobe (DSTB#), and Address Strobe (ASTB#) controls
are generated from local bus control signals using the logic shown in Figure 9-12. R/W # is
a delayed, inverted version of the W /R# output of the 80386. DSTB# goes active when
either RD# or WR# from the local bus control goes active. ASTB# and DSTB# are delayed
to allow adequate setup time for BHEN. In this example, the WS2 signal, which is active
during the third CLK cycle of the 80386 bus cycle, provides the delay.

A chip-select output of address decoding logic goes active for accesses to the memory and
I/O locations allocated to the iLBX bus and selects the iLBX address and data buffers.
Command signals from the local bus control logic enable the outputs of the iLBX
transceivers.

When an iLBX cycle is complete, the Acknowledge (ACK#) signal is returned over the
iLBX bus. This signal must be synchronized and incorporated into the wait-state generator
logic to provide the READY # signal.

9.7 DUAL-PORT RAM WITH MUL TIBUS® I

A dual-port RAM is a memory subsystem that can be accessed by both the 80386, through
its local bus, and other processing subsystems, through the MUL TIBUS I system bus. Dual
port RAM offers some of the advantages of both local resources and system resources. It is
an effective solution when using only local memory or only system memory would decrease
system cost and/or performance significantly.

9-19

MUL TIBUS® I AND 80386

W/RN ------,

:~: -----Irro- .;w.

elK

WS2

RON

WRN

.... ----- ASTBN

READY# -.>~-+-'
DSTBN

RESET

IlBXEN#

Figure 9-12. iLBXTM Signal Generation

G30107

The 80386 accesses dual-port RAM through its high-speed local bus, leaving MUL TIBUS
I free for other system operations. Other processing subsystems can pass data to and from
the 80386 through the dual-port RAM using MULTIBUS 1.

If necessary, dual-port RAM can be mapped to reserve address ranges for the exclusive use
of the 80386. The 80386 and the other processing subsystems need not use the same address
mapping for dual-port RAM.

The disadvantage of dual-port RAM is that its design is more complex than that of either
local or system memory. Dual-port RAM requires arbitration logic to ensure that only one
of the two buses gains access at one time.

9.7.1 Avoiding Deadlock with Dual-Port RAM

The MULTIBUS-LOCK# signal and the 80386 LOCK# signal mediate contention when
both the 80386 and a MULTI BUS I device attempt to access dual-port RAM. However,
locked cycles to dual-port RAM can potentially result in deadlock. Deadlock arises when
the 80386 performs locked cycles to ensure back-to-back accesses to dual-port RAM and
MULTIBUS I.

9-20

MULTIBUS® I AND 80386

Suppose the 80386 locks an access to dual-port RAM followed by a MULTI BUS access, to
ensure that the accesses are performed back-to-back. (This could happen only in protected
mode during interrupt processing when the IDT is in the dual-port RAM and the target
descriptor is in MULTI BUS RAM.) At the same time the 80386 performs the first locked
cycle, another device gains control of MUL TIBUS I for the purpose of accessing dual-port
RAM. The 80386 cannot gain control of MULTIBUS I to complete the locked operation,
and the other device cannot relinquish control of MUL TIBUS I because it cannot complete
its access to dual-port RAM. Each device therefore enters an interminable wait state.

Two approaches can be used to avoid deadlock:

• Requiring software to be free of locked accesses to dual-port RAM.

• Designing hardware to negate the LOCK# signal for transfers between dual-port RAM
and MULTIBUS I. If this approach is used, software writers must be informed that such
transfers will not be locked even though software dictates locked cycles.

9-21

MUL TIBUS® II and 80386 10

CHAPTER 10
MUL TIBUS® II AND 80386

Standard bus interfaces guarantee compatibility between existing and newly developed
systems. This compatibility safeguards a user's hardware investment against obsolescence
even in the face of rapidly advancing technology. The MUL TIBUS I standard interface has
proven its value in providing flexibility for the expansion of existing systems and the integra
tion of new designs. The MUL TIBUS II standard interface extends Intel's Open Systems
design strategy into the world of 32-bit microprocessing systems.

10.1 MUL TIBUS® II STANDARD

The MULTI BUS II standard is a processor-independent bus architecture that features a
32-bit parallel system bus with a maximum throughput of 40 megabytes per second, high
speed local bus access to off-board memory, a low-cost serial system bus, and full multi
processing support. MUL TIBUS II achieves these features through five specialized Intel
buses:

• Parallel System Bus (iPSB)

• Local Bus Extension (iLBX II)

• Serial System Bus (iSSB)

• Multi-channel DMA I/0 Bus

• System Expansion I/0 Bus (iSBX)

The DMA I/O Bus and the iSBX are carried over directly from MULTI BUS I architecture.
See the MULTIBUS® I Architectural Specification for a full description of these buses. The
multiple bus structure provides the following important advantages over a single, generalized
bus:

• Each bus is optimized for a specific function.

• The buses perform operations in parallel.

• Buses that are not needed for a particular system can be omitted, avoiding unnecessary
costs.

10.2 PARALLEL SYSTEM BUS (iPSB)

The Parallel System Bus liPSB) is optimized for interprocessor data transfer and commu
nication. Its burst transfer capability provides a maximum sustained bandwidth of 40
megabytes per second for high-performance data transfers.

10-1

MUL TIBUS@ II AND 80386

The iPSB supports four address spaces per bus agent (a board that encompasses a functional
subsystem). The conventional I/O and memory address spaces are included, plus two other
address spaces that support advanced functions:

• An 255 address message space supports message passing. Typically, a microprocessor
performs interprocessor communications inefficiently. Message passing allows two bus
agents to exchange a block of data at full bus bandwidth without supervision from a
microprocessor. An intelligent bus interface capable of message passing shifts the burden
of interprocessor communication away from the processor,thus enhancing overall system
performance.

• An interconnect space allows geographic addressing, which is the identification of any
bus agent (board) by slot number. Every MULTI BUS II system contains a Central
Services Module (CSM) that provides system services, such as uniform initialization and
bus timeout detection, for all bus agents residing on the iPSB bus. The CSM may use the
registers of the interconnect space of each bus agent to configure the agent dynamically.
Stake pin jumpers, DIP switches, and other hardware configuration devices can be
eliminated.

Because the 80386 can access only memory space or I/O space, the message space and
interconnect space may be mapped into the memory space or the I/O space. Decoding logic
provides chip select signals for the devices implementing the message space and the inter
connect space, as well as devices in the memory space and the I/O space.

Three types of bus cycles define activity on the iPSB bus:

• Arbitration Cycle-Determines the next owner of the bus. This cycle consists of a resolu
tion phase, in which competing bus agents determine priority for bus control, and an
acquisition phase, in which the agent with the highest priority initiates a transfer cycle.

• Transfer Cycle-Performs a data transfer between the bus owner and another bus agent.
This cycle consists of a request phase, in which address control signals are driven, and a
reply phase, in which the two agents perform a handshake to synchronize the data trans
fer. The reply phase is repeated and data transfers continue until the bus owner ends the
transfer cycle.

• Exception Cycle-Indicates that an exception (error) has occurred during a transfer cycle.
This cycle consists of a signal phase, in which an exception signal from one bus agent
causes all other bus agents to terminate any arbitration and transfer cycles in progress,
and a recovery phase, in which the exception signals go inactive. A new arbitration cycle
can begin on the clock cycle after the recovery phase.

Figure 10-1 shows how the timing of these cycles overlap.

10.2.1 iPSB Interface

Each bus agent must provide a means of transferring data between its 80386, its intercon
nect registers, and the iPSB bus. The location of bus interface logic to meet this requirement
is shown in Figure 10-2. A full-featured subsystem may also include provisions for the message
passing protocols used by the iPSB bus.

10-2

ARBITRATION CYCLE

TRANSFER CYCLE

....
o
b

EXCEPTION CYCLE

'I-

Figure 10-1. iPSB Bus Cycle Timing

G30107

(

3:
c:
!:i
iii
c:
en

8

=
J>
Z
C
(XI
o
Co)
(XI
01

MESSAGES

ALL
EXTERNAL

REFERENCES

MUL TIBUS® II AND 80386

BUS INTERFACE
FUNCTIONAL PATHS

LOCALMEM
OR 1/0 ACCESS

BUS
INTERFACE

LOGIC

INCOMING
INTERCONNECT

REFERENCE

IPSBBUS

INTERCONNECT
REFERENCES

INCOMING
MESSAGE

Figure 10-2. iPSB Bus Interface

INTERCONNECT
SPACE

G30107

The iPSB interface may be conveniently implemented by a Bus Arbiter/Controller (BAC),
a Message Interrupt Controller (MIC), and miscellaneous logic. The BAC coordinates direct
interaction with the other devices on the iPSB bus, while the MIC works through the BAC
to send and receive interrupt messages. Other logic is needed for address decoding, parity
checking, and control signal generation.

The BAC and MIC are implemented in Intel gate arrays. In addition, Intel is developing an
advanced CMOS device, the Message Passing Coprocessor (MPC), that integrates the
functions of the BAC and the MIC plus parity checking and full message passing (solicited
and unsolicited), all in one package called the BIC (Bus Interface Controller). Systems
designed today with the available BAC and MIC can be upgraded to the MPC in the future.

10.2.1.1 BAC SIGNALS

The BAC provides arbitration and system control logic for the arbitration, transfer, and
exception cycles defined by the MUL TIBUS II architecture. Through the BAC, the bus
agent functions as either a requestor or a replier in a transfer cycle. In all cases, the device
requiring iPSB bus access (either the 80386 or the MIC) is completely isolated from the
iPSB; the BAC provides all direct interaction.

10-4

MUL TIBUS<!> II AND 80386

The BAC signals can be divided into three functional groups:

• iPSB interface

• Local bus interface

• Register interface with the 80386

The iPSB interface signals perform mainly arbitration and system control. Five bidirectional
Arbitration signals (ARBS-ARBO) are used during reset to read a cardslot ID and arbitra
tion ID from the CSM, and during arbitration cycles to output the arbitration ID for prior
ity resolution. Bus Request (BREQ#) is a bidirectional signal. Each bus agent asserts BREQ#
to request control of the bus and samples BREQ# to determine if other agents are also
contending for bus control.

Bus Error (BUSERR#) is a bidirectional signal that a bus agent outputs to all other bus
agents when it detects a parity error during a transfer cycle. Bus Timeout (TIM OUT #) is
output by the CSM to all bus agents when a bus cycle fails to end within a prescribed time
period.

Ten System Control signals (SC9#-SCO#) coordinate transfer cycles. The MULTIBUS® II
Architectural Specification defines each of these signals. Directional enables (SCOEH and
SCOEL) are providttd for transceivers to buffer these bidirectional signals. External logic
checks byte parity on the multiplexed address and data bus (AD31-ADO) and sets the Parity
inputs (PAR3-PARO) accordingly.

Other iPSB signals are Reset (RST #), Reset-Not-Complete (RSTNC#), and ID Latch
(LACHn#, n = slot number). These signals are used only during reset.

Local bus interface signals pertain to the communication between the BAC and the 80386
or between the BAC and the MIC. These signals indicate to the BAC when to request bus
control and what type of bus cycle to drive when it gains bus control.

Four control signals are necessary for each of the two devices connected to the BAC. The
signals that connect to the 80386 are REQUESTA, GRANTA, READYA, and SELECTA;
those that connect to the MIC are REQUESTB, GRANTB, READYB, and SELECTB.

To request bus control, the 80386 or the MIC activates one of the REQUEST signals. The
corresponding GRANT signal is returned by the BAC when it has bus control. Data width
and address space selections are encoded on the WIDTHl#, WIDTHO#, SPACEl#, and
SPACEO# inputs, while WR# dictates either a write cycle or a read cycle. These five inputs
translate directly to SC6#-SC2# outputs during the request phase of a transfer cycle.
READYA or READYB indicates that WIDTHO#, WIDTHl#, SPACEO#, SPACEl#, and
WR# can be read by the BAC to drive the transfer cycle.

LAS TINA or LASTINB controls the end-of-cycle signal for burst transfers. The LOCK#
input is activated for locked transfers.

10-5

MUL TIBUS@ II AND 80386

The bus agent that receives a transfer cycle from the bus owner must have its BAC enabled
by an active SELECT input. Errors detected by the replying agent are encoded by its MIC
on the AGERR2-AGERRO inputs to its BAC so that the BAC can drive the SC7#-SC5#
lines accordingly. If an error occurs, the requesting agent notifies the 80386 through the
EINT signal.

The register interface signals control register operations between the 80386 and the BAC.
Three 5-bit registers (Arbitration ID, Slot ID, and Error Port) are addressed through RSELl
and RSELO. Data is transferred on RI04-RIOO; the direction of transfer is indicated by
RRW.

10.2.1.2 MIC SIGNALS

The MIC coordinates interrupt handling for a bus agent on the iPSB bus. Interrupts are
implemented as virtual interrupts in the message space. To send an interrupt message, the
80386 writes four bytes to the MIC to indicate the source, destination, and type of message.
The MIC then coordinates the message transfer. The MIC of the receiving bus agent reads
the 4-byte message and stores it in a 4-deep message queue to be read by the 80386.

The MIC signals are divided into three groups:

• iPSB interface

• Local bus interface

• BAC interface

The iPSB interface consists of the multiplexed address/data bus (AD31#-ADO#). Although
the MIC gains access to the iPSB bus through the BAC, the MIC drives the address/data
bus directly. As a requesting agent, the MIC drives the address and data at the appropriate
times. As a receiving agent, the MIC monitors the address/data bus for its address. When
it recognizes its address, the MIC selects its BAC to perform the required handshake and
read the message into the message queue. Then, the MIC interrupts the 80386 to indicate
that the message is pending in the queue. The 80386 reads the message and services the
interrupt accordingly.

The local bus interface consists of seven register/ports, addressed through A2-AO, through
which the MIC and the 80386 communicate. Data is transferred over D7-DO, and WR# and
RD# determine the direction of transfer. Other signals include the MIC Chip Select (CS#),
aWAIT # signal for adding wait states to the 80386 cycle, and a Message Interrupt (MINT)
to signal an interrupt condition to the 80386.

The BAC interface includes REQUESTB, READYB, SELECTB, and GRANTB. These
signals have already been described with the other BAC signals.

While the BAC and the MIC together provide the backbone for an iPSB interface, other
logic provides buffering and control to round out the interface. An 8751 Microcontroller
coordinates 80386 access to the interconnect space. An address decoder distinguishes between
local, interconnect, and iPSB accesses. PALs control the buffering of signals between the
80386, BAC, MIC, 8751 Microcontroller, and iPSB bus.

10-6

MUL TIBUS® II AND 80386

10.3 LOCAL BUS EXTENSION (iLBX™ II)

The iLBX II bus extension is a high-speed execution bus designed for quick access to off
board memory. One iLBX II bus extension can support either two processing subsystems
(called the primary requesting agent and the secondary requesting agent) plus four memory
subsystems, or a single processing subsystem plus five memory subsystems. A MULTIBUS
II system may contain more than one iLBX II bus extension to meet its memory
requirements.

The iLBX II bus extension features a 26-bit address bus and a separate 32-bit data bus.
Because these paths are separate, the extension allows pipelining of transfer cycles; the request
phase of a transfer cycle can overlap the reply phase of the previous cycle.

Other features of the iLBX II bus extension are:

• A unidirectional handshake for fast data transfers

• Mutual exclusion capability to control multiported memory

• Interconnect space (for each bus agent) through which the primary requesting agent
initializes and configures all other bus agents.

10.4 SERIAL SYSTEM BUS (iSSB)

The Serial System Bus (iSSB) provides a simple, low-cost alternative to the Parallel System
Bus (iPSB) bus. In applications that do not require the high performance of the iPSB bus,
the iSSB bus can provide some cost reduction. In systems containing both the iPSB bus and
the iSSB bus, the iSSB bus provides an alternate path for interface control, diagnostics, or
redundancy.

The iSSB bus can contain up to 32 bus agents distributed over a maximum of 10 meters.
Bus control is determined through an access protocol called Carrier Sense Multiple Access
with Collision Detection (CSMA/CD). This protocol allows agents to transmit data whenever
they are ready. In case of simultaneous transmission by two or more bus agents, the iSSB
invokes a deterministic collision resolution algorithm to grant fair access to all agents.

From the application point of view, the error detection capability of the iSSB bus, coupled
with an intelligent bus agent interface (able to retransmit) makes the iSSB bus as reliable
as the iPSB bus, even though the iSSB bus may be up to 10 meters long.

10-7

Physical Design and Debugging 11

CHAPTER 11
PHYSICAL DESIGN AND DEBUGGING

This chapter outlines recommendations for providing adequate power to the 80386, address
ing high-frequency issues that do not exist for lower-frequency systems, achieving the proper
thermal environment for the 80386, and building an 80386-based system successfully. The
guidelines presented here allow the user to gain the full benefits of the high-performance
80386.

11.1 POWER AND GROUND REQUIREMENTS

The CHMOS III 80386 differs from previous HMOS microprocessors in that its power
dissipation is primarily capacitive; there is almost no DC power dissipation. Power dissipa
tion depends mostly on frequency.

Power dissipation can be distinguished as either internal (logic) power or I/O (bus) power.
Internal power varies with operating frequency and to some extent with wait states and
software. Internal power increases with supply voltage also. Process variations in manufac
turing affect internal power, although to a lesser extent than with NMOS processes.

I/O power, which accounts for roughly one-fifth of the total power dissipation, varies with
freauency and voltage. It also depends on capacitive bus load. Capacitive bus loading for
non,tal AC performance is specified in the 80386 data sheet. Performance will be reduced
if these loadings are exceeded. The addressing pattern of the software can affect I/O power
by changing the effective frequency at the address pins. (Data interactions comprise a
relatively small percentage of I/O; the variation in frequency at the data pins with different
data patterns is not a significant factor in power dissipation.)

11.1.1 Power and Ground Planes

Power and ground planes must be used in 80386 systems to minimize noise. Power and
ground lines have inherent inductance and capacitance, therefore an impedance
Z = (L/C)1/2. The total characteristic impedance for the power supply can be reduced by
adding more lines. This effect is illustrated in Figure 11-1, which shows that two lines in
parallel have half the impedance of one. To reduce the impedance even further, the user
should add more lines. In the limit, an infinite number of parallel lines, or a plane, results
in the lowest impedance. Planes also provide the best distribution of power and ground.

The 80386 has 20 Vee pins and 21 V •• (ground) pins. All power and ground pins must be
connected to a plane. Ideally, the 80386 is located at the center of the board, to take full
advantage of these planes.

Although the 80386 generally demands less power than the 80286, the possibility for power
surges is increased due to higher frequency and pin count. Peak-to-peak noise on Vec relative
to V .. should be maintained at no more than 400 mY, and preferably no more than 200 mY.

11-1

PHYSICAL DESIGN AND DEBUGGING

11.1.2 Decoupling Capacitors

The switching activity of one device can propagate to other devices through the power supply.
For example, in the TTL NAND gate of Figure 11-2, both Q3 and Q4 transistors are on for
a short time when the output is switching. This increased load causes a negative spike on Vee
and a positive spike on ground. In synchronous systems in which many gates switch simul
taneously, the result is significant noise on the power and ground lines.

Zo= -fio
Co

ft° fi 2" Lo
Zo= - =112 -

2Co Co

G30107

Figure 11-1. Reducing Characteristic Impedance

Vee

Ra

A

B o-+-.. y

-= -=

G30107

Figure 11-2. Circuit without Decoupling

11-2

PHYSICAL DESIGN AND DEBUGGING

Decoupling capacitors placed across the device between V cc and ground reduce voltage spikes
by supplying the extra current needed during switching. These capacitors should be placed
close to their devices because the inductance of connection lines negates their effect.

When selecting decoupling capacitors, the user should provide 0.01 microfarads for each
device and 0.1 microfarads for every 20 gates. Radio-frequency capacitors must be used;
they should be distributed evenly over the board to be most effective. In addition, the board
should be decoupled from the external supply line with a 2.2 microfarads capacitor.

Chip capacitors (surface-mount) are preferable because they exhibit lower inductance and
require less total board space. They should be connected as in Figure 11-3. Leaded capaci
tors can also be used if the leads are kept as short as possible. Six leaded capacitors are
required to match the effectiveness of one chip capacitor, but because only a limited number
can fit around the 80386, the configuration in Figure 11-4 results.

11.2 HIGH-FREQUENCY DESIGN CONSIDERATIONS

At high signal frequencies, the transmission line properties of signal paths in a circuit must
be considered. Reflections, interference, and noise become significant in comparison to the
high-frequency signals. They can cause false signal transitions, data errors, and input voltage
level violations. These errors can be transient and therefore difficult to debug. In this section,
some high-frequency design issues are discussed; for more information, consult a reference
book on high-frequency design.

o =O.1.F

~ =1.0.F

Figure 11-3. Decoupling Chip Capacitors

11-3

G30107

PHYSICAL DESIGN AND DEBUGGING

~ =1.0#F

o =O.l#F

Figure 11-4. Decoupling Leaded Capacitors

11.2.1 Line Termination

G30107

Input voltage level violations are usually due to voltage spikes that raise input voltage levels
above the maximum limit (overshoot) and below the minimum limit (undershoot). These
voltage levels can cause excess current on input gates that results in permanent damage to
the device. Even if no damage occurs, most devices are not guaranteed to function as speci
fied if input voltage levels are exceeded.

Signal lines are terminated to minimize signal reflections and prevent overshoot and under
shoot. If the round-trip signal path delay is greater than the rise time or fall time of the
signal, terminate the line. If the line is not terminated, the signal reaches its high or low
level before reflections have time to dissipate, and overshoot and undershoot occur.

There are two methods of termination: series and split. A series termination compensates for
excess current before the signal travels down the line; a split termination adjusts the current
at the end of the line.

Series termination decreases current flow in the signal path by adding a series resistor, as
shown in Figure 11-5. The resistor increases the rise and fall times of the signal so that the
change in current occurs over a longer period of time. Because the amount of voltage
overshoot and undershoot depends on the change in current over time (V = L dildO, the
increased time reduces overshoot and undershoot. Placing the series resistor close to the
signal source decreases inductance (L).

Series termination is advantageous because less power is consumed than in split termination.
However, series termination reduces signal rise and fall times, so it should not be used when
these times are critical.

11-4

inter PHYSICAL DESIGN AND DEBUGGING

Split termination is effective in reducing signal reflection (ringing). Split termination is
accomplished by the addition of two resistors, as shown in Figure 11-6. As the line voltage
starts to rise above Vee> R2 siphons off some of the current. As the line voltage starts to drop
below ground, current is supplied to the circuit through Rl.

11.2.2 Interference

Interference is the result of electrical activity in one conductor causing transient voltages to
appear in another conductor. Interference increases with the following factors:

• Frequency-Interference is the result of changing currents and voltages. The more frequent
the changes, the greater the interference.

• Closeness of the two conductors-Interference is due to electromagnetic and electrostatic
fields whose effects are weaker further from the source.

There are two types of interference to consider in high frequency circuits: electromagnetic
interference (EMI) and electrostatic interference (ESI).

SOURCE

G30107

Figure 11-5. Series Termination

5V

G30107

Figure 11-6. Split Termination

11-5

PHYSICAL DESIGN AND DEBUGGING

EMI (also called crosstalk) is caused by the magnetic field that exists around any current
carrying conductor. The magnetic flux from one conductor can induce current in another
conductor, resulting in transient voltage. Several precautions can minimize EMI:

• Running a ground line between two adjacent lines wherever they traverse a long section
of the circuit board. The ground line should be grounded at both ends.

• Running ground lines between the lines of an address bus or a data bus if either of the
following conditions exists:

- The bus is on an external layer of the board.

- The bus is on an internal layer but not sandwiched between power and ground planes
that are at most 10 mils away.

• Avoiding closed loops in signal paths (see Figure 11-7). Closed loops cause excessive
current and create inductive noise, especially in the circuitry enclosed by a loop.

ESI is caused by the capacitive coupling of two adjacent conductors. The conductors act as
the plates of a capacitor; a charge built up on one induces the opposite charge on the other.
The following steps reduce ESI:

• Separating signal lines so that capacitive coupling becomes negligible.

• Running a ground line between two two lines to cancel the electrostatic fields.

G30107

Figure 11-7. Avoid Closed-Loop Signal Paths

11-6

PHYSICAL DESIGN AND DEBUGGING

11.2.3 Latchup

Latchup is a condition in a CMOS circuit in which Vee becomes shorted to Vss' Intel's
CHMOS III process prevents latchup under normal operating conditions. Latchup can be
triggered when the voltage limits on I/O pins are exceeded, causing current surges. The
following guidelines help prevent latchup:

• Observing the maximum rating for input voltage on I/O pins.

• Never applying power to an 80386 pin or a device connected to an 80386 pin before
applying power to the 80386 itself.

• Preventing overshoot and undershoot on I/O pins by adding line termination and by
designing to reduce noise and reflection on signal lines.

11.3 CLOCK DISTRIBUTION AND TERMINATION

For performance at high frequencies, the clock signal (CLK2) for the 80386 must be free of
noise and within the specifications listed in the 80386 data sheet. These requirements can be
met by following these guidelines:

• Using the 82384 Clock Generator to provide both CLK2 and CLK signals. The 82384 is
designed to match 80386 specifications.

• Terminating the CLK2 output with a series resistor to obtain a clean signal. The resistor
value is calculated by measuring the total capacitive load on the CLK2 signal and refer
ring to Figure 11-8. If the total capacitive load is less than 80 picofarads, the user should
add capacitors to make up the difference. Because of the high frequency of CLK2, the
terminating resistor must have low inductance; carbon resistors are recommended.

• Not putting more than two loads on a single trace to avoid signal reflection (see
Figure 11-9 for example configurations).

• Using an oscilloscope to compare the CLK2 waveform with those in Figure 11-10.

11.4 THERMAL CHARACTERISTICS

The thermal specification for the 80386 defines the maximum case temperature. This section
describes how to ensure that an 80386 system meets this specification.

Thermal specifications for the 80386 are designed to guarantee a tolerable temperature at
the surface of the 80386 chip. This temperature (called the junction temperature) can be
determined from external measurements using the known thermal characteristics of the
package. Two equations for calculating junction temperature are as follows:

Tj = T. + (llj • * PD) and

11-7

inter PHYSICAL DESIGN AND DEBUGGING

160r----.~----------------------------.

140 r--

120 r--

U 100 r--

80~------------~--------------

60 r- DO NOT USE < 80 pF

I I I

10 20 30 40

TERMINATION RESISTOR (OHMS)

• Cl = C'N (386) + C'N (387) + C'N (PALs) + ... + CBOARD.
CBOARD IS CALCULATED FROM LAYOUT AND BOARD PARAMETERS:

THICKNESS, DIELECTRIC CONSTANT, DISTANCE TO GROUNDNcc PLANES .

• TERMINATION RESISTOR MUST BE LOW INDUCTANCE TYPE.
RECOMMEND CARBON FILLED TYPE.

G30107

Figure 11-8_ CLK2 Series Termination

where

Tj = junction temperature

ambient temperature

T cease tempterature

OJ. = junction-to-ambient temperature coefficient

Ojc = junction-to-case temperature coefficient

PD = power dissipation (worst-case Icc * Vee

11-8

PHYSICAL DESIGN AND DEBUGGING

GOOD BAD BAD

G30107

Figure 11-9. CLK2 Loading

WAVEFORMS

GOOD

5V

OV

G30107

Figure 11-10. CLK2 Waveforms

Case temperature calculations offer several advantages over ambient temperature
calculations:

• Case temperature is easier to measure accurately than ambient temperature because the
measurement is localized to a single point (top center of the package).

• The worst-case junction temperature (Tj) is lower when calculated with case temperature
for the following reasons:

- The junction-to-case thermal coefficient (OJ.) is lower than the junction-to-ambient
thermal coefficient (OJ.); therefore, calculated junction temperature varies less with
power dissipation (PD).

- Ojc is not affected by air flow in the system; OJ. varies with air flow.

11-9

PHYSICAL DESIGN AND DEBUGGING

With the case-temperature specification, the designer can either set the ambient tempera
ture or use fans to control case temperature. Finned heat sinks or conductive cooling may
also be used in environments where the use of fans is precluded. To approximate the case
temperature for various environments, the two equations above should be combined by setting
the junction temperature equal for both, resulting in this equation:

The current data sheet should be consulted to determine the values of Oja (for the system's
air flow) and ambient temperature that will yield the desired case temperature. Whatever
the conditions are, the case temperature is easy to verify.

11.5 DEBUGGING CONSIDERATIONS

This section outlines an approach to building and debugging 80386 hardware incrementally.
In a short time, a complete 80386-based system can be built and working. This approach
does not have to be followed to the letter, but it provides several valuable debugging concepts
and useful hints. Use these guidelines in conjunction with the 80386 data sheet, which contains
detailed information about the 80386.

11.5.1 Hardware Debugging Features

Even before a system is built, debugging can be made easier by planning a suitable environ
ment for the 80386. The 80386 board (whether it is a printed circuit board or a wire-wrap
board) must have power and ground planes. The user should provide a decoupling capacitor
between Vee and GND next to each IC on the board. All 80386 Vee and GND pins should
be connected individually to the appropriate power or ground plane; multiple power or ground
pins should not be daisy-chained.

Room in the system should be included for the following physical features to aid debugging:

• Two switches: one for generating the RESET signal to the 80386 and one for tying the
READY # signal high (negated).

• Connections for a logic analyzer on major control signals:

Inputs to the 80386:
Ready (READY #)
Next Address (NA#)
Bus Size 16 (BS16#)
Data Bus (DO-D31)

Outputs from the 80386:
Address Strobe (ADS#)

Write/Read (W /R#), Data/Control (D/C#),
Memory /10 (M/IO#), Lock (LOCK#)

Address Bus (A2-A31)
Byte Enable (BEO#-BE3#)

11-10

PHYSICAL DESIGN AND DEBUGGING

Logic analyzer connection points should be provided to all 80386 address outputs
CA2-A31 and BEO#-BE3#) even if there are not enough logic analyzer inputs to accom
modate all of them. Initially, only BEO#, BEl#, BE2#, BE3#, and the output of the address
decoder circuit should be connected. The single output of an address decoder circuit
represents many bits of address information. If the address decoder does not work as
expected, more of the logic analyzer inputs should be moved to the 80386 address pins.

• Buffers and visual indicators (such as LEDs) for three or four of the critical 80386 control
signals. A visual indicator for the ADS# output, for example, will light when the system
is performing bus cycles.

11.5.2 Bus Interface

During initial debugging, bus-cycle operation should be simplified. The 80386 bus interface
is flexible enough to be tested in stages. To simplify bus control, the initial testing should be
performed with a non-pipelined address. The NA# input should be tied high (negated) to
guarantee no address pipelining. The only signals that need to be controlled are the READY #
input and the BS 16# input.

The READY # input on the 80386 lets the user delay the end of any bus cycle for as long as
necessary. For each CLK cycle after T2 that READY # is not sampled active, a wait state
is added. READY # can be used to provide extra time (wait states) for slow memories or
peripherals. Wait state requirements are a function of the device being addressed. Therefore,
the address decoder must determine how many wait states, if any, to add to each bus cycle.
The address decoder circuit (usually in conjunction with a shift register) must generate the
READY # signal when it is time for the bus cycle to end. It is critical for the system to
generate the READY # signal; if it does not, the 80386 will wait forever for the bus cycle to
end.

EPROMs, static RAMs, and peripherals all interface in much the same way. The EPROM
interface is the simplest because EPROMs are read-only devices. RAM interfaces must
support byte addressability during RAM write cycles. Therefore, RAM write enables for
each byte of the 32-bit data bus must be controlled separately.

The BSI6# signal must be activated when the current bus cycle communicates over a 16-bit
bus. An address decoder circuit can be used to determine if BSI6# must be asserted during
the current bus cycle.

11.5.3 Simplest Diagnostic Program

To start debugging 80386 hardware, the user should make a set of EPROMs containing a
simple program, such as a 4-byte diagnostic that loops. Such a program is shown in
Figure 11-11. Because the program is four bytes long, it will exercise all 32 bits of the data
bus. This program tests only the code prefetch ability of the 80386.

In generating this program, the user should take into account the initial values of the
80386 CS register (FOOOR) and IP register CFFFOR) after reset. The software entry point
(label START in Figure 11-11) must match the CS:JP location.

11-11

o 000
FFFO

FFFO 90
FFF1 90
FFF2 EB FC

F F F 4

PHYSICAL DESIGN AND DEBUGGING

ASSUME CS:SIMPLEST_CODE

SIMPLEST_CODE SEGMENT
ORG OFFFOH

START: NOP
NOP
JMP START

SIMPLEST_CODE ENDS
END

Figure 11-11. 4-Byte Diagnostic Program

The 80386 is initially in Real Mode (the mode that emulates the 8086) after reset. With
this simple diagnostic code, it will remain in Real Mode. In Real Mode, CS:IP generates
the physical code fetch address directly, without any descriptors, by adding CS and IP in
the following way:

(CS)
OP)

FOOO
+ FFFO

FFFFO

Also, after reset (until the 80386 executes an intersegment JMP or CALL instruction), the
physical base address of the code segment is set internally to FFFFOOOOH. Therefore, the
physical address of the first code fetch after reset is always FFFFFFFOH. The simple
diagnostic program must begin at this location.

11.5.4 Building and Debugging a System Incrementally

When designing an 80386 system, the designer plans the entire system. The core portions
must be tested, however, before building the entire system. Beginning with only the 80386
and the 82384 Clock Generator, the following steps outline an approach that enables the
designer to build up a system incrementally:

1. Install the 82384 and its crystal. Check that the CLK2 signal is clean. Connect the CLK2
signal to the 80386.

2. Connect the 82384 RESET output to the 80386 RESET input, and with CLK2 running,
check that the state of the 80386 during RESET is correct.

11-12

PHYSICAL DESIGN AND DEBUGGING

3. Tie the 80386 INTR, NMI, and HOLD input pins low. Tie the READY # pin high so
that the first bus cycle will not end. Reset the 80386, and check that the 80386 is emitting
the correct signals to perform its first code fetch from physical address FFFFFFFOH.
Connect the address latch, and verify that the address is driven at its outputs.

4. Connect the address decoding hardware to the 80386, and check that after reset, the
80386 is attempting to select the EPROM devices in which the initial code to be executed
will be stored.

5. Connect the data transceiver to the system, and check that after reset, the transceiver
control pins are being driven for a read cycle. Connect all address pins of the EPROM
sockets, and check that after reset, they are receiving the correct address for the first code
fetch cycle.

Intel's iPPS programmer for EPROMs supports dividing an object module into four
EPROMs, as is necessary for a 32-bit data bus to EPROM. The programmer can also divide
an object module into two EPROMs for a 16-bit data bus to the EPROMs. (In this case,
the BSI6# input to the 80386 must be asserted during all bus cycles communicating with
the EPROMs).

When the 82384, crystal, 80386, address decoder, address latch, data transceiver, and
READY # generation logic (including wait-state generation) are functioning, the 80386 is
capable of running the software in the EPROMs. Now the simple debug program described
above can be run to see whether the parts of the system work together.

After installing the EPROMs, the READY # line should be tied high (negated) so that the
80386 begins its first bus cycle after reset and then continues to add wait states. While the
system is in this state, the circuit should be probed to verify signal states, using a voltmeter
or oscilloscope probe.

The programmer should check whether the address latches have latched the first address
and whether the address decoder is applying a chip-select signal to the EPROMs. The
EPROMs should be emitting the first four opcode bytes of the first code to be executed
(90H, 90H, EBH, FCH for the 4-byte program of Figure 11-11), and the opcode should be
propagating through the data transceivers to the 80386 data pins.

Then the READY # input should be connected to the READY # generation logic, the 80386,
and the results should be tested when the simple program runs. Because the program loops
back on itself, it runs continuously. At this point, the system has progressed to running
multiple bus cycles, so a logic analyzer is needed to observe the dynamic behavior of the
system.

When the EPROMs programmed with the simple 4-byte diagnostic program are installed
and the 80386 is executing the code, the LED indicator for ADS# (if included in the system)
glows, because ADS# is generated for each bus cycle by the 80386. It is necessary to check
that the EPROMs are selected for each code fetch cycle. After system operation is verified
with the simple program, more complex programs can be run.

11-13

PHYSICAL DESIGN AND DEBUGGING

11.5.5 Other Simple Diagnostic Software

Other simple programs can be used to check the other operations the system must perform.
The program described here is longer than the 4-byte program illustrated previously; it tests
the abilities to write data into RAM and read the data back to the 80386.

This second diagnostic program, shown in Figure 11-12, is also suitable for placing into
EPROMS. Because this diagnostic loops back to itself, the ADS# LED should glow contin
uously, just as it does when running the 4-byte program.

The program in Figure 11-12 is based on the assumption that hardware exists to report
whether the data being read back from RAM is correct. This hardware consists of a writable
output latch that can display a byte value written to it. The byte value written is a function
of the RAM data comparison test. If the data is correct, the byte value written is AAH
(10101010); if the data is incorrect, 55H (01010101) is written.

This diagnostic program is not comprehensive, but it does exercise EPROM, RAM, and an
output latch to verify that the basic hardware works.

The program is short (45 bytes) to be easily understood. Because it is short and because it
loops continuously, a logic analyzer or even an oscilloscope can be used to observe system
activity.

This program can be written in ASM86 assembly language. Because the primary purpose of
this program is to exercise the system hardware quickly, the 80386 is not tested extensively,
and Protected Mode is not enabled.

The diagnostic software verifies the ability of the system to perform bus cycles. The 80386
fetches code from the EPROMs, implying that EPROM read cycles function correctly.
Instructions in the program explicitly generate bus cycles to write and read RAM. The data
value read back from RAM is checked for correctness, then a byte (AAH if the data is
correct, 55H if it is not) is output to the 8-bit output latch. The program then loops back to
its beginning and starts over.

After the source code is assembled, the resulting object code should be as shown in
Figure 11-13.

11.5.6 Debugging Hints

The debugging approach described in this section is incremental; it lets the programmer
debug the system piece by piece. If even the simple 4-byte program does not run, a logic
analyzer can be used to determine where the problem is. At the very least, the 80386 should
be initiating a code fetch cycle to EPROM.

11-14

PHYSICAL DESIGN AND DEBUGGING

PAGE 66,132

EQUATES
,
LATCH EQU OC8H ; PRESUMES A HARDWARE

;LATCH IS AT I/O ADDR C8H
GOOD SIGNAL EQU OAAH
BAD_SIGNAL EQU 055H

CODE TO VERIFY ABILITY TO WRITE AND READ RAM CORRECTLY

READ:

BADRAM:

START:

ASSUME CS:INITIAL CODE
SEGMENT -

ORG

MOV
MOV
MOV
MOV
JMP

CMP

JNE
CMP

JNE

OFOOOH

BX, OOOOH
DS, BX
[BX], 5473H
[BX]+2, 2961H

READ

[BX], 5473H

BADRAM
[BX]+2, 2961H

BAD RAM

;THIS IS INTENDED TO BE LOCATED
;AT PHYSICAL ADDRESS FFFFFOOOH
;INITIALIZE BASE REGISTER TO 0
;INITIALIZE DS REGISTER TO 0
;WRITE 5473H TO RAM ADDR 0 AND 1
;WRITE 2961H TO RAM ADDR 2 AND 3
;JMP TO FORCE CPU TO BREAK
;PRE-FETCH QUEUE AND FETCH THE
;NEXT INSTRUCTION AGAIN. THIS
;PREVENTS THE RAM DATA WRITTEN
;FROM JUST LINGERING ON THE DATA
;BUS UNTIL THE READ OCCURS
;READ DATA FROM RAM ADDR 0 AND 1
;AND COMPARE WITH VALUE WRITTEN
;IF DATA DOESN-T MATCH, THEN JMP
;READ DATA FROM RAM ADDR 2 AND 3
;AND COMPARE WITH VALUE ,mITTEN
;IF DATA DOESN-T MATCH, THEN JMP

!lOV AL, GOOD_SIGNAL
OUT LATCH, AL ;SIGNAL THAT DATA I,AS CORRECT
J~IP TST_LOOP

!IOV
OUT
JMP

ORG

JMP

AL, BAD_SIGNAL
LATCH, AL ;SIGNAL THAT DATA WAS BAD
TST_LOOP

OFFFOH ;POSITION THE FOLLOWING INSTRUCTION
;AT OFFSET OFFFOH

TST_LOOP ; INTRA-SEGMENT JUMP (WITHIN
;SEGMENT)
;THIS IS INTENDED TO BE THE FIRST
;INSTRUCTION EXECUTED, SO IT MUST
;BE LOCATED AT PHYSICAL ADDRESS
;FFFFFFFOH.

INITIAL_CODE ENDS
END

Figure 11-12. More Complex Diagnostic Program

11-15

00C8
OOAA
0055

0000

FOOO

FOOO
F003
FaDS
F009
FaDE

Fall
F015
FOl7
Fa 1C

FOlE
F020
FO 22

F024
F026
Fa 28

FFFO
FFFO

FFF3

BB
8E
C7
C7
EB

81
75
81
75

BO
E6
EB

BO
E6
EB

E9

0000
DB
07 5473
47 02 2961
01 90

3F 5473
aD
7F 02 2961
06

AA
C8
DC

55
C8
06

FOOO R

Harning Severe
Errors Errors
a a

PHYSICAL DESIGN AND DEBUGGING

EQUATES

LATCH
GOOD SIGNAL
BAD SIGNAL

PAGE 66,132

EQU
EQU
EQU

OC8H
OAAH
055H

CODE TO VERIFY ABILITY TO WRITE
AND READ RAM CORRECTLY

ASSUME CS: I NITIAL CODE
INITIAL CODE SEGMENT -

ORG OFOOOH

MOV BX, OOOOH
MOV DS, BX
MOV [BX] , 5473H
MOV [BX]+2, 2961H
JMP READ

READ: CMP [BX] , 5473H
JNE BADRAM
CMP [BX]+2, 2961H
JNE BADRAM

MOV AL, GOOD SIGNAL
OUT LATCH, AI:
JMP TST_LOOP

BADRAM: ~IOV AL, BAD SIGNAL
OUT LATCH, AL
JMP TST_LOOP

ORG OFFFOH
START: JMP TST_LOOP

INITIAL CODE ENDS
END

Figure 11-13. Object Code for Diagnostic Program

11-16

PHYSICAL DESIGN AND DEBUGGING

The 80386 stops running only for one of three reasons:

• The READY # signal is never asserted to terminate the bus cycle.

• The HALT instruction is encountered, so the 80386 enters a HALT state.

• The 80386 encounters a shutdown condition. In Real Mode operation (as in the simple
diagnostic program), a shutdown usually indicates that the 80386 is reading garbage on
the data bus.

If the 80386 stops running, the cause can be determined easily if the system contains simple
hardware decoders with associated LEDs to visually indicate halt and shutdown conditions.
The 80386 emits specific codes on its W jR#, DjC#, MjIO#, and address outputs to indicate
halt or shutdown. A circuit to decode these signals can be tested by executing a HL T
instruction (F4H) to see if the halt LED is turned on. The shutdown LED cannot be tested
in the same way, but its decoder is so similar to the halt decoder that if the halt decoder
works, the shutdown decoder should also work.

If the shutdown LED comes on and the 80386 stops running, the data being read in during
code fetch cycles is garbled. The programmer should check the EPROM contents, the wiring
of the address path and data path, and the data transceivers. The 4-byte diagnostic program
should be used to investigate the system. This program should work before more complex
software is used.

If neither the halt LED nor the shutdown LED is on when the 80386 stops running, the
READY # generation circuit has not activated READY # to complete the bus cycle. The
80386 is adding wait states to the cycle, waiting for the READY # signal to go active. The
address at the address latch outputs and the states of the W jR#, DjC#, and M(IO# signals
should be checked to narrow the investigation to a specific part of the READY# generation
circuit. Then the circuit should be investigated with the logic analyzer.

Once the basic system is built and debugged, more software and further enhancements can
be added to the system. The incremental approach described applies to these additions.
Systematic, step-by-step testing and debugging is the surest way to build are liable
80386-based system.

11-17

Test Capabilities 12

CHAPTER 12
TEST CAPABILITIES

The 80386 contains built-in features that enhance its testability. These features are derived
from signature analysis, and proprietary test techniques. All the regular logic blocks of the
80386, or about half of all its internal devices, can be tested using these built-in features.

The 80386 testability features include aids for both internal and board-level testing. This
chapter describes these features.

12.1 INTERNAL TESTS

Allowances have been made for two types of internal tests: automatic self-test and Transla
tion Lookaside Buffer (TLB) tests. The automatic self-test is controlled completely by the
80386. The designer needs only to initiate the test and check the results. The TLB tests must
be externally developed and applied. The 80386 provides an interface that makes this test
development simple.

12.1.1 Automatic Self-Test

The 80386 can automatically verify the functionality of its three major Programmable Logic
Arrays (PLAs) (the Entry Point, Control, and Test PLAs) and the contents of its Control
ROM (CROM). The automatic self-test is initiated by setting the BUSY# input active during
initialization (as described in Chapter 3). The test result is stored in the EAX register of the
80386.

The self-test progresses as follows (see Figure 12-1):

1. Normal PLA or CROM inputs are disabled.

2. A pseudo-random count sequence, generated by an internal Linear Feedback Shift
register (LFSR), provides all possible combinations of PLA and CROM inputs.

3. PLA and CROM outputs for each input combinations are directed to a parallel-load
LFSR.

4. Through the action of this LFSR, a signature of all output results is accumulated.

5. After all input combinations have been sequenced, the final contents of the LFSR are
XORed with a signature constant stored in the 80386. If the LFSR contents match the
signature constant, the result will be all zeroes, indicating functional PLA and CROM.

6. The result is loaded into the EAX register.

The self-test provides 100-percent coverage of single-bit faults, which statistically comprise
a high percentage of total faults.

12-1

TEST CAPABILITIES

TOEAX

G30107

Figure 12-1. 80386 Self-Test

12.1.2 Translation Lookaside Buffer Tests

The on-chip Page Descriptor Cache of the 80386 stores its data in the TLB. (Cache opera
tion is discussed fully in Chapter 7.) The linear-to-physical mapping values for the most
recent memory accesses are stored in the TLB, thus allowing fast translation for subsequent
accesses to those locations. The TLB consists of:

• Content-addressable memory (CAM)-holds 32 linear addresses (Page Directory and
Page Table fields only) and associated tag bits (used for data protection and cache
implementation)

• Random access memory (RAM)-holds the 32 physical addresses (upper 20 bits only)
that correspond to the linear addresses in the CAM

• Logic-implements the four-way cache and includes a 2-bit replacement pointer that
determines to which of the four sets a new entry is directed during a write to the TLB.

To translate a linear address to a physical address, the 83086 tries to match the Page
Directory and Page Table fields of the linear address with an entry in the CAM. If a hit
(a match) occurs, the corresponding 20 bits of physical address are retrieved from the RAM
and added to the 12 bits of the Offset field of the linear address, creating a 32-bit physical
address. If a miss (no match) occurs, the 80386 must bring the Page Directory and Page
Table values into the TLB from memory.

12-2

TEST CAPABILITIES

The 80386 provides an interface through which to test the TLB. Two 32-bit test registers of
the 80386 are used to write and read the contents of the TLB through the MOV TREG, reg
and MOV reg, TREG instructions. An 80386 program can be used to generate test patterns
which are applied to the TLB through automatic test machines or assembly language
programs.

The paging mechanism of the 80386 must be disabled during a test of the TLB. The internal
response is therefore not identical to that of normal operation, but the main functionality of
the TLB can be verified.

Test register #6 is used as the command register for TLB accesses; test register #7 is used
as the data register. Addresses and commands are written to the TLB through the command
register. Data is read from or written to the TLB through the data register.

The two test operations that may be performed on the TLB are:

• W rite the physical address contained in the data register and the linear address and tag
bits contained in the command register into a TLB location designed by the data register.

• Look up a TLB entry using the linear address and tag bits contained in the command
register. If a hit occurs, copy the corresponding physical address into the data register,
and set the value of the hit/miss bit in the data register. If a miss occurs, clear the
/hit/miss bit. In this case, the physical address in the data register is undefined.

A command is initiated by writing to the command register. The command register has the
format shown in Figure 12-2 (top). The two possible commands are distinguished by the

31

31

12 11

LINEAR ADDRESS

COMMAND REGISTER

5 4

TAG LOOKUPI
WRITE#

12 11 5 4 3 2 1

PHYSICAL ADDRESS

DATA REGISTER

Figure 12-2. TLB Test Registers

12-3

MIT/REPLACEMENT
MISS POINTER

OR
REPLACEMENT BIT

G30107

TEST CAPABILITIES

state of bit 0 in the command register. If bit 0 = I, a TLB lookup operation is performed.
If bit 0 = 0, a TLB write is performed.

The tag bits (not including the linear address) consist of the following:

Bit Name Definition

11 Valid (V) Entry is valid
10 Dirty (D) Entry has been changed
9 Not Dirty (0#) Entry has not been changed
8 User (U) Entry is accessible to User privilege level
7 Not User (U#) Entry is not accessible to User privilege level
6 Writable (W) Entry may be changed
5 Not Writable (W#) Entry may not be changed

The complement of the Dirty, User, and Writable bits are provided to force a hit or miss for
TLB lookups. A lookup operation with a bit and its complement both low is forced to be a
miss; if both bits are high, a hit is forced. A write operation must always be performed with
a bit and its complement bit having opposite values.

The data register has the format shown in Figure 12-2 (bottom). The replacement pointer
indicates which of the four sets of the TLB is to receive write data. Its value is changed
according to a proprietary algorithm after every TLB hit. For testing, a TLB write may use
the replacement pointer value that exists in the TLB, or it may use the value in bits 3 and 2
of the data register. If data register bit 4 = 0, the existing replacement pointer is used. If
bit 4 = I, bits 3 and 2 of the data register are used.

The TLB write operation progresses as follows:

1. The physical address, replacement bit, and replacement pointer value (optional) are written
to the data register.

2. The linear address and tag values are written to the command register, as well as a 0
value for bit o.

It is important not to write the same linear address to more than one TLB entry.
Otherwise, hit information returned during a TLB lookup operation is undefined.

The TLB lookup operation progresses as follows:

• The linear address and tag values are written to the command register, as well as a
1 value for bit o.

• New values for the hit/miss bit and replacement pointer are written to bits 4-2 in the
data register. If the hit/miss bit (bit 4) is 1, bits 31-12 contain the physical address from
the TLB. Otherwise, bits 31-12 are undefined.

12-4

TEST CAPABILITIES

For more information on how to write routines to test the TLB, refer to the
80386 Programmer's Reference Manual.

12.2 BOARD-LEVEL TESTS

For board-level testing, it is often desirable to isolate areas of the board from the interactions
of other devices. The 80386 can be forced to a state in which all but two of its pins are
effectively removed from their circuits. This state is accomplished through the HOLD and
HLDA pins.

When the HOLD input of the 80386 is asserted, the 80386 places all of its outputs except
for HLDA in the three-state condition. HLDA is then driven high. The 80386 remains in
this condition until HOLD is de-asserted. Note that RESET being asserted takes priority
over HOLD requests.

The 80386 completes its current bus cycle before responding to the HOLD input. Detailed
information on HOLD jHLDA response is given in Chapter 3.

12-5

Appendix A
Local Bus Control PAL
Descriptions

APPENDIX A
LOCAL BUS CONTROL PAL DESCRIPTIONS

The bus controller is implemented in two PALs. One PAL (called P AL-l) follows the 80386
bus cycles and generates the overall bus cycle timings. The second PAL (P AL-2) generates
most of the bus control signals.

The PALs are clocked by CLK2. They could also be clocked by CLK. Using CLK2 has the
following advantages over using CLK:

• The skew from clock to command signal is reduced, so higher performance is possible
with slower devices.

• The 80386 ADS# and READY # signals can be sampled directly. If CLK were used, it
would be possible to sample ADSO# from the 82384 instead of ADS#, but the READY #
generation logic would be more complex because READY # must be synchronized to
CLK2.

• The PAL can provide delays in 31-nanosecond, rather than 62-nanosecond, increments.

The advantages of using CLK to clock the PALs are as follows:

• A slower PAL device could be used.

• One PAL input is saved because only CLK, rather than CLK and CLK2, is needed.

Because CLK2 is used to clock the PALs, the choice of PALs is currently limited to only
20-pin B-series PALs.

PAL-1 FUNCTIONS

PAL-l is implemented as two main state machines. The BUSSTATE state machine, which
is used to follow the 80386 bus cycles, is specified by the state of two signals, IDLE and
PIPE, and follows the 80386 bus by sampling ADS# and READY #. IDLE and PIPE are
often useful in implementing other 80386 subsystems (such as the DRAM controller described
later in this book).

The LOCALST A TE state machine keeps track of the local bus state and is specified by
signals L2, Ll, and LO. Although the local bus state usually follows the 80386 bus state, so
that the LOCALSTATE and BUSSTATE states are the same, there are times when the
local bus cycle lags the 80386 bus cycle in order to handle data-float and peripheral recovery
times correctly. Therefore, it is easier to implement this PAL using the two separate state
machines. LOCALST ATE uses the 80386 W jR# signal and various chip-select inputs to
determine what type of cycle to run.

A third, simpler state machine is also implemented in PAL-I. Ql and QO comprise a
SEQUENCE counter that is used to implement the various time delays required by the local
bus state machine.

A-1

LOCAL BUS CONTROL PAL DESCRIPTIONS

The NA# output of PAL-I activates address pipelining for the I/O and I-wait-state devices.
For O-wait-state devices, external logic generates NA#, because these devices require NA#
sooner than P AL-l can generate it.

PAL-2 FUNCTIONS

PAL-2 generates most bus control signals, including all five command signals, the READY#
signal, and the latch and transceiver enable signals. PAL-2 inputs the three LOCALST ATE
signals from PAL-I and the three 80386 bus cycle definition pins (MIO#, DC#, and WR#)
in order to follow the local bus state. PAL-2 also inputs the O-wait-state chip-select signal
in order to set output signals quickly enough for zero wait states.

Note that the transceiver direction enable (DT /R#) is simply a latched version of W /R#.
This saves a PAL output and also guarantees that the transceiver direction does not change
while DEN# is enabled.

PAL EQUATIONS

The equations for PAL-l and PAL-2 are shown in Figures A-I and A-2, respectively. These
equations are shown in a high-level PAL language (ABEL, by Data I/O) that allows the
PAL to be described as a series of states rather than equations. This language frees the
designer of the tedious task of implementing the state machine and reducing the logical
equations manually. The language saves time not only in the initial design, but also in
debugging the state machines. The automated term reduction of the high-level PAL language
allows the designer to explore many implementations quickly, which is a useful feature for
complex PAL designs.

Figures A-3 and A-4 show the PAL equations for PAL-l and PAL-2 using PALASM by
Monolithic Memories.

A-2

LOCAL BUS CONTROL PAL DESCRIPTIONS

module

title
'80386 Local Bus Controller - pall Intel Corp'

BC386Pl

II Constants:

ON
OFF
H
L
x
c

device 'P16R8 ' ;

1;
0;
1;
0;
.. x. ;
.C. ;

"use a l6R8 B-speed PAL for l6MHz 386

" ABEL 'don't care' symbol
" ABEL 'clocking input' symbol

" state definitions for BUSSTATE (bus cycle state):

IDLEBUS
PIPE BUS
ACTIVE BUS
ILLEGALBUS

"bOl;
AblO;
AbOO;
Ablli

"bus is idle or first CLK of unpipelined
"first CLK of pipelined cycle
"subsequent CLKs of active bus
lIunused

" state definitions for LOCALSTATE (local cycle state):

WAITING
SAMPLECS
CHDDELAY
IO
ENDIO
MEMORY
FLOAT
NOT LOCAL

AblOl;
"blOO;
AbOOO;
"bOlO;
"bllO;
"bOll ;
"bIll;
"bOOl;

"waiting for next bus cycle
"CLK2 before ALE falls and CS is sampled
"delay before CMD active
"IO CMD active
"IO CMD inactive
"lWS CMD active
"data bus float delay
"OWS cycle or bus cycle not to the local bus

" state definitions for SEQUENCE (local cycle sequence counter):

"

SEQO
SEQI
SEQ2
SEQ3

Pin names:

CLK
ADS
READY
WR
CSOWS
CSlWS
CSIO
RESET

CLK2
OE

NA
IDLE
PIPE
L2
Ll
LO
Ql
QO

BUSSTATE
LOCALS TATE
SEQUENCE

pin
pin
pin
pin
pin
pin
pin
pin

pin
pin

pin
pin
pin
pin
pin
pin
pin
pin

"baa
AbOl
"bll
"blO

2 ;
3 ;
4 ;
5;
6;
7 ;
8 ;
9;

1;
11;

19;
18;
17;
16;
15;
14;
13 ;
12;

" Input pins
" 82384 CLK
" 80386 ADS#
" 80386 READY#
" 80386 W/R#
" chip-select for a wait-state (piped) devices
" chip-select for 1 wait-state (piped) devices
" chip-select for peripheral devices
" 80386/82384 RESET

" Clock pin - 82384 CLK2
" Output Enable pin

" output pins
" NEXT ADDRESS (NA) for lWS and IO devices
" bus state: IDLE or first CLK of unpiped cycle
" bus state: first CLK of pipelined cycle
" local cycle state
" local cycle state
" local cycle state
" local cycle sequence counter
" local cycle sequence counter

[PIPE, IDLE];
[L2, Ll, LO];
[Ql, QO];

" bus cycle state
" local cycle state
" local cycle sequence counter

Figure A-1. PAL-1 State Listings

A-3

LOCAL BUS CONTROL PAL DESCRIPTIONS

" Macros:

COUNTING
{ (Ql

macro
QO)); " true until sequencer counts down to zero

LOWCOUNTING macro
{(QO»); " true until sequencer counts down to zero

" same as COUNTING except used to reduce PAL
" terms and only works if count less than 3

""1"1"""",,'1111111"11""'1""'11"'"""""""'1'111'1"""'111111"'1""""""'""'1"111111"11'1""1111""""""""""11

state_diagram BUSSTATE

state IDLEBUS:
if RESET then IDLEBUS

else if ICLK # ADS then
else

"bus is idle or first
"reset to IDLEBUS

IDLEBUS "remain til sample
ACTIVEBUS; " ... then go ACTIVE

CLK of unpipelined

ADS active

state ACTIVEBUS:
if RESET then IDLEBUS

"subsequent eLKs of active bus
"reset to IDLEBUS

else if ICLK # READY then ACTlVEBUS
else if lADS then PIPEBUS

"remain til sample READY active
" ..• then next cycle either piped

else IDLEBUS;

state PIPEBUS:
if RESET then IDLEBUS

else if !CLK then PIPEBUS
else ACTIVEBUS;

state ILLEGALBUS:
goto lDLEBUS;

" ..• or idle

"first CLK of pipelined cycle
"reset to IDLEBUS

"remain for just one CLK
" ... then go ACTIVE

"unused state - should never occur
"if entered upon power-up .•. go IDLE

11""'111'1"1111""""""""""""1,""""""1111""""11""""""""""1""'"""11'1"1111"111"1"1'111'""""II""n""'111111111

state_diagram LOCALSTATE

state WAITING: "waiting for next bus cycle
NA := OFF;
if RESET then WAITING "reset to WAITING
else if !CLK

(ADS & IDLE) "remain while idle bus
#(!CSIO & LOWCOUNTlNG) then WAITING " .• and remain for recovery time

else SAMPLECS;" .. else begin bus cycle

state SAMPLECS:
NA := OFF;
if RESET then WAITING

else if !CSIWS then MEMORY
else if !CSIO then CMDDELAY

else NOTLOCAL;

state CMDDELAY:
NA := OFF;
if RESET then WAITING

else 10;

state 10:
NA := (!COUNTING & CLK) # NA;
if RESET then WAITING

else if !NA then 10
else ENDIO;

state ENDlO:
NA := OFF;
if RESET then WAITING
else if LOWCOUNTING then ENDIO

else FLOAT;

"CLK2 before ALE falls and CS is sampled

"reset to WAITING
"start lWS access
"start 10 access
"start non-local access

"delay before CMD active

"reset to WAITING
"only in state for 1 CLK2, then 10

"10 CMD active
"activate NA after count down to zero
"reset to WAITING
"remain until NA active
" ... then ENDIO

"10 CMD active

"reset to WAITING
"remain while COUNTING down
" ... then FLOAT

Figure A-1. PAL-1 State Listings (Cont'd.)

A-4

LOCAL BUS CONTROL PAL DESCRIPTIONS

state MEMORY:
NA := (!NA & CLK) # (NA & !CLK);
if RESET then WAITING

else if LOWCOUNTING then MEMORY
else FLOAT;

state FLOAT:
NA := OFF;

"lWS CMD active
"activateNA on second and third CLK2
"reset to WAITING
"remain while COUNTING down
" .•• then FLOAT

"data bus float delay

"reset to WAITING if RESET then WAITING
else if !IDLE & !CLK & CSOWS & CSIWS & CSIO then NOTLOCAL

else if COUNTING then FLOAT
else WAITING;

"watch for non-local bus cycle to start
" ••• else remain while COUNTING down
" ••• then WAIT

state NOTLOCAL: "OWS cycle or bus cycle not to the local bus
NA := OFF;
if RESET then WAITING

else if READY # !CLK then NOT LOCAL
else if COUNTING then FLOAT

else if lADS then SAMPLECS
else WAITING;

"reset to WAITING
"remain until bus cycle ends

" ••• then finish FLOAT if still COUNTING
" ••. else SAMPLECS if next bus piped
" ••• else WAIT

fI1111111'IIIIIIIIIIIII""III""II"""'IIIIIII'I""IIII"""""'IHIIIIII"'IIIIII"II"'"IIII"'III""'IIIII'I'I'IIIIIII'fll"""IIII""IIIIIIIIII

state_diagram SEQUENCE "counter for LOCALS TATE

state SEQ3:
if RESET then SEQO

else if !CLK then SEQ3
else SEQ2;

state SEQ2:
if RESET then SEQO

else if !CLK then SEQ2
else SEQ1;

state SEQl:
if RESET then SEQO

else if ICLK then SEQl
else SEQO;

state SEQO: "once count all the way
case

RESET
I RESET & (LOCALSTATE WAITING)
!RESET & (LOCALSTATE SAMPLECS)
!RESET & (LOCALSTATE SAMPLECS)
IRESET & (LOCALSTATE CMDDELAY)
!RESET & (LOCALS TATE CMDDELAY)
!RESET & (LOCALSTATE 10)
I RESET & (LOCALSTATE 10)
I RESET & (LOCALSTATE ENDIO)
IRESET & (LOCALS TATE MEMORY)
!RESET & (LOCALS TATE FLOAT)
I RESET & (LOCALSTATE NOTLOCAL)

endcase;

"reset to SEQuence 0
"no change if CLK low
"count down every time eLK high

down, figure out what to count next

SEQO; "reset to SEQuence 0
SEQO; "count not used

& !CSlWS SEQ2; "set up for lWS MEMORY
& CSlWS SEQO; "other than lWS MEMORY
& WR SEQ3; "set up for 10 write
& IWR SEQ2; "set up for 10 read
& !NA SEQO; "still in 10 ••• remain
& NA SEQl; "set up for ENDIO

SEQ3; "set up for 10 float
SEQl; "set up for lWS MEMORY
SEQ1; "set up for 10 recovery
SEQO; "count not used

Figure A-1. PAL-1 State Listings (Cont'd.)

A-5

LOCAL BUS CONTROL PAL DESCRIPTIONS

111111""'111""1111"11111"11111""'11111""'1"1'1"IIIII'IltHIIIIII""II",""""III""'I""""","1"'IIIH'I""nl'I'IIII"'III""11111111

test vectors ([CLK2, CLK, RESET, ADS, READY, WR, CSOWS, CSlWS, CSIO] ->
[LOCALSTATE, NA))

"[inputs) -> [outputs)

"C C R A R
"L LED E
10K K S S A
"2 E D
II T Y

W C C C
R S S S

o 1 I
W W 0
S S

LOCALS TATE

N
A

[e,x, H, x,x, x, x,x,x) -> [WAITING, L):"initialize to IDLE and WAITING state
[e,L, L, H,H, x, x,x,x) -> [WAITING, L):
[e,H, L, H,H, x, x,x,x) -> [WAITING, L]:
[e,L, L, x,H, x, x,x,x) -> [WAITING, L);
[e,H, L, L,H, x, x,x,x) -> [SAMPLECS, L);"lOOnS SRAM read
[e,L, L, x,H, L, L,H,H) -> [NOTLOCAL, L];"NA: activated externally
[e,H, L, H,H, x, x,x,x) -> [NOTLOCAL, L);
[e,L, L, x,L, x, x,x,x) -> [NOTLOCAL, L);
[e,H, L, L,L, x, x,x,x) -> [SAMPLECS, L);"lOOnS SRAM read
[e,L, L, x,H, L, L,H,H) -> [NOTLOCAL, L];"NA: activated externally
[e,H, L, H,H, x, x,x,x) -> [NOTLOCAL, L):
[e,L, L, x,L, x, x,x,x) -> [NOTLOCAL, L);
[e,H, L, L,L, x, x,x,x] -> [SAMPLECS, L];"lOOnS SRAM write
[e,L, L, x,H, H, L,H,H] -> [NOTLOCAL, L):"NA: activated externally
[e,H, L, H,H, x, x,x,x) -> [NOTLOCAL, L);
[e,L, L, x,H, x, x,x,x) -> [NOTLOCAL, L):
[e,H, L, x,H, x, x,x,x) -> [NOTLOCAL, L);
[e,L, L, x,L, x, x,x,x] -> [NOTLOCAL, L];
[e,H, L, L,L, x, x,x,x) -> [SAMPLECS, L];"lOOnS SRAM read
[e,L, L, x,H, L, L,H,H] -> [NOTLOCAL, L];"NA: activated externally
[e,H, L, H,H, x, x,x,x] -> [NOTLOCAL, L];
[e,L, L, x,L, x, x,x,x] -> [NOTLOCAL, L];
[e,H, L, L,L, x, x,x,x] -> [SAMPLECS, L];"non-loeal
[e,L, L, x,H, x, H,H,H] -> [NOTLOCAL, L];
[e,H, L, H,H, x, x,x,x] -> [NOTLOCAL, L];
[e,L, L, x,L, x, x,x,x] -> [NOTLOCAL, L]:
[e,H, L, L,L, x, x,x,x] -> [SAMPLECS, L];"lOOnS SRAM read
[e,L, L, x,H, x, L,H,H] -> [NOTLOCAL, L]:"NA: activated externally
[e,H, L, H,H, x, x,x,x] -> [NOTLOCAL, L]:
[e,L, L, H,L, x, x,x,x] -> [NOTLOCAL, L]:
[e,H, L, H,L, x, x,x,x] -> [WAITING, L]:"idle
[e,L, L, H,H, x, x,x,x] -> [WAITING, L]:
[e,H, L, li,H, x, x,x,x] -> [WAITING, L]:
[e,L, L, x,H, x, x,x,x] -> [WAITING, L]:
[e,H, L, L,H, x, x,x,x] -> [SAMPLECS, L]:"lOOnS SRAM write
[e,L, L, x,H, H, L,H,H] -> [NOTLOCAL, Ll:"NA: activated externally
[e,H, L, H,H, x, x,x,xl -> [NOTLOCAL, Ll:
[e,L, L, x,H, x, x,x,xl -> [NOTLOCAL, Ll:
[e,H, L, H,H, x, x,x,xl -> [NOTLOCAL, Ll:
[e,L, L, x,L, x, x,x,x] -> [NOTLOCAL, Ll:
[e,H, L, H,L, x, x,x,x] -> [WAITING, L]:"idle

[e,L, L, H,H, x, x,x,x] -> [WAITING, L]:
[e,H, L, H,H, x, x,x,xl -> [WAITING, L]:
[e,L, L, x,H, x, x,x,x] -> [WAITING, L]:
[e,H, L, L,H, x, x,x,x] -> [SAMPLECS, Ll;"150nS ROM read
[e,L, L, x,H, L, H,L,H] -> [MEMORY, L];
[e,H, L, H,H, x, x,X,x] -> [MEMORY, H]:
[e,L, L, H,H, x, x,x,x] -> [MEMORY, H]:
[e,H, L, H,H, x, X,X,X) -> [MEMORY, L]:
[e,L, L, x,L, x, x,x,x] -> [FLOAT, L]:
[e,H, L, L,L, x, x,x,x] -> [FLOAT, L]:
[e,L, L, x,H, x, L,x,x] -> [WAITING, L]:
[e,H, L, H,H, x, x,x,H] -> [SAMPLECS, L]:"lOOnS SRAM read
[e,L, L, x,H, L, L,H,H] -> [NOTLOCAL, L]:"NA: activated externally
[e,H, L, x,H, x, x,x,x] -> [NOTLOCAL, L];

Figure A-1. PAL-1 State Listings (Cont'd.)

A-6

LOCAL BUS CONTROL PAL DESCRIPTIONS

[e,L, L, x,L, x, X,X/X] -> [NOTLOCAL, L] ;
[c,H, L, L,Lt x, x,x,x] -> [SAMPLECS, L];1I150nS ROM read
[e,L, L, x/Hi L, H,L,H] -> [MEMORY , LJ;
[c/R, L, H/H, x, x,x/x] -> [MEMORY , H] ;
[e,L, L, H,H, x, x/x,x] -> [MEMORY , HJ;
[c/R, L, H,H, x, x,x,x] -> [MEMORY , L];
[e,L, L, x,L, x, X,X,X] -> [FLOAT , L] ;
[c,H, L, L,L, x, x,x,X] -> [FLOAT , L] ;
Ce,LI L, x/H, x, x,L,x] -> [WAITING, L];
[e,H, L, H/H, x, x,x,H] -> [SAMPLECS, L];1I150nS SRAM write
[c;L, L, H,H, H, H,L,H] -> [MEMORY , L] ;
[e,H, L, H,H, x, x,X,x] -> [MEMORY , HJ;
[e,L, L, H,H, x, X/X/X] -> [MEMORY , H] ;
[c,H, L, H,H, x, X/X/X] -> [MEMORY , L] ;
[e,L, L, K,L, x, X,X/X] -> [FLOAT , L);
[e,H, L, LIL, x, x/x,x] -> [FLOAT , L] ~
[e,L, L, x,H , x, x,L,x] -> [WAITING, L] ;
[c,H, L, H,H, x, x/x,H] -> [SAMPLECS, L];1I150nS SRAM read
[e,L, L, H,H, L, H,L,H) -> [MEMORY , L] ;
[e,H, L, H,H, x, X,X/X] -> [MEMORY , H] ;
[e,L, L, H,H, x, X~X/XJ -> [MEMORY , H];
[c,H, L, H,H, x, x,x/x] -> [MEMORY , L);
[e,L, L, H,L, x, x,x,x] -> [FLOAT , L] ;
[c/H, L, H,L, x, x/x,x] -> [FLOAT , L] ;
[e,L, L, H,H, x, x,x,x] -> [WAITING, L];lIidle
[e,H, L, H,H, x, x,x,x] -> [WAITING, L] ;
[e,L, L, x/H, x, x,x,x] -> [WAITING, L] ;
[e,H, L, L,H, x, x,x,x] -> [SAMPLECS, L];1I150nS SRAM read
[e,L, L, x,H, L, H,L,H] -> [MEMORY , L) ;
[c/R , L, H,H, x, X,X,X] -> [MEMORY , H) ;
[e,L, L, x,H, x, X,X,X] -> [MEMORY , H] ;
[e,H, L, L,H, x, x/x,x] -> [MEMORY , L) ;
[e,L, L, L,Lt x, x,x,x] -> [FLOAT , L) ;
[e,H, L, H,L, x, X/X,X] -> [FLOAT , L] ;
[e,L, L, H,H, x, x/x,x] -> [WAITING, L);lIidle
[c,H, L, H/H, x, X/X/X] -> r WAITING, L] ; ,
[e,L, L, x,H, x, X,X,X] -> [WAITING , Ll;
[e,H, L, L,H, x, x,x,x) -> [SAMPLECS, L) ; "peripheral read
[e,L, L, x,H , L, H,H,Ll -> [CMOOELAY, L] ;
[c/H, L, H,H, L, x,x,x] -> [10 , L) ;
[e,L, L, H/H, x, x,x,x] -> [10 , L];
[e,H, L, H/H, x, x,x,x] -> [10 , L) ;
[e,L, L, H,H, x, x,x,xl -> [10 , L];
[e,H, L, H,H, x, X,x,x) -> [10 , L] ;
[e,L, L, H/H, x, X,X/X] -> [10 , L) ;
[e/R, L, H/H, x, x,x,x] -> [10 , H) ;
[e,L, L, H,H, x, x,x,x] -> [ENOlO , H] ;
[e,H, L, H,H, x, x/x/x] -> (ENOIO , L] ;
[e,L, L, x,L, x, x,x,x] -> [FLOAT , L] ;
[c,H, L, L,L, x, x,x,x] -> [FLOAT , L) ;
[e,L, L, x,H, x, x,x,L] -> [FLOAT , L] ;
[e,H, L, H,H, x, x,x,x] -> [FLOAT , L];
[e,L, L, H,H, x, x,x,L] -> [FLOAT , L) ;
[e,H, L, H,H, x, x,x,x] -> [FLOAT , L] ;
[e,L, L, H,H, x, X,X,L) -> [WAITING , L);
[e,H, L, H,H, x, x,x,L] -> [WAITING , L] ;
[e,L, L, H,H, x, x,x,L) -> [WAITING , L) ;
[e,H, L, H,H, x, x,x,x] -> [SAMPLECS, L) ; "peripheral read
[e,L, L, H,H, L, H,H,L] -> [CMOOELAY, L] ;
[e,H, L, H/H, L, x,x,x) -> [10 , L) ;
[e,L, L, H,H, x, x,x,x] -> [10 , Ll;
[e,H, L, H,H, x, X,X,X] -> [10 , L] ;
[e,L, L, H,E, x, X,X,X] -> [10 , L) ;
[e,H, L, H,H, x, x,x,x] -> [10 , L) ;
[e,L, L, H,H, x, X,X,X] -> [10 , L) ;

Figure A-1. PAL-1 State Listings (Cont'd.)

A-7

LOCAL BUS CONTROL PAL DESCRIPTIONS

[c,H, L, H,H, x, X,X,X] -> IO , H] ;
[c,L, L, H,H, x, X,X,X] -> ENOIO , H] ;
[e,H, L, R,H, x, x,x,x] -> ENOIO , L] ;
[c,L, L, x,L, x, X,X,X] -> FLOAT , L] ;
[c,H, L, L,L, x, X,X,X] -> FLOAT , L] ;
[e,L, L, x,H, x, L,x,x] -> FLOAT , L] ;
[c,HI L, H,H, x, x,x,x] -> FLOAT , L] ;
[e,L, L, H/R, x, L,x,x] -> FLOAT , L] ;
[c,H, L, H,H, x, x,x,x] -> [FLOAT , L];
[c,L, L, H,H, x, L,x,x] -> [WAITING , L] ;
[c,H, L, H,H, x, x,x,H] -> [SAMPLECS, L];"lOOnS SRAM read
[c,L, L, H,H, L, L,H,H] -> [NOTLOCAL, L];"NA: activated externally
[c,H, L, H,H, x, x,x,x] -> [NOTLOCAL, L] ;
[c,L, L, x,L, x, x,x,x] -> [NOTLOCAL, L] ;
[c,H, L, L,L, x, x,x,x] -> [SAMPLECS, L];"peripheral write
[c,L, L, x,H, H, H,H,L] -> [CMOOELAY, LJ;
[c,H, L, H,H, H, x,x,x] -> [IO , LJ;
[c,L, L, H,H, x, x,x,x] -> [IO , L] ;
[c,H, L, H,H, x, x/x,x] -> [IO , L] ;
[c,L, L, H,H, x, x,x/x] -> [IO , L];
[c,H , L, H,H, x, x,x,x] -> [IO , LJ;
[c,L, L, H,H, x, x,x,x] -> [IO , L] ;
[c,H, L, H,H, x, X,X,X] -> [IO , L];
[c,L, L, H,H, X, x,x,x] -> [IO , L] ;
[e,H, L, H,H, x, x,x,x] -> [IO , H] ;
[e,L, L, H,H, x, x,x,x] -> [ENOIO , H] ;
[c,H, L, H,H, x, x,x,x] -> [ENOIO , L] ;
[c,L, L, x,L, x, X,X,X] -> [FLOAT , L];
[c,H, L, x,L, x, x,x,x] -> [FLOAT , L] ;

end Bus - Control - 386 _Pal - 1;

Figure A-1. PAL-1 State Listings (Cont'd.)

A-8

LOCAL BUS CONTROL PAL DESCRIPTIONS

module

title
'80386 Local Bus Controller - pal 2 Intel Corp'

BC386P2 device 'Pl6R8' 1 "use a l6R8 B-speed PAL for l6MHz 386

II constants:

ON
OFF
H
L
x
c

1;
0;
1;
0;
.x. ;
.c. ;

" ABEL 'don't care' symbol
" ABEL 'clocking input' symbol

" state definitions for LOCALS TATE (local cycle state):

"waiting for next bus cycle WAITING
SAMPLECS
CMDDELAY
10

"blOll
"blOOI
"bOOO;
"bOlOI
"bllO;
"bOlll
"bIll;
"bOOll

"CLK2 before ALE falls and CS is sampled
"delay before CMD active
"10 CMD active
"10 CMD inactive
"lWS CMD active
"data bus float delay

ENDIO
MEMORY
FLOAT
NOT LOCAL "OWS cycle or bus cycle not to the local bus

" Pin names:

eLK
MIC
DC
WR
La
Ll
L2
CSOWS

CLK2
OE

MRDC
MWTC
IORC
IOWC
INTA

pin 2;
pin 31
pin 4;
pin 5;
pin 61
pin 7;
pin 8;
pin 9;

pin 1;
pin 11;

pin 19 ;
pin 18 ;
pin 171
pin 16;
pin 15;

" Input pins

" 82384 CLK

" 80386 M/IO#
" 80386 D/C#

" 80386 W/R#
" local cycle state (from PAL 1)

" local cycle state (from PAL. 1)
" local cycle state (from PAL 1)

" chip-select for 0 wait-state (piped) devices

" Clock pin - 82384 CLK2
" Output Enable p·in

to output pins
to Memory Read Control signal
" Memory Write Control signal
" I/O Read Control signal

" I/O write Control signal
" Interrupt Acknowledge Control signal

ALE pin 14; to Address Latch Enable Control signal
DEN pin 13; " Data Transceiver Enable Control signal
RDY pin 12; " READY signal

LOCALS TATE [L2, Ll, LOl; " local cycle state

" Macros:

ifMEMORYREAD macro
((MIO & !WR) }1 II true for memory data or code read

ifMEMORYWRITE macro
((MIO & DC & WR)) ; tt true for memory data write

ifIOREAD macro
{ (!MIO & DC & !WR)); " true for I/O data read

ifIOWRITE macro
{ (!MIO & DC & WR)); to true for I/O data write

ifINTACK macro
((IMIO & IDC & !WR) }; " true for interrupt acknowledge cycle

Figure A-2. PAL-2 State Listings

A-9

LOCAL BUS CONTROL PAL DESCRIPTIONS

111111""'1"'11111.,1,","'""""""""",,""""""""""1111"" """"""""""""""""~I'"""II""""""II'I""""II
equations

!MRDC :=
«LOCALSTATE==WAITING)

#«LOCALSTATE==SAMPLECS)
#«LOCALSTATE==CMDDELAY)
«LOCALSTATE=-IO)
#«LOCALSTATE--ENDIO)
#«LOCALSTATE==MEMORY)
II«LOCALSTATE==FLOAT)
#«LOCALSTATE==NOTLOCAL)

!MWTC :=
«LOCALSTATE==WAITING)

#«LOCALSTATE==SAMPLECS)
#«LOCALSTATE==CMDDELAY)
#«LOCALSTATE==IO)
#«LOCALSTATE==ENDIO)
II «LOCALSTATE==MEMORY)
((LOCALSTATE==FLOAT)
«LOCALSTATE==NOTLOCAL)

!IORC :=
«LOCALSTATE==WAITING)

«LOCALSTATE==SAMPLECS)
«LOCALSTATE==CMDDELAY)
#«LOCALSTATE==IO)
#«LOCALSTATE==ENDIO)
#«LOCALSTATE==MEMORY)
#«LOCALSTATE==FLOAT)
#«LOCALSTATE==NOTLOCAL)

IIOWC :=
«LOCALSTATE--WAITING)

#«LOCALSTATE==SAMPLECS)
«LOCALSTATE==CMDDELAY)
#«LOCALSTATE==IO)
#«LOCALSTATE==ENDIO)
#«LOCALSTATE==MEMORY)
#«LOCALSTATE==FLOAT)
«LOCALSTATE==NOTLOCAL)

!INTA :=
«LOCALSTATE==WAITING)

#«LOCALSTATE==SAMPLECS)
#«LOCALSTATE==CMDDELAY)
«LOCALSTATE==IO)
#«LOCALSTATE==ENDIO)
«LOCALSTATE==MEMORY)
«LOCALSTATE==FLOAT)
«LOCALSTATE==NOTLOCAL)

ALE :=
«LOCALSTATE==WAITING)

«LOCALSTATE==SAMPLECS)
#«LOCALSTATE==CMDDELAY)
«LOCALSTATE==IO)
#«LOCALSTATE==ENDIO)
#«LOCALSTATE==MEMORY)
((LOCALSTATE==FLOAT)
#«LOCALSTATE==NOTLOCAL)

& OFF)
& ifMEMORYREAD & lCSOWS) "activate if OWS access
& OFF)
& ((ifMEMORYREAD & DEN) II !MRDC)) "activate if 10
& «ifMEMORYREAD & DEN) • IMRDC» "remain if 10
& ((ifMEMORYREAD & DEN) • IMRDC» "activate lWS
& OFF)
& (!MRDC & (RDY 11 ICLK») ; "remain if OWS

& OFF)
& ifMEMORYWRITE & ICSOWS)
& OFF)
& «ifMEMORYWRITE & DEN) # (!MWTC & RDY»)
& «ifMEMORYWRITE & DEN) • (!MWTC & ROY»)
& ((ifMEMORYWRITE & DEN) # !MWTC))
& OFF)
& (IMWTC & ROY»;

& OFF)
& ifIOREAD & !CSOWS)
& OFF)
& «ifIOREAD & DEN) II !IORC))
& «ifIOREAD & DEN) # I IORC))
& ((ifIOREAD & DEN) # !IORC))
& OFF)
& (IIORC & (ROY # !CLK») ;

& OFF)
& ifIOWRITE & !CSOWS)
& OFF)
& ((ifIOWRITE & DEN) II (IIOWC & ROY) »
& ((ifIOWRITE & DEN) • (!lOWC & ROY) »
& ((ifIOWRITE & DEN) II I IOWC))
& OFF)
& (!IOWC & RDY»;

& OFF)
& ifINTACK & !CSOWS)
& OFF)
& ((ifINTACK & DEN) II !INTA))
& ((ifINTACK & DEN) # !INTA))
& ((ifINTACK & DEN) # !INTA))
& OFF)
& (IINTA & (ROY' !CLK») ;

& ON) "activate ALE while waiting
& OFF)
& OFF)
& OFF)
& OFF)
& OFF)
& OFF)
& ((DEN & CSOWS) "activate ALE if not-local

II ALE "if active ..• remain active
'(!RDY & CLK»): "activate if last CLK2 of OWS access

Figure A-2, PAL-2 State Listings (Cont'd.)

A-10

LOCAL BUS CONTROL PAL DESCRIPTIONS

!DEN :=
«LOCALSTATE==WAITING) & OFF)

#«LOCALSTATE==SAMPLECS) & OFF)
#«LOCALSTATE==CMDDELAY) & OFF)
«LOCALSTATE==IO) & ON) "activate DEN while in 10
#«LOCALSTATE==ENDIO) " ON) "activate DEN while in 10
#«LOCALSTATE==MEMORY) "ON) "activate DEN while in lWS access
«LOCALSTATE==FLOAT) "(!MWTC # ! IOWC» "remain active 1 CLK2 if write
«LOCALSTATE==NOTLOCAL) " ((!ALE " ! CSOWS) "activate DEN if OWS access

!DEN) "if active ... remain active
" (ROY # ! CLK)) ; " .•. until last CLK2 of OWS access

lRDY :=
«LOCALSTATE==WAITING) & OFF)

#«LOCALSTATE==SAMPLECS) & OFF)
#«LOCALSTATE==CMDDELAY) & OFF)
«LOCALSTATE==IO) & OFF)
#«LOCALSTATE==ENDIO) & ON) "activate RDY at end of 10
#«LOCALSTATE==MEMORY) "«ROY & !DEN & CLK) # (!RDY & !CLK»)

"activate RDY at end of lWS access
#«LOCALSTATE==FLOAT) " OFF)
#«LOCALSTATE==NOTLOCAL) " ((RDY & CLK & ((!HRDC # !IORC # !INTA)

#(!RDY &
((!MWTC # ! IOWC) & ! DEN»)

!CLK») ;
"activate ROY at end of OWS access

IIIIIIIIII11Ifl'"""""""""'III"""""""I'""""I'""""""'1"""IIH'I,,""'I"IIIIII"""""""IIII"II"IIIIII'I""""I"'""""

([CLK2, CLK, LOCALSTATE, MIO, DC, WR, CSOWS] ->
[HRDC, MWTC, IORC, IOWC, INTA, ALE, DEN, ROY])

"(inputs] -> [outputS]

"C C M D W C
S
o
W
S

M M I I I
R WOO N
D TRW T
C C C C A

ADR
LED
E N Y

"L L I C R
"K K LOCALSTATE 0
"2

[c,L,
[c,H,
[c,L,
[c,H,
[c,L,
[c,H,
[c,L,
[c,H,
[c,L,
[c,H,
[c,L,
[c,H,
[e,L,
[c,H,
[c,L,
[c,H,
[c,L,
[c,H,
[c,L,
[c,H,
[c,L,
[c,H,
[c,L,

x , X,X,X,
X , X,X,X,
X I X/X, x,
X , x,x,x,
x , x,x,x,
x , x,lt',x,
x I x,x,x,
X , x,x,x,

WAITING, X,X,X,
WAITING, x,x,x,
WAITING, x,x,x,
WAITING, x,x,x,

SAMPLECS, H,L,L,
NOTLOCAL, x,x,x,
NOTLOCAL, x,x,x,
NOTLOCAL, x,x,x,
SAMPLECS, H,H,L;
NOTLOCAL, x,X,x!
NOT LOCAL , x,x,x,
NOTLOCAL, X,X,X,
SAMPLECS, H,H,H,
NOTLOCAL, x,x,x,
NOTLOCAL, x,x,x,

x] -> [x,x,x,X,X, X,X,x];"initialize to IDLE and WAITING
x] -> [x,X,X,X,X, X,X,x];
xl -> [x,x,x,x,X, X/X/X];
xl -> [X,X,X/X/X, x,x,x);
x] -> (x,x,X,x,x, X,X,x];
xl -> [X,X,X,X,X, X,X,X]:
xl -> [X/X/X/X,X, X/X/X];
xl -> [X,X,X,X,x, X/X/X]:
x] -> [H,H,H,H,H, H,H,H];
X] -> [H,H,H,H,H, H,H,H];
x] -> [H,H,H,H,H, H,H,H];
x] -> [H,H,H,H,H, H,H,H];"lOOnS SRAM read
L] -> [L,H,H,H,H, L,H,H];
L] -> [L,H,H,H,H, L,L,L];
x] -> [L,H,H,H,H, L,L,L];
x] -> [H,H,H,H,H, H,H,H];"lOOnS SRAM read
L] -> [L,H,H,H,H, L,H,H];
L] -> [L,H,H,H,H, L,L,L];
x] -> [L,H,H,H,H, L,L,L];
x] -> [H,H,H,H,H, H,H,H];"lOOnS SRAM write
L] -> [H,L,H,H,H, L,H,H];
L] -> [H,L,H,H,H, L,L,H];
x] -> [H,L,H,H,H, L,L,H];

Figure A-2. PAL-2 State Listings (Cont'd.)

A-11

LOCAL BUS CONTROL PAL DESCRIPTIONS

[e,H, NOTLOCAL, x,x,x, x] -> [H,L,H,H,H, L,L,L];
[e,L, NOTLOCAL, X,X,X, x] -> [H,H,H,H,H, L,L,L];
[e,H, NOTLOCAL, X,X,X, x] -> [H,H,H,H,H, H,H,H];"lOOnS SRAM read
[e,L, SAMPLECS, H,H,L, L] -> [L,H,H,H,H, L,H,H];
[e,R, NOTLOCAL, X,X, x, L] -> [L,H,H,H,H, L,L,L];
[e,L, NOTLOCAL, x,x,x, x] -> [L,H,H,H,H, L,L,L];
[e,H, NOTLOCAL, x/x,x, x] -> [H,H,H,H,H, H,H,H];"non-loeal
[e,L, SAMPLECS, X,X,X, H] -> [H,H,H,H,H, L,H,H];
[e,H, NOTLOCAL, X,X, x, H] -> [H,H,H,H,H, H,H,H];"READY: activated externally
[e,L, NOTLOCAL, x,x,x, x] -> [H,H,H,H,H, H,H,H];
[e,H, NOTLOCAL, X,X,X, x] -> [H,H,H,H,H, H,H,H];"lOOnS SRAM read
[e,L, SAMPLECS, H,L,L, L] -> [L,H,H,H,H, L,H,H];
[e,H, NOTLOCAL, X,X,X, L] -> [L,H,H,H,H, L,L,L] ;
[e,L, NOTLOCAL, X,X,X, x] -> [L,H,H,H,H, L,L~L] ;
[e,H, NOTLOCAL, X,X,X, x] -> [H,H,H,H,H, H,H,H] ;"idle
[e,L, WAITING, x,x,x, x] -> [H,H,H,H,H, H,H,H];
[e,H, WAITING, X,X,X, x] -> (H,H,H,H,H, H,H,H];
[e,L, WAITING, X,X,X, X] -> [H,H,H,H,H, H,H,H];
[c,H, WAITING, X,X,X, x] -> [H,H,H,H,H, H,H,H];"lOOnS SRAM write
[e,L, SAMPLECS, H,H,H, L] -> [H,L,H,H,H, L,H,H] ;
(e,H, NOTLOCAL, x,x,x, L] -> [H,L,H,H,H, L,L,H] ;
[e,L, NOTLOCAL, X,X,X, x] -> (H,L,H,H,H, L,L,H] ;
(e,H, NOTLOCAL, X,X/X, x] -> [H,L,H,H,H, L,L,L] ;
[e,L, NOTLOCAL, X,X,X, x] -> (H,H,H,H,H, L,L,L] ;
[e,H, NOTLOCAL, X,X,X, x] -> [H,H,H,H,H, H,H,H];"idle

[e,L, WAITING, X,X,X, x] -> [H,H,H,H,H, H,H,H] ;
[e,H, WAITING, x,x,x, x] -> [H,H,H,H,H, H,H,H] ;
[e,L, WAITING, x,x,x, x] -> [H,H,H,H,H, H,H,H] ;
[e,H, WAITING, X/x,x, x] -> (H,H,H,H,H, H,H,H];"l50nS ROM read
[e,L, SAMPLECS, x,x,x, H] -> [H,H,H,H,H, L,H,H];
[e,H, MEMORY , H,H,L, x] -> [L,H,H,H,H, L,L,H] ;
[e,L, MEMORY , X,X,X, x] -> [L,H,H,H,H, L,L,H] ;
[e,H, MEMORY , x,x,x, x] -> [L,H,H,H,H, L,L,L];
[e,L, MEMORY , X,X,X, x] -> [L,H,H,H,H, L,L,L];
[e,H, FLOAT , X,X,X, x] -> [H,H,H,H,H, L,H,H];
[e,L, FLOAT , X,X,X, x] -> [H,H,H,H,H, L,H,H];
[e,H, WAITING, X,X,X, x] -> [H,H,H,H,H, H,H,H];"lOOnS SRAM read
[e,L, SAMPLECS, H,L,L, L] -> [L,H,H,H,H, L,H,H];
[c,H, NOTLOCAL, X,X,X, L] -> [L,H,H,H,H, L,L,L];
[e,L, NOTLOCAL, X,X,X, x] -> [L,H,H,H,H, L,L,L] ;
[c/H, NOTLOCAL, X,X,X, x] -> [H,H,H/R,H, H,H,H];"150nS ROM read
[e,L, SAMPLECS, x,x,x, H] -> [H,H,H,H,H, L,H,H];
[e,H, MEMORY , H,L,L, x] -> [L,H,H,H,H, L,L,H];
[e,L, MEMORY , X,X,X, x] -> [L,H,H,H,H, L,L,H];
[e,H, MEMORY , X,X, x, x] -> [L,H,H,H,H, L,L,L];
[e,L, MEMORY , x,x/x, x] -> [L,H,H,H,H, L,L,L] ;
[e,H, FLOAT , x,x/x, x] -> [H,H,H,H,H, L,H,H] ;
[e,L, FLOAT , X~X,X., x] -> [H,H,H,H,H, L,H,H];
[e,H, WAITING, x,x,x, x] -> [H,H,H,H,H, H,H,H];"150nS SRAM write
[e,L, SAMPLECS, X,X,X, H] -> [H,H,H,H,H, L,H,H];
[e,H, MEMORY , H,RtH, x] -> (H,L,H,H,H, L,L,H];
(e,L, MEMORY , X,X,X, x] -> [H,L,H,H,H, L,L,H];
(e,H, MEMORY , x,x,x, x] -> [H,L,H,H,H, L,L,L];
[e,L, MEMORY , X,X,X, xl -> [H,L,H,H,H, L,L,L];
[e/H, FLOAT , x,x,x, x] -> [H,H,H,H,H, L,L,H];
[e,L, FLOAT , X,X,X, xl -> [H,H,H,H,H, L,H,H];
[e,H, WAITING, X,X,X, xl -> [H,H,H,H,H, H,H,Hl;"150nS SRAM read
[e,L, SAMPLECS, x,x,x, Hl -> [H,H,H,H,H, L,H,H];
[e,H, MEMORY , H,H,L, xl -> [L,Ii,H,H,H, L,L,H];
[e,L, MEMORY , X,X,X, x] -> [L,H,H,H,H, L,L,Hl;
[c/H, MEMORY , X,X,X, Xl -> [L,H,H,H,H, L,L,L];
[e,L, MEMORY , X,X,X, xl -> [L,H,H,H,H, L,L,L];
[e,H, FLOAT , x,x,X, xl -> (H,H,H,H,H, L,H,Hl;
[e,L, FLOAT , x,x,x, x] -> [H,H,H,H,H, L,H,Hl;"idle
[e,H, WAITING, x,x,x, x] -> [H,H,H,H,H, H,H,H];
[e,L, WAITING, x,x,x, x] -> [H,H,H,H,H, H,H,Hl;
[e/H, WAITING, X,X,X, xl -> [H,H,H,H,H, H,H,H];"150nS SRAM read

Figure A-2. PAL-2 State Listings (Cont'd.)

A-12

LOCAL BUS CONTROL PAL DESCRIPTIONS

[e,L, SAMPLECS, x,x,x, Hl -> [H,H,H,H,H, L,H,Hl;
[e,H, MEMORY , H,L,L, xl -> [L,H,H,H,H, L,L,Hl;
[e,L, MEMORY , x,x,x, xl -> [L,H,H,H,H, L,L,Hl;
te,H, MEMORY , X,X,X, xl -> [L,H,H,H,H, L,L,Ll;
[e, L, MEMORY , x,x,x, x) -> [L,H,H,H,H, L,L,L);
[e,H, FLOAT , x,x,x, xl -> [H,H,H,H,H, L,H,Hl;
[e,L, FLOAT , x,x,x, x) -> [H,H,H,H,H, L,H,H);"idle
[e,H, WAITING, x,x,x, xl -> [H,H,H,H,H, H,H,Hl;
[e, L, WAITING, X,X,X, xl -> [H,H,H,H,H, H,H,Hl;
[e,H, WAITING, X,X,X, xl -> (H,H,H,H,H, H,H,Hl ; "peripheral read
[e,L, SAMPLECS, X,X,X, Hl -> [H,H,H,H,H, L,H,Hl;
[e,H, CMOOELAY, x,x,:X, x) -> [H,H,H,H,H, L,H,H);
[e,L, 10 , L,H,L, xl -> (H,H,L,H,H, L,L,Hl;
[e,H, 10 , X,X,X, xl -> (H,H,L,H,H, L,L,Hl;
[e,L, 10 , X,X,X, x) -> [H,H,L,H,H, L,L,Hl;
[e,H, 10 , X,X,X, xl -> (H,H,L,H,H, L,L,Hl;
[e,L, 10 , x,x,x, xl -> [H,H,L,H,H, L,L,Hl;
[e,H, 10 , x,x,x, xl -> (H,H,L,H,H, L,L,Hl;
[e,L, 10 , x,x,x, xl -> (H,H,L,H,H, L,L,Hl;
[e,H, ENOla , x,x,x, xl -> [H,H,L,H,H, L,L,L);
[e,L, ENOla , x,x,x, xl -> [H,H,L,H,H, L,L,Ll;
[e,H, FLOAT , X,X,X, xl -> [H,H,H,H,H, L,H,Hl;
(e,L, FLOAT , X,X,X, xl -> [H,H,H,H,H, L,H,Hl;
[e,H, FLOAT , x,x,x, x) -> [H,H,H,H,H, L,H,H);
[e,L, FLOAT , X,X,X, xl -> [H,H,H,H,H, L,H,Hl;
[e,H, FLOAT , x,x,x, xl -> [H,H,H,H,H, L,H,Hl;
[e,L, FLOAT , X,X,X, xl -> [H,H,H,H,H, L,H,Hl;
[e,H, WAITING, x,x,x, xl -> (H,H,H,H,H, H,H,Hl;
[e,L, WAITING, X,X,X, x) -> [H,H,H,H,H, H,H,Hl;
[e,H, WAITING, X,X,X, xl -> [H,H,H,H,H, H,H,Hl;"peripheral interrupt aek.
[e,L, SAMPLECS, X,X,X, Hl -> [H,H,H,H,H, L,H,H);
[e,H, CMOOELAY, x,x,x, xl -> [H,H,H,H,H, L,H,Hl;
[e,L, 10 , L,L,L, xl -> [H,H,H,H,L, L,L,Hl;
[c,H, 10 , x,x,x, x) -> [H,H,H,H,L, L,L,Hl;
[e,L, 10 , X,X,X, xl -> [H,H,H,H,L, L,L,Hl;
[c,H, 10 , x,x,x, xl -> [H,H,H,H,L, L,L,H);
[e,L, 10 , x,x,x, xl -> [H,H,H,H,L, L,L,Hl;
[c,H, 10 , x,x,x, xl -> [H,H,H,H,L, L,L,Hl;
[e,L, 10 , X,X,X, xl -> [H,H,H,H,L, L,L,Hl;
[e,H, ENOla , x,x,?" xl -> [H,II,Ii,H,L, L,L,Ll;
[e,L, ENOla , x,x,x, x) -> [H/H,H, H, L, L,L,Ll;
[c,H, FLOAT , x,x,x, x) -> [H,H,H,H,H, L,H,Hl;
[e,L, FLOAT , x,x/x, xl -> [H,H,H,H,H, L,H,Hl;
[e,H, FLOAT , X,X,X, xl -> [H,H,H,H,H, L,H,Hl;
[e,L, FLOAT , ~,X,X, xl -> [H,H,H,H,H, L,H,Hl;
[e,H, FLOAT , X,X,X, xl -> (H,H,H,H,H, L,H,H);
[e,L, FLOAT , X,X,X, xl -> [H,H,H,H,H, L,H,Hl;
[c,H, WAITING, X/X,x~ xl -> [H,H,H,H,H, H,H,H);"lOOnS SRAM read
[e,L, SAMPLECS, H,L,L, Ll -> [L,H,H,H,H, L,H,Hl;
[e,H, NOTLOCAL, x,x,x, Ll -> [L,H,H,H,H, L,L,Ll;
[e,L, NOTLOCAL, x,x,x, x) -> [L,H,H,H,H, L,L,Ll;
[e,H, NOT LOCAL , X,X,X, xl -> [H,H,H,H,H, H,H,Hl;"peripheral write
[e,L, SAMPLECS, x,x,x, Hl -> [H,H,H,H,H, L,H,H);
[e,H, CMOOELAY, X,X,X, xl -> [H,H,H,H,H, L,H,Hl;
[e,L, 10 , L,H,H, xl -> [H,H,H,L,H, L,L,Hl;
[e,H, 10 , x,x,x, xl -> [H,H,H,L,H, L,L,Hl;
[e,L, 10 , x,x,x, x) -> [H,H,H,L,H, L,L,H);
[e,H, 10 , X,X,X, x) -> [H,H,H,L,H, L,L,H);
[e,L, 10 , X,X,X, x) -> [H,H,H,L,H, L,L,Hl;
[e,H, 10 , X,X,X, xl -> (H,H,H,L,H, L,L,Hl;
[c,L, 10 , x,x,x, xl -> [H,H,H,L,H, L,L,H);
[e,H, 10 , X,X,X, xl -> [H,H,H,L,H, L,L,H);
[e,L, 10 , X,X,X, xl -> J[H,H,H,L,H, L,L,Hl;
[e,H, ENOla , x,x,x, xl -> [H,H,H,L,H, L,L,Ll;
[e,L, ENOla , X,X,X, xl -> [H,H,H,H,H, L,L,Ll;
[e,H, FLOAT , X,X,X, xl -> [H,H,H,H,H, L,H,Hl;
[e,L, FLOAT , x,x,x, xl -> [H,H,H,H,H, L,H,Hl;

end Bus Control 386 Pal 2; - - - -

Figure A-2. PAL-2 State Listings (Cont'd.)

A-13

LOCAL BUS CONTROL PAL DESCRIPTIONS

PAL16R8 PAL DESIGN SPECIFICATIONS
PART NUMBER: 80386 LOCAL BUS CONTROLLER - PAL 1
80386 LOCAL BUS CONTROLLER : PAL 1 OF 2
INTEL, SANTA CLARA, CALIFORNIA
CLK2 CLK ADS READY WR CSOWS CSlWS CSIO RESET GND
OE QO Ql LO Ll L2 PIPE IDLE NA VCC

/PIPE.- RESET
+ /CLK * /PIPE
+ CLK * PIPE
+ /PIPE * READY
+ IDLE
+ ADS * /PIPE

/IDLE.- /CLK * /IDLE * /RESET
+ /IDLE * PIPE * /RESET
+ /IDLE * READY * /RESET
+ /ADS * CLK * IPIPE * /RESET

/NA:= /Ll
+ L2
+ /CLK * /NA
+ CLK * LO * NA
+ /LO * /NA * QO
+ /LO * INA * Ql

/L2:= /CLK * /Ll * /L2 * lRESET
+ /LO * IL2 * /NA * /RESET
+ /Ll * /L2 * READY * IRESET
+ LO * Ll * /L2 * QO * /RESET
+ /LO * /Ll * /RESET
+ /CLK * CSOWS * CSlWS * CSIO * IIDLE * LO * Ll * L2 * /RESET

/Ll:= RESET
+ /CLK * LO * /Ll
+ LO * /Ll * READY
+ CSlWS * ILl * L2
+ LO * ILl * L2
+ LO * L2 * /QO * /Ql
+ LO * /Ll * IQO * /Ql
+ /CLK * CSOWS * CSlWS * CSIO * /IDLE * LO * L2

/LO:= /LO * /L2 * /RESET
+ /LO * Ll * QO * /RESET
+ CSlWS * /CSIO * /LO * /Ll * /RESET
+ /ADS * CLK * CSIO * LO * /Ll * L2 * /RESET
+ /ADS * CLK * LO * /Ll * L2 * /QO * /RESET
+ CLK * CSIO * /IDLE * LO * /Ll * L2 * /RESET
+ CLK * /IDLE * LO * /Ll * L2 * /QO * /RESET
+ /ADS * CLK * /Ll * /L2 * /QO * IQl * /READY * lRESET

/Ql:= RESET
+ QO * /Ql
+ CLK * QO
+ LO * IQl
+ CSlWS * /Ll * L2 * /Ql
+ Ll * /L2 * /Ql

/QO:= RESET
+ /CLK * /QO * Ql
+ CLK * QO * /Ql
+ ILO * Ll * L2 * /Qo * /Ql
+ LO * ILl * /Qo * /Ql
+ CSlWS * ILl * L2 * /Qo * /Ql
+ /Ll * /L2 * /Qo * /Ql * WR
+ ILO * Ll * /NA * /Qo * /Ql

DESCRIPTION

This PAL is the first of two PALs that implement a 386 bus controller

Figure A-3. PAL-1 Equations

A-14

LOCAL BUS CONTROL PAL DESCRIPTIONS

PALl6R8 PAL DESIGN SPECIFICATIONS
PART NUMBER: 80386 LOCAL BUS CONTROLLER - PAL 2
80386 LOCAL BUS CONTROLLER : PAL 2 OF 2
INTEL, SANTA CLARA, CALIFORNIA
CLK2 ClK MIO DC WR LO Ll L2 CSOWS GNO
OE ROY DEN ALE INTA IOWC IORC MWTC MRDC VCC

/MROC : = /LO * Ll * /MROC
+ Ll * /l2 * /MRDC
+ /CLK * LO * /L2 * /MRDC
+ LO * /l2 * /MRDC * ROY
+ /CSOWS * ILO * III * l2 * MIO * IWR
+ DEN * /LO * Ll * MIO * IWR
+ DEN * Ll * Il2 * MIO * IWR

/MWTC : = LO * Ll * /L2 * /MWTC

/IORC

/IOWC

/INTA

/AlE

:=

:=

:=

:=

+ IlO * Ll * IMWTC * ROY
+ LO * Il2 * IMWTC * ROY
+ ICSOWS * DC * ILO * III * l2 * MIO * WR
+ DC * DEN * IlO * Ll * MIO * WR
+ DC * DEN * Ll * Il2 * MIO * WR

IIORC * ILO * Ll
+ IIORC * L1 * Il2
+ /CLK * IIORC * lO * /l2
+ /IORC * lO * /l2 * ROY
+ ICSOWS * DC * flO * III * l2 * /MIO * /WR
+ DC * DEN * flO * L1 * IMIO * IWR
+ DC * DEN * Ll * /l2 * IMIO * /WR

/IOWC * lO * Ll * /l2
+ llOWC * ILO * Ll * ROY
+ /IOWC * lO * Il2 * ROY
+ /csows * DC * /lO * /Ll * l2 * /MIO * WR
+ DC * DEN * ILO * Ll * /MIO * WR
+ DC * DEN * Ll * /l2 * /MIO * WR

IINTA * /LO * Ll
+ /INTA * Ll * Il2
+ /ClK * /INTA * LO * IL2
+ IINTA * lO * IL2 * ROY
+ ICSOWS * IOC * IlO * III * l2 * /MIO * /WR
+ /DC * DEN * IlO * Ll * IMIO * /WR
+ IOC * DEN * LI * /L2 * IMIO * /WR

IAlE * /ClK * ICSOWS * IL2
+ IAlE * IClK * IOEN * /L2
+ IAlE * ICSOWS * Il2 * ROY
+ ILO
+L1
+ IAlE * IOEN* IL2 * ROY

IOEN:= /LO * Ll
+ Ll * Il2
+ /IOWC * LI
+ Ll * /MWTC
+ /ClK * IOEN * LO * IL2
+ IOEN * lO * /L2 * ROY
+ I ALE * /CLK * ICSOWS * LO * Il2
+ /AlE * /csows * lO * /L2 * ROY

/ROY:= /lO * Ll * l2
+ /ClK * LO * IL2 * /ROY
+ eLK * /OEN * LO * Ll * /L2 * ROY
+ ClK * IINTA * LO * III * Il2 * ROY
+ ClK * /IORC * lO * III * /l2 * ROY
+ ClK * lO * /Ll * /l2 * /MROC * RDY
+ ClK * IOEN * lIOWC * lO * IL2 * ROY
+ ClK * IOEN * lO * IL2 * /MWTC * RDY

DESCRIPTION

Th is PAL is the second of two PAls that impl ement a 386 bus controller

Figure A-4. PAL-2 Equations

A-15

Appendix
80387 Emulator PAL
Description

B

APPENDIX B
80387 EMULATOR PAL DESCRIPTION

This section describes the PAL equations for the Math Control PAL in the 80386 emulator
circuit. These equations are listed in Figure B-l.

The primary function of the PAL is to decode the 80386 outputs and generate 80287 inputs.
The CLK16D#, DV ALID#, and A VALID# signals provide for the correct timing of the
outputs. The TP2 input provides the ability to force the PAL outputs to the high impedance
state. For normal operation, TP2 is pulled high.

PAL1SL8B PAL DESIGN SPECIFICATION
386/100 27 February 1986 ED JACKS
PAL: MATH CYCle MATHCYC
INTeL Corporatlon
IRDY A31 LRESET lADS MID IRD IAVALID IDVALID ICLK16 GND
TP2 ICLK16D IREADYO IDVALIDD IAVALIDD NC fIDRDD IlDWCD fREADYOD vce

IF (TP2) AVALIDD • ADS • RDY • fLRESET • CLK16 • IAVALID
+ IRDY • A31 • IMIO • ILRESET • AVALID
+ A31 • IMID • ILRESET • AVALID • DVALID
+ ADS • fLRESET • CLK16 • IAVALID • DVALID
+ ILRESET • ICLK16 • AVALID

IF (TP2) DVALIDD • ILRESET • CLK16 • AVALID • DVALID
+ IRDY • ILRE5ET • DVALID
+ ADS • ILRESET • CLK16 • IDVALID
+ ILRESET • ICLK16 • DVALID

IF (TP2) IDRDD • fRDY • A31 • IMIO • fRD • AVALID • DVALID
+ A31 • IMIO • ICLK1S • RD • AVALID • DVALID

IF (TP2) IOWCD • fRDY • A31 • IMID • RD • AVALID • DVALID
+ A31 • fMID • ICLK16 • IRD • AVALID • DVALID

IF (TP2) READYOD • A31 • fMID • ICLK1S • READYD • AVALID • DVALID
+ IRDY • A31 • IMID • CLK16 • AVALID • DVALID

CLK16D • ILRESET • ICLK1S

Figure 8-1. 80387 Emulator PAL Equations

B-1

Appendix C
DRAM PAL Descriptions

APPENDIX C
DRAM PAL DESCRIPTIONS

This section describes the inputs, outputs, and functions of each of the PALs in the DRAM
design described in Chapter 6. The terms Start-Of-Phase and Middle-Of-Phase used to
describe PAL input sampling times refer to the 80386 internal CLK phase and are defined
in Figure C-l.

The setup, hold, and propagation delay times for each PAL input and output can be deter
mined from the PAL data sheets. In a few cases, the setup and hold times during certain
events must be violated; in these cases, the PAL equations mask these inputs so they are not
sampled. Because the states are fully registered and because inputs are masked when their
setup or hold times cannot be guaranteed, no hazards exist.

DRAM STATE PAL

The DRAM State PAL determines when to run a new DRAM cycle and tracks the state of
the DRAM through the cycle. The inputs sample DRAM requests from the processor (or
any other bus master) as well as requests for refresh. The outputs store state information
and generate the two RAS signals and two multiplexer control signals. Table C-l contains
a description of the outputs and inputs.

The equations for the 3-CLK DRAM State PAL are shown in Figure C-2; those for the
2-CLK DRAM State PAL are shown in Figure C-3. The DRAM State PAL is implemented
in a 16R8 PAL if the RAS signals are registered internally, or in a 16R6 PAL if external
registers are used. For a 16-MHz system, B-series PAL speeds are required.

START·OF·PHASE START·OF·PHASE

MIDDLE·OF·PHASE MIDDLE·OF·PHASE

G30107

Figure C-1. PAL Sampling Edges

C-1

DRAM PAL DESCRIPTIONS

Table. C-1. DRAM State PAL Pin Description

PAL CONTROLS

Name Connects From PAL Usage

CLK2 Systems CLK2 PAL register clock

OE Tied low Outputs always enabled

PAL INPUTS

Name Connects From PAL Usage Sampled

CLK System ClK Indicates clock phase Every ClK2

CSO# Chip-Select logic DRAM access is begun (or Start-Ot-Phase
CS1# (uses Address, queued it another cycle is in (Queue cleared
CS2# M/IO, W/R, D/G) progress) when all selects after first cycle of
CS3# are sampled active access)
CS4#

DT/R# DRAM CONTROL Indicates write/read Start-Of-Phase on
PAL DT/R# out Used only in 2-CLK 2nd CLK of access

A2 System Address Selects one of the two DRAM Start-Of-Phase in
bit 2 banks which DRAM

access starts

RFRQ Refresh Interval Starts refresh cycle as soon Middle-Of-Phase
Count as possible

PAL OUTPUTS

Name Connects To PAL Usage Changes State

RASO# DRAM Bank 0 Controls DRAM RAS signals Start-Of-Phase

RAS1# DRAM Bank 1

ROWSEL Addr MUX select Select DRAM row/column Middle-Of-Phase

MUXOE# Addr MUX enable Disable MUX on refresh Middle-Of-Phase

A2REG Not connected Store active DRAM bank

DRAMSELECT Not connected Queue DRAM requests

QO For NA in 2-CLK Stores PAL State

Q1 Not connected

C-2

DRAM PAL DESCRIPTIONS

PAL16R8 PAL DESIGN SPECIFICATIONS
PART NUMBER: 3-ClK DRAM STATE PAL
DRAM STATE PAL OF INTERLEAVED DRAM CONTROLLER FOR 80386 SYSTEMS
INTEL, SANTA CLARA, CALIFORNIA
ClK2 ClK A2 CSO CSI (S2 (S3 (S4 RFRQ GND
OE RASO ROWSEl MUXOE QO Ql A2REG DRAMS ELECT RASI VCC

IDRAMSElECT : = CSO * IDRAMSElECT
+ CSI * IDRAMSElECT
+ CS2 * IDRAMSElECT
+ ICS3 * IDRAMSElECT
+ ICS4 * IDRAMSElECT
+ ICLK * IDRAMSELECT
+ IMUXOE * ROWSEl * IQI * IQO * IClK

IROWSEl := IROWSEl * QO * ClK
+ IROWSEl * IQI
+ ROWSEl * IQl * IQO * ICLK
+ ROWSEl * IQl * QO * /ClK * MUXOE * RFRQ

/Ql: = ROWSEl * /Ql * /QO * /ClK
+ ROWSEl * QO * ClK
+ /ROWSEl * /QO * ClK
+ ROWSEl * Ql * /QO * ClK * ICSO * ICSI * ICS2 * CS3 * CS4

* IMUXOE * A2 * A2REG
+ ROWSEl * QI * /QO * ClK * /CSO * ICSI * ICS2 * CS3 * CS4

* IMUXOE * /A2 * IA2REG
+ ROWSEl * /QI * QO * /ClK * IMUXOE
+ ROWSEl * /QI * QO * IClK * IRFRQ

/QO : = /ROWSEL * QI * QO * IClK
+ /ROWSEl * /QO * QI * ClK
+ ROWSEl * /QI * IQO * IClK
+ ROWSEl * QI * ClK * /CSO * I(SI * /CS2 * CS3 * CS4

* /MUXOE * A2 * A2REG
+ ROWSEl * Ql * ClK * ICSO * /CSI * /CS2 * CS3 * CS4

* IMUXOE * /A2 * /A2REG
+ ROWSEl * /Ql * QO * ClK * /CSO * /CSI * /(S2 * CS3 * CS4 * /MUXOE
+ ROWSEl * /Ql * QO * ClK * DRAMSELECT * /MUXOE
+ ROWSEl * /Ql * QO * /CLK * MUXOE * RFRQ

IRASO : = ROWSEl * /Ql * IQO * /CLK * /A2REG
+ ROWSEl * /Ql * /QO * /ClK * MUXOE
+ /ROWSEl * /A2REG
+ /ROWSEl * MUXOE
+ ROWSEl * Ql * CLK * /A2 * /A2REG * /CSO * /CSI * /CS2 * CS3 * CS4

* /MUXOE
+ ROWSEl * IQl * QO * ClK * /A2 * /CSO * /CSI * /CS2 * CS3 * CS4

* /MUXOE
+ ROWSEl * /QI * QO * ClK * /A2 * DRAMSElECT * /MUXOE

IRASI : = ROWSEl * IQl * /QO * /ClK * A2REG
+ ROWSEL * /QI * /Qo * /CLK * MUXOE
+ IROWSEl * A2REG
+ /ROWSEl * MUXOE
+ ROWSEl * QI * ClK * A2 * A2REG * /CSO * ICSI * ICS2 * CS3 * CS4

* /MUXOE
+ ROWSEl * /Ql * QO * ClK * A2 * /CSO * /CSI * ICS2 * CS3 * CS4

* /MUXOE
+ ROWSEl * /Ql * QO * CLK * A2 * DRAMSELECT * /MUXOE

/MUXOE : = /MUXOE * /QO
+ /MUXOE * ClK
+ IMUXOE * /ROWSEL * /Ql
+ IRFRQ * ROWSEl * /Ql * QO * /ClK
+ /MUXOE * /RFRQ * Q I * QO * /ClK

IA2REG : = IA2REG * IQO
+ /A2REG * Ql * CLK
+ IA2REG * ROWSEL * QI
+ I A2REG * /ROWSEL * /Q I
+ A2REG * IROWSEl * QI * QO * /ClK
+ /A2 * ROWSEl * /QI * QO

Figure C-2. 3-ClK DRAM State PAL Equations

C-3

inter DRAM PAL DESCRIPTIONS

FUNCTION TABLE

OE CLK2 CLK CSO CSI CS2 CS3 CS4 A2 RFRQ
ROW5EL Ql QO RASO RA51 MUXOE DRAMSELECT A2REG
;OE

; inputs
;outputs

CLK2
I CLK ROWSEL
I I /C50 I Ql
I I I /CS 1 I I QO
I I I I /CS2 I I I /RASO
I I I I I CS3 I I I I /RASI
I I I I I I CS4 I I I I I /MUXOE
I I I I I I I A2 I I I I I I DRAMS ELECT
I I I I I I I I RFRQ I I I I I I I A2REG
I I I I I I I I I I I I I I I I I STATE COMMENTS

L C H H X X X X X L
L C L H X X X X X L
L C H H X X X X X L
L C L H X X X X X L
L C H H X X X X X L
L C L H X X X X X L
L C H H X X X X X L
L C H H X X X X X L
L C L X X X X X X L
L C H H X X X X X L
L C L X X X X X X L
L C H H X X X X X L
L C L X X X X X X L
L C H L L L H H H L
L C L X X X X X X L
L C H H X X X X X L
L C L X X X X X X L
L C H H X X X X X L
L C L X X X X X X L
L C H H X X X X X L
L C L X X X X X X L
L C H H X X X X X L
L C L X X X X X X L
L C H H X X X X X H
L C L X X X X X X H
L C H L L L H H H H
L C L X X X X X X H
L C H H X X X X X H

L C L H X X X X X L
L C H H X X X X X L
L C L H X X X X X L
L C H H X X X X X L
L C L H X X X X X L
L C H H X X X X X L
L C L X X X X X X L
L C H X H X X X X L
L C L X X X X X X L
L C H X X H X X X L
L C L X X X X X X L
L C H L L L H H L L
L C L X X X X X X L
L C H X X X L X X L
L C L X X X X X X L
L C H L L L H H X L
L C L X X X X X X L
L C H L L L H H H L
L C L X X X X X X L
L C H X X X L X X L
L C L X X X X X X L
L C H X X X X L X L
L C L X X X X X X L
L C H L L L H H H L

x X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
L L H L H L l L; ACCESS3 continue DRAM cycle
L H H L H L L L; ACCESS4 continue DRAM cycle
L H H L H L L L; ACCESS5 continue DRAM cycle
H H l L H L L H; ACCESS6 continue DRAM cycle
H H H H H L L H;PRECHARGEI no dram request pending
H H H H H L L H;PRECHARGE2 wait for precharge
H L L H L L H H; ACCESSI start DRAM cycle to other bank
L L L H L L L H; ACCESS2 continue DRAM cycle
L L H H L L L H; ACCESS3 continue DRAM cycle
L H H H L L L H; ACCESS4 continue DRAM cycle
L H H H L L L H; ACCESS5 continue DRAM cycle
H H L H L L L L; ACCESS6 continue DRAM cycle
H H H H H L L L; PRECHARGE! no dram request pendi ng
H H H H H L L L;PRECHARGE2 wait for precharge
H L H H H L L X; IDLE! no dram request pending
H L H H H L LX; IDLE2 wa it for precharge
H L H H H L L X; IDLEI no dram request pending
H L H H H H LX; IDLE2 refresh request sampled
H L H H H H H H; IDLE! can't start: refresh pending
L H L H H H H X; REFSTART2 refresh address set-up
H L L L L H H X; ACCESSI start refresh cycle

X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
H L H H H L L X; IDLE! remain in IDLE
H L H H H L L X; IDLE2 remain in IDLE
H L H H H L L X; IDLE! remain in IDLE
H L H H H L L X; IDLE2 remain in IDLE
H L H H H L L X; IDLE! remain in IDLE
H L H H H L l X; IDLE2 remain in IDLE
H L L L H L H L; ACCESSI start DRAM cycle
L L L L H L L L; ACCESS2 continue DRAM cycle
L L H L H L l L; ACCESS3 continue DRAM cycle
L H H L H L L L; ACCESS4 continue DRAM cycle
L H H L H L H L; ACCESS5 continue DRAM cycle new request
H H L L H L H H; ACCESS6 continue DRAM cycle
H L L H L L H H; ACCESSI start DRAM cycle to other bank
L L L H L L L H; ACCESS2 continue DRAM cycle
L L H H L L L H; ACCESS3 continue DRAM cycle
L H H H L L L H; ACCESS4 continue DRAM cycle
L H H H L L L H; ACCESS5 continue DRAM cycle
H H L H L L L L; ACCESS6 continue DRAM cycle
H H H H H L H L;PRECHARGEI can't start same bank cycle

Figure C-2. 3-CLK DRAM State PAL Equations (Cont'd.)

C-4

L C L X X X X X X L
L C H L L L H H H L
L C L X X X X X X L
L C H H X X X X H H
L C L X X X X X X H
LCHHXXXXXH
L C L X X X X X X H
L C H L L L H H X H
L C L X X X X X X H
L C H L L L H H H H
L C L X X X X X X H
L C H L L L H H H H
L C L X X X X X X H
L C H H X X X X X H
L C L X X X X X X H
L C H H X X X X X L
L C L X X X X X X L
L C H H X X X X X L
L C L X X X X X X L
L C H H X X X X X L
L C L X X X X X X L
L C H H X X X X X L
L C L X X X X X X L
L C H H X X X X L L
L C L X X X X X X L

DESCRIPTION

DRAM PAL DESCRIPTIONS

H H H H H L H L; PRECHARGE2 wait for precharge
H L H H H L H X; IDLEI can't start same bank cycle
H L H H H L H X; IDLE2 wait for precharge
H L L H L L H H; ACCESSI start DRAM cycle to same bank
L L L H L L L H; ACCESS2 continue DRAM cycle
L L H H L L L H; ACCESS3 continue DRAM cycle
L H H H L L L H; ACCESS4 continue DRAM cycle
L H H H L L H H; ACCESS5 continue DRAM cycle new request
H H L H L H H L; ACCESS6 continue DRAM cycle refresh req
H H H H H H H L;PRECHARGEI can't start: refresh pending
H H H H H H H L; PRECHARGE2 wait for precharge
H L H H H H H X; IDLEl can't start: refresh pending
L H L H H H H X; REFSTART2 wait for precharge
H L L L L H.H X; ACCESSI start refresh cycle
L L L L L H H X; ACCESS2 continue refresh cycle
L L H L L H H X; ACCESS3 continue refresh cycle
L H H L L H H X; ACCESS4 continue refresh cycle
L H H L L H H X; ACCESS5 continue refresh cycle
H H L L L H H X; ACCESS6 continue refresh cycle
H H H H H H H X;PRECHARGEI can't start: refresh precharge
H H H H H H H X;PRECHAIl.GE2 wait for precharge
H L H H H H H X; IDLE I can't start: refresh precharge
H L H H H L H X; IDLE2 wait for precharge
H L L L H L H L; ACCESSI start DRAM cycle
L L L L H L L L; ACCESS2 continue DRAM cycle

*** NOTE - SOME VERSIONS OF PALASM WILL CRASH IF THE FILE IS TOO LONG ***
*** IF YOURS DOES, DELETE THIS DESCRIPTION (FROM HERE TO END-OF-FIlE) ***
This PAL implements the main state machine of the DRAM controller.
The state machine is described below.

For brevity, the following keywords are used

SELECT = (/CSO * ICSI * IC52 * CS3 * CS4 * ClK)
;chip selects and clock must be active to select

SELECTED - (SELECT + DRAMSELECT) ;true if DRAM is now Dr has been selected

STARTACCESS = (SELECTED * IMUXOE) ;start dram access cycle from idle

The states are defined below and indicated by [ROWSEl:QI:QO:CLK].
The 4-bit binary number foll owing the state name represents the.se four signal s.

I ===-========= \
1 state REFSTART2 = 0101 ;cycle preceding refresh 1
1 lRASO:= ON ;next cycle is first RAS for refresh 1
1 IRASI:= ON 1---+
1 MUXOE:= MUXOE ;malntaln MUXOE state 1 1 always
\=-======-====-======================================-'=1 1

A 1
1 MUXOE * RFRQ 1
1 1

1===\ 1
1 state IDlEI = 1010 ;waiting for access or refresh 1 1
1 IRASO:= OFF ;both RAS's idle 1 <--1--------+
1 IRASI:= OFF 1 1 1
1 MUXOE:= RFRQ ;sample refresh request 1 1 1
\===1 1 1

1 All
I/(MUXOE * RFRQ) I/STARTACCES5 1 1
vii 1

Figure C-2. 3-ClK DRAM State PAL Equations (Cont'd.)

C-5

DRAM PAL DESCRIPTIONS

I =========_._========= ••• =============-====--=-========= \ I
I state IDlE2 • 1011 ;waiting for access or refresh I I
I lRASO '= (/A2 * STARTACCESS) ;start access I I
I lRASl:= (A2 * STARTACCESS) I I
I A2REG:= A2 ;sample A2 state I I
I MUXOE:= MUXOE ;maintain MUXOE statel I
\===================================-=.===========-=====1 I

I I
I STARTACCESS I
v I

I =========================== ••• ===========-= ••••••• ==-== \ I
I state ACCESSI = 1000 ;first cycle of access or refreshl<--+
I lRASO:= IA2REG + MUXOE ;RAS corresponding to A2 I
I lRASl:= A2REG + MUXOE ;or refresh 1<--------+
I A2REG:- A2REG ;maintain state of sampl ed A21
I MUXOE:- MUXOE ;maintain MUXOE state 1<-----+
\=================================.===== ••••••• _=aa_= ••• 1

I
I always
v

1===-=-==·=--_·=··==·=-=·······=·····_··====_·=····==-==\
I state ACCESS2 = 0001 ;second cycle of access or refresh I
I IRASO:= IA2REG + MUXOE ;RAS corresponding to A2 I
I IRASl:- A2REG + MUXOE ;or refresh I
I A2REG:· A2REG ;maintain state of sampled A21
I MUXOE:= MUXOE ;maintain MUXOE state I
\============.========_=.= •••• = ••••••••••••••• aa •••••••• 1

I
I always
v

I ================= •• ====-= •••••••••••••••••••••••••••••• \
I state ACCESS3 • 0010 ;third cycle of access or refresh I
I /RASO:. IA2REG + MUXOE ;RAS corresponding to A2 I
I lRASl:. A2REG + MUXOE ;or refresh I
I A2REG:= A2REG ;maintain state of sampled A21
I MUXOE:· MUXOE ;maintain MUXOE state I
\=============================-= •• _ ••••••••••••••••••• ·-1

I
I always
v

I === •••• _========-==============-======-=--= ••• _ •••••••• \
I state ACCESS4 - Olll;fourth cycle of access or refresh I
I IRASO:· IA2REG + MUXOE ;RAS corresponding to A2 I
I lRASl;- A2REG + MUXOE ;or refresh I
I A2REG:= A2REG ;maintain state of sampled A21
I MUXOE:· MUXOE ;maintain MUXOE state I
\======================_._._==:==============-===========/

I
I always
v

I === \
I state ACCESS5 = 1110 ;fifth cycle of access or refresh I
I lRASO:= IA2REG + MUXOE ;RAS corresponding to A2 I
I lRASl:= A2REG + MUXOE ;or refresh I
I A2REG:· IA2REG ; invert state of sampled A2 I
I MUXOE:= MUXOE + RFRQ ;sample refresh request I
\== ••••••••••••• ··1

I
always I (STARTACCESS" (A2 * A2REG)

v +(/A2 * IA2REG)))I
I ======--=_ ••••••••••••••••••••• _._-=-==============-=== \
I state ACCESS6 • 1101 ;sixth cycle of access or refresh I
I IRASO:= IA2 * IA2REG * STARTACCESS;start next.,. I I
I /RASl:- A2 * A2REG * STARTACCESS;interleave accesl------+
I A2REG:= A2REG ;maintain state of interleave A21
I MUXOE:- MUXOE ;maintain MUXOE state I
\==-1

I
I/(STARTACCESS * « A2 * A2REG)
v +(/A2 * IA2REG)))

Figure C-2. 3-ClK DRAM State PAL Equations (Cont'd.)

C-6

DRAM PAL DESCRIPTIONS

/===\ I
I state PRECHARGEI = 1110 ; fi rst precharge after access I I
I /RASO: = OFF ; both RAS' s i dl e I I
I /RASI:= OFF I I
I A2REG:= A2REG ;maintain state of interleave A21 I
I MUXOE:= MUXOE + RFRQ ;sample refresh request I I
\===/ I

I I
always I (STARTACCESS * « A2 * A2REG) I

v +(/A2 * /A2REG»)I
/===\ I
I state PRECHARGE2 = 1111 ;second precharge after access I I
I /RASO:= /A2 * /A2REG * STARTACCESS;start next... I I
I /RASl:= A2 * A2REG * STARTACCESS;interleave accesl---------+
I A2REG: = A2REG ;ma i nta instate of i nterl eave A21
I MUXOE:= MUXOE ;maintain MUXOE state I
\===/
/(STARTACCESS * « A2 * A2REG) I

+{/A2 * /A2REG»)+---- - -- -- - - -- -- --- --- - -- - - - --- - - - --+

Finally, the karnaugh maps for the following signals are:

ROWSEL \QO
QI\CLK 00 01 11 10

\ MUXOE
00 I MUX MUX key:
01 I MUX MUX M+R MUX = MUXOE
II I MUX MUX M+R M+R = MUXOE + RFRQ
10 I MUX MUX RFR RFR = RFRQ

RO,'SEL \QO
QI \CLK 00 01 11 10

\ A2REG
00 I A2R A2R key:
01 I A2R A2R /A2R A2; = A2
111 A2R A2R A2R A2R = A2REG
10 I A2R A2; A2;

ROWSEL \QO
QI \CLK 00 01 II 10

\ RAS signals
00 I lAM AM /AM AM key: [RASO:RASI]
01 I ON ON /AM AM lAM AM AM = A2REG + MUXOE
111 IAI AI IAI Al OFFOFF AS = A2 * STARTACCESS
10 I /AM AM /AS AS OHOFF Al = A2 * STARTACCESS * interleave

ROWSEL \QO
QI\CLK 00 01 11 10

\ ROWSEL state circled
00 I 0010 0111 key: [ROWSEL: Ql: QO: CLK]
01 I 1000 0110 1101 M = MUXOE * RFRQ
III liiO 10iO 1111 S = STARTACCESS
10 I 0001 10s0 mMml I = STARTACCESS * i nterl eave

ROWSEL \QO
QI\CLK 00 01 11 10

\ Ql state circled
00 I DOlO DIll
01 I 1000 0110 1101
III liiO 10iO 1111
10 I 0001 10sO mMml

ROWSEL \QO
QI\ClK 00 01 11 10

\ QO state Circled
00 I DOlO Olll
01 I 1000 0110 1101
III liiO 10iO 1111
10 I 0001 10sO mMml

Figure C-2. 3-CLK DRAM State PAL Equations (Cont'd.)

C-7

DRAM PAL DESCRIPTIONS

PALl6R6 PAL DESIGN SPECIFICATIONS
PART NUMBER: 2-ClK DRAM STATE PAL
DRAM STATE PAL OF INTERLEAVED DRAM CONTROllER FOR 80386 SYSTEMS
INTEL, SANTA CLARA, CALIFORNIA
ClK2 ClK A2 CSO CSI CS2 CS3 DT%R RFRQ GND
OE RAsa ROWSEL MUXOE 00 QI A2REG DRAMSELECT RASI VCC

/DRAMSElECT:= csa * /DRAMSElECT
+ CSI * /DRAMSElECT
+ CS2 * /DRAMSElECT
+ /CS3 * /DRAMSElECT
+ /ClK * /DRAMSElECT
+ /MUXOE * ROWSEl * /01 * /00 * /ClK

/ROWSEl.- /ROWSEl * QO * ClK
+ /ROWSEL * /Ql
+ ROWSEl * /QI * /QO * /ClK
+ ROWSEl * /QI * QO * /ClK * MUXOE * RFRQ

/QI:= ROWSEl * /01 * /QO * /ClK
+ ROWSEl * QO * ClK
+ QI * /QO * elK
+ /ROWSEl * /QI * /QO * CLK * DT%R * /MUXOE
+ ROWSEl * /01 * QO * /ClK * /MUXOE
+ ROWSEl * /Ql * QO * /CLK * /RFRQ

/QO := /ROWSEl * QI * QO * /ClK
+ /ROWSEl * /QO * QI * ClK
+ ROWSEl * /QI * /00 * /ClK
+ ROWSEl * QI * ClK * /CSO * /CSI * /CS2 * CS3

* /MUXOE * A2 * A2REG
+ ROWSEl * QI * CLK * /CSO * /CSI * /CS2 * CS3

* /MUXOE * /A2 * /A2REG
+ ROWSEl * /QI * QO * ClK * /CSO * /CSI * /CS2 * CS3 * /MUXOE
+ ROWSEl * /QI * QO * ClK * DRAMSElECT * /MUXOE
+ ROWSEL * /QI * QO * /ClK * MUXOE * RFRQ

/RASO = ROWSEl * /QI * /QO * /ClK * /A2REG
+ ROWSEl * /QI * /QO * /ClK * MUXOE
+ /ROWSEl * /A2REG
+ /ROWSEl * MUXOE
+ ROWSEl * 01 * elK * /A2 * /A2REG * /CSO * /CSI * /CS2 * CS3 * /MUXOE
+ ROWSEl * /Ql * QO * ClK * /A2 * /CSO * /CSI * /CS2 * CS3 * /MUXOE
+ ROWSEl * /Ql * QO * ClK * /A2 * DRAMSElECT * /MUXOE

/RASI = ROWSEl * /QI * /QO * /ClK * A2REG
+ ROWSEl * /Ql * /QO * /ClK * MUXOE
+ /ROWSEl * A2REG
+ /ROWSEL * MUXOE
+ ROWSEl * Ql * ClK * A2 * A2REG * /CSO * /CSI * /CS2 * C53 * /MUXOE
+ ROWSEl * /Ql * QO * ClK * A2 * /CSO * /CSI * /CS2 * CS3 * /MUXOE
+ ROWSEL * /Ql * QO * ClK * A2 * DRAMSElECT * /MUXOE

/MUXOE:= /MUXOE * /QO
+ /MUXOE * ClK
+ /MUXOE * /ROWSEl * /Ql
+ /RFRQ * ROWSEl * /Ql * QO * /ClK
+ /MUXOE * /RFRQ * Ql * 00 * /ClK

/A2REG := /A2REG * /QO
+ /A2REG * Ql * ClK
+ /A2REG * ROWSEl * Ql
+ /A2REG * /ROWSEl * /Ql
+ A2REG * /ROWSEl * Ql * QO * /ClK
+ /A2 * ROWSEL * /Ql * QO

Figure C-3. 2-CLK DRAM State PAL Equations

C-8

DRAM PAL DESCRIPTIONS

FUNCTION TABLE

OE CLK2 CLK CSO CSI CS2 CS3 CS4 A2 RFRQ
ROWSEL Q! QO RASO RAS! MUXOE DRAMS ELECT A2REG
;OE

; inputs
;outputs

; I CLK2
;1 I CLK ROWSEL
; I I I ICSO I Q!
; I I I I ICSI I I QO
; I I I I I ICS2 I I I IRASO
; I I I I I I CS3 I I I I IRASl
; I I I I I I I DT%R I I I I I IMUXOE
; I I I I I I I I A2 I I I I I I DRAMS ELECT
; I I I I I I I I I RFRQ I I I I I I I A2REG
; I I I I I I I I I I I I I II I I I STATE COMMENTS
-- - - - --- ---- -- - - - - - --,.- - - ---- - - - -- - - - - -- - - - - - - - - - -- ~ ... ---- -- - - - - - - - - - - - - - - - - ----
L C L H X X X X X L
L C H H X X X X X L
L C L H X X X X X L
L C H H X X X X X L
L C L H X X X X X L
L C H H X X X X X L
L C L H X X X X X L
L C H H X X X X X L
L C L H X X X X X L
L C H H X X X X X L
L C L H X X X X X L
L C H H X X X X X L
L C L X X X X X X L
L C H X H X X X X L
L C L X X X X X X L
L C H X X H X X X L
L C L X X X X X X L
L C H L L L H X L L
L C L X X X X X X L
L C H X X X L H X L
L C L X X X X X X L
L C H L L L H X X L
L C L X X X X X X L
L C H L L L H H H L
L C L X X X X X X L
L C H X X X L L X L
L C L X X X X X X L
L C H L L L H H H L
L C L X X X X X X L
L C H H X X X X H L
L C L X X X X X X L
L C H H X X X H X L
L C L X X X X X X L
L C H L L L H X X L
L C L X X X X X X L
L C H L L L H X H L
L C L X X X X X X L
L C H H X X X X H H
L C L X X X X X X H
L C H H X X X H X H
L C L X X X X X X H
L C H L L L H X X H
L C L X X X X X X H
L C H L L L H X H H
L C L X X X X X X H
L C H H X X X X X H
L C L X X X X X X H
L C H H X X X X X L
L C L X X X X X X L
L C H H X X X X X L
L C L X X X X X X L

X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
X X X X X X X X; X initialize to IDLE
H L H H H L L X; IDLE! remain in IDLE
H L H H H L L X; IDLE2 remain in IDLE
H L H H H L L X; IDLE I remain in IDLE
H L H H H L L X; IDLE2 remain in IDLE
H L H H H L L X; IDLE! remain in IDLE
H L H H H L L X; IDLE2 remain in IDLE
H L L L H L H L; ACCESSI start DRAM cycle
L L L L H L L L; ACCESS2 continue DRAM cycle
L L H L H L L L; ACCESS3 continue DRAM cycle: it's write
L H H L H L L L; ACCESS4 continue DRAM cycle
L H H L H L H L; ACCESS5 continue DRAM cycle new request
H H L L H L H H; ACCESS6 continue DRAM cycle
H L L H L L H H; ACCESS 1 start DRAM cycle to other bank
L L L H L L L H; ACCESS2 continue DRAM cycle
L H H H L L L H; ACCESS5 continue DRAM cycle: it's read
H H L H L L L L; ACCESS6 continue DRAM cycle
H L H H H L H X; IDLE! can't start same bank cycle
H L H H H L H X; IDLE2 wait for precharge
H L L H L L H H; ACCESS! start DRAM cycle to same bank
L L L H L L L H; ACCESS2 continue DRAM cycle
L L H H L L L H; ACCESS3 continue DRAM cycle: it's write
L H H H L L L H; ACCESS4 continue DRAM cycle
L H H H L L H H; ACCESS5 continue DRAM cycle new request
H H L H L L H L; ACCESS6 continue DRAM cycle
H L H H H L H X; IDLE! can't start same bank cycle
H L H H H L H X; IDLE2 wait for precharge
H L L H L L H H; ACCESSl start DRAM cycle to same bank
L L L H L L L H; ACCESS2 continue DRAM cycle
L L H H L L L H; ACCESS3 continue DRAM cycle: it's write
L H H H L L L H; ACCESS4 continue DRAM cycle
L H H H L L H H; ACCESS5 continue DRAM cycle new request
H H L H L H H L; ACCESS6 continue DRAM cycle refresh req
H L H H H H H X; IDLE! can't start: refresh pending
L H L H H H H X; REFSTART2 wait for precharge
H L L L L H H X; ACCESSl start refresh cycle
L L L L L H H X; ACCESS2 continue refresh cycle
L H H L L H H X; ACCESS5 continue refresh cycle
H H L L L H H X; ACCESS6 continue refresh cycle
H L H H H H H X; IDLE! can't start: refresh precharge
H L H H H L H X; IDLE2 wait for precharge

Figure C-3. 2-CLK DRAM State PAL Equations (Cont'd.)

C-9

DRAM PAL DESCRIPTIONS

L C H H X X X X L L
L C L X X 7 X X X L
L C H L L L 'X L
L C L X X X Xl· L
L C H L L L P X rl L
L C L X X X X X X L
L C H H X X X L X L
L C L X X X X X X L
L C H H X X X X X L
LCLXXXXXXI
L C H H X X X X X h
L C l X X X X X X H
l C H L L L H X H H
l C l X X X X X X H
l C H H X X X X X H

DESCRIPTION

HLLLHLHL;
LLLlHLLL;
LHHlHLHL;
H H L L H L H H;
H l L H l L H H;
L l L H L L L H;
lHHHlLlH;
H H L H L l l L;
H L H H H L L X;
H l H H H l l X;
H l H H H L L X;
H l H H H H L X;
H l H H H H H X;
L H L H H H H X;
H L L l L H H X;

ACCESSI
ACCESS2
ACCESS5
ACCESS6
ACCESSI
ACCESS2
ACCESS5
ACCESS6

IDLE I
IDlE2
IDLEI
IDLE2
IDLEI

REFSTART2
ACCESSI

start DRAM cycle
continue DRAM cycle
continue DRAM cycle: it's read
continue DRAM cycle
start DRAf1 cycl e to other bank
continue DRAM cycle
continue DRAM cycle: it's read
cont i nue DRAM cycle
no dram request pending
wait for precharge
no dram request pending
refresh request sampl ed
can't start: refresh pending
refresh address set-up
start refresh cycle

*** NOTE - SOME VERSIONS OF PALASM WIll CRASH IF THE FILE IS TOO LONG ***
*** IF YOURS DOES, DELETE THIS DESCRIPTION (FROM HERE TO END-OF-FILE) ***

This PAL implements the main state machine of the DRAM controller.
The state machine is described below.

For brevi ty, the foll owi ng keywords are used

SELECT = (lCSO * ICSI * ICS2 * CS3 * CLK)
;chip selects and clock must be active to select

SELECTED = (SELECT + DRAMSElECT) ;true if DRAM is now or has been selected

STARTACCESS = (SELECTED * IMUXOE) ;start dram access cycle from idle

The states are defined below and indicated by ROWSEL:QI:QO:CLK.
The 4 -bit bi nary number fo 11 owi ng the state name represents these four signals.

1===\
1 state REFSTART2 = 0101 ;cycle preceding refresh 1
1 IRASO:= ON ;next cycle is first RAS for refreshl
i IRASI:= ON 1---+
I MUXOE:= MUXOE ;maintain MUXOE state 1 always
\ == ==== = === == =.==== = =====~= ====== ========================1

1 MUXOE * RFRQ
1

/===\
1 state IDLEI = 1010 ;waiting for access or refresh 1

1 IRASO:= OFF ;both RAS's idle 1<-- --------+
1 IRASI:= OFF 1

1 MUXOE:= RFRQ ; sample refresh request I

\===1
1 A

I/(MUXOE * RFRQ) I/STARTACCESS
v 1

1===\
1 state IDlE2 = lOll ;waiting for access or refresh 1

1 /RASO:= (lA2 * STARTACCESS) ;start access 1

1 IRASI:= (A2 * STARTACCESS) 1

I A2REG:= A2 ;sample A2 state 1

1 MUXOE:= MUXDE ;maintain MUXDE state 1

\===1
1
ISTARTACCESS
v

Figure C-3. 2-CLK DRAM State PAL Equations (Cont'd.)

C-10

DRAM PAL DESCRIPTIONS

1===\, ,
, state ACCESS I = 1000 ;first cycle of access or refresh,<--+ ,
, IRASO:= IA2REG + MUXOE ;RAS corresponding to A2 , ,
, IRASI: = A2REG + MUXOE ; or refresh, ,
, A2REG:= A2REG ;maintain state of sampled A2, ,
, MUXOE:= MUXOE ;maintain MUXOE state ,<-----+ ,
\===/ , , , , ,

'always , ,
v , ,

/===\ I ,
I state ACCESS2 = OOOI;second cycle of access or refresh I , ,
, /RASO:= IA2REG + MUXOE ;RAS corresponding to A2 I , I
, IRASI:= A2REG + MUXOE ;or refresh ,--+ I ,
I A2REG:= A2REG ;maintain state of sampled A21 I' ,
, MUXOE:= MUXOE ;maintain MUXOE state "I ,
\===/ " ,

, /DT%R + MUXOE I' ,
,/(/DT%R + MUXOE) I"
v I' ,

/===\, I ,
, state ACCESS3 = 0010 ;third cycle of access or refresh I " I
I /RASO:= IA2REG + MUXOE ;RAS corresponding to A2 I 'I ,
, IRASI:= A2REG + MUXOE ;or refresh '" I
, A2REG:= A2REG ;maintain state of sampled A21 " ,
I MUXOE:= MUXOE ;maintain MUXOE state '" ,
\===1 I' ,

, 'I ,
'always " ,
v I' , /===\, , ,

I state ACCESS4 = 0111;fourth cycle of access or refresh I " ,
, /RASO:= /A2REG + MUXOE ;RAS corresponding to A2 , I I ,
I /RAS1:= A2REG + MUXOE ;or refresh I I' I
I A2REG:= A2REG ;maintain state of sampled A21 " ,
I MUXOE:= MUXOE ;maintain MUXOE state I" I
\===================~===================================/ I I I

I I I I
I always I I I
v I I I

1===\ 1 1 I
1 state ACCESSS = 1110 ;fifth cycle of access or refresh 1 I I 1
1 /RASO:= /A2REG + MUXOE ;RAS corresponding to A2 1 1 I 1
I /RASl:= A2REG + MUXOE ;or refresh 1<-+ I 1
1 A2REG:= IA2REG ;invert state of sampled A2 1 1 1
1 MUXOE:= MUXOE + RFRQ ;sample refresh request I 1 I
\===1 1 1
. 1 I I

always I (STARTACCESS * « A2 * A2REG) I I
v +(/A2 * /A2REG)))I I

1===\ I 1
1 state ACCESS6 = 1101 ;sixth cycle of access or refresh 1 1 I
1 /RASO:= IA2 * /A2REG * STARTACCESS;start next... I I 1
1 IRASI:= A2 * A2REG * STARTACCESS;interleave accesl------+ 1
1 A2REG:= A2REG ;maintain state of interleave A21 1
1 MUXOE:= MUXOE ;maintain MUXOE state 1 1
\===/ 1
1 (STARTACCESS * « A2 * A2REG) 1 1

+(/A2 * /A2REG)))+-----------------------------------+

Figure C-3. 2-CLK DRAM State PAL Equations (Cont'd.)

C-11

DRAM PAL DESCRIPTIONS

Finally, the karnaugh maps for the following signals are:

ROWSEL \QO
QI \CLK 00 01 II 10

\ MUXOE
00 I MUX MUX key:
01 I MUX MUX M+R MUX = MUXOE
111 MUX M+R = MUXOE + RFRQ
10 I MUX MUX RFR RFR = RFRQ

ROWSEL\QO
QI \CLK 00 01 11 10

\ A2REG
00 I A2R A2R key:
01 I A2R A2R A2R A2; = A2
111 A2R A2R = A2REG
10 I A2R A2; A2;

ROWSEL \QO
Ql \CLK 00 01 11 10

\ RAS signals
00 I JAM AM JAM AM key: [RASO:RASl]
01 I ON ON JAM AM JAM AM AM = A2REG + MUXOE
II I jA! AI AS = A2 * STARTACCESS
10 I JAM AM JAS AS OFFOFF AI = A2 * STARTACCESS * interleave

ROWSEL \QO
Ql\CLK 00 01 11 10

\ ROWSEL state circled
00 I OWI0 0111 key: [ROWSEL:QI :QO:CLK]
01 I 1000 0110 1101 M = MUXOE * RFRQ
II I 10iO S = STARTACCESS
10 I 0001 10s0 mMml I = STARTACCESS * interleave

W = W%R + MUXOE
ROWSEL\QO

Ql \CLK 00 01 11 10
\ Ql state circled

00 I OWIO 0111
01 I 1000 0110 1101
111 10iD
10 I 0001 10s0 mMml

ROWSEL\QO
QI\CLK 00 01 11 10

\ QO state circled
10 I OWI0 DIll
111 1000 0110 1101
01 I 10iD
00 I 0001 10sO mMml

Figure C-3. 2-CLK DRAM State PAL Equations (Cont'd.)

C-12

DRAM PAL DESCRIPTIONS

DRAM CONTROL PAL

The DRAM Control PAL generates the majority of the control signals for the DRAM circuit.
The inputs sample the W jR# and byte-enable outputs of the 80386 as well as status signals
from the DRAM State PAL. The outputs generate the four CAS signals, two transceiver
control signals, and the signals for the 80386 READY # and Next Address (NA#) logic.
Table C-2 contains a description of the outputs and inputs.

The equations for the 3-CLK DRAM Control PAL are shown in Figure C-4; those for the
2-CLK DRAM Control PAL are shown in Figure C-5. A 16R8 PAL is needed to register
the CAS signals internally. A 16R4 PAL is needed when external registers drive the CAS
signals. For a 16-MHz system, B-series PAL speeds are required.

REFRESH INTERVAL COUNTER PAL

The Refresh Interval Counter PAL, which periodically generates refresh requests to the
DRAM State PAL, operates as a counter decremented every CLK cycle. Once the counter
reaches a preset value, it resets its value to 255 and activates its RFRQ (refresh request)
output. This output remains active until both REFACK (refresh acknowledge) inputs are
sampled simultaneously active.

Setup and hold times for RFRQ to the DRAM State PAL are guaranteed even with a large
CLK2-to-CLK skew because the Refresh Interval Counter PAL is clocked by the rising edge
of CLK, and the RFRQ output is only sampled by the DRAM State PAL at the middle-of
phase CLK2 edge. However, the CLK2-to-CLK and output delays can add up so that the
setup and hold times for the REF ACK inputs are not met. Therefore, the REF ACK inputs
are activated for a minimum of four CLK2 periods to ensure deactivation of RFRQ. The
exact CLK in which RFRQ is deactivated is not critical.

Table C-3 shows the inputs and outputs of the Refresh Interval Counter PAL. Figure C-6
shows its PAL equations. The same equations are used for both the 3-CLK and 2-CLK
designs. A 20XI0 PAL is used to implement this counter. For 16-MHz systems, A-series
PAL speeds are sufficient.

REFRESH ADDRESS COUNTER PAL

The Refresh Address Counter PAL maintains the address of the next DRAM row to be
refreshed. After every refresh cycle, the PAL increments this address. Table C4 shows the
inputs and outputs of the Refresh Address Counter PAL.

PAL equations are shown in Figure C-7. Both the 3-CLK and the 2-CLK design use the
same equations. Most DRAMs require only 8-bits or fewer for the refresh row address, so a
16R8 PAL can be used. If necessary, 10 bits of row address can be provided using a 20XI0
PAL. For a system operating at any speed, standard-PAL speeds are sufficient.

C-13

DRAM PAL DESCRIPTIONS

Table C-2. DRAM Control PAL Pin Description

PAL CONTROLS

Name Connects From PAL Usage

CLK2 System CLK2 PAL register clock

OE Tied lOw Outputs always enabled

PAL INPUTS

Name Connects From PAL Usage Sampled

CLK System CLK Indicates clock phase Every CLK2

BEO# System Byte-Enables Used to enable the DRAM Start-Of-Phase for
BE1# CAS signals corresponding internal reg. Every
BE2# to the active bytes CLK2 with exter-
BE3# nal reg

W/R# System W/R# Select write/read Every CLK2

ROWSEL DRAM STATE PAL Initiate DRAM access Middle-Ot-Phase

DISABLE DRAM STATE PAL Disable controls during Middle-Of-Phase
MUXOE refresh

PAL OUTPUTS

Name Connects To PAL Usage Changes State

CASO# DRAM Byte 0
Start-Ot-Phase for

CAS1# DRAM Byte 1 Controls DRAM CAS signals read active and

(Separate controls for writes
read/write inactive

CAS2# DRAM Byte 2 to individual bytes) Middle-Of-Phase
for write active

CAS3# DRAM Byte 3

DEN# Transceiver Control xcvr enable Start-Of-Phase

DT/R# Transceiver Control xcvr direction Any time DEN#
off

ROY System Ready Logic Control system ready Rise: Start-Phase
Fall: Middle-Phase

WC DRAM WE# and Stores PAL state used only Rise: Start-Phase
System NA# logic in 3-CLK • Fall: Middle-Phase

WE# DRAM WE# Control DRAM WE# used Rise: Start-Phase
only in 2-CLK Fall: Middle-Phase

C.,..14

DRAM PAL DESCRIPTIONS

PALl6R8 PAL DESIGN SPECIFICATIONS
PART NUMBER: 3-ClK DRAM CONTROL PAL
DRAM CONTROL PAL OF INTERLEAVED DRAM CONTROllER FOR 80386 SYSTEMS
INTEL, SANTA CLARA, CALIFORNIA
ClK2 ClK BEO BEl BE2 BE3 W'/,R ROWSEl DISABLE GND
OE CASO CASI DT%R DEN ROY WC CAS2 CAS3 VCC

;drop CAS on read
;drop on wri te

/CASO := /ROWSEl * ClK * /DT%R * /DISABlE
+ /ROWSEl * WC * ROY * /ClK * /BEO
+ /ROWSEl * /CASO ;maintain throughout cycle

;BEx can di sappear after CAS drop
;DISABlE must be maintained through last /ROWSEl * ClK

/CASI .- /ROWSEl * ClK * /DT%R * /DISABlE
+ /ROWSEl * WC * ROY * /ClK * /8El
+ /ROWSEl * /CASI

/CAS2 := /ROWSEl * ClK * /DT%R * /DISABlE
+ /ROWSEl * WC * ROY * /ClK * /BE2
+ /ROWSEl * /CAS2

/CAS3 := /ROWSEl * ClK * /DT%R * /DISABlE
+ /ROWSEl * WC * ROY * /ClK * /BE3
+ /ROWSEl * /CAS3

;drop CAS on read
;drop on write
;maintain throughout cycle

;drop CAS on read
; drop on write
;maintain throughout cycle

; drop CAS on read
; drop on write
;maintain throughout cycle

/DT%R : = ROWSEl * DEN * /W%R
+ /ROWSEl * /DT%R

;sample W'/,R when /ROWSEl * DEN
;otherwise: maintain state

+ /DEN * /DT%R

/DEN:= ClK * /ROWSEl * /DISA8lE
+ /ClK * /DEN

/WC : = DISABLE
+ ROWSEl
+ /RDY
+ /WC * /ClK

/RDY:= we * ClK
+ /RDY * /DEN

;when ClK: sample ROWSEl
;otherwise: maintain state

;keep low if DISABLE
or /ROWSEl
or /RDY
or already low * /ClK

;drop ROY
;maintain ROY

Figure C-4. 3-CLK DRAM Control PAL Equations

C-15

DRAM PAL DESCRIPTIONS

FUNCTION TABLE

DE CLK2 CLK BEQ BEl BE2 BE3 W%R ROWSEL DISABLE ; inputs
CASQ CAS] CAS2 CAS3 DT%R DEN RDY WC ;outputs

DE
CLK2

CLK CASO
BEO I CAS]
I BEl I I CAS2
I BE2 I I I CAS3
I I BE3 I I I I DT%R
I I I W%R I I I I I DEN
I I I I ROWSEL I I I I I I ROY
I I I I I DISABLE I I I I I I I WC
I I I I I I I I I I I I I I

L C H X X X X X H L
L C L X X X X L H L
L C H X X X X H H L
L C L X X X X L H L
L C H X X X X X L L
L C L X X X X X L L
L C H X X X X X L L
L C L X X X X X L L
L C H X X X X X H L
L C L X X X X H H L
L C H X X X X X L L
L C L H L L H X L L
L C H X X X X X L L
L C L X X X X X L L
L C H X X X X X H L
L C L X X X X L H L
L C H X X X X X L L
L C L X X X X X L L
L C H X X X X X L L
L C L X X X X X L L
L C H X X X X X H L
L C L X X X X X H L
L C H X X X X X L H
L C L X X X X X L H
L C H X X X X X L H
L C L X X X X X L L
L C H X X X X X H L
L C L X X X X X H L

DESCR! PTION

X X X X X H X L
H H H H L H H L
H H H H H H H L
H H H H L H H L
L L L L L L H H
L L L L L L H H
LLLLLLLH
L L L L L L L L
H H H H L H L L
H H H H H H H L
H H H H H L H H
H l L H H l H H
H L L H H L L H
H L l H H L L L
H H H H H H L L
H H H H L H H L
L L L L L L H H
L L L L L L H H
LLLLLLLH
L L L L L L L L
H H H H L H L L
H H H H X H H L
H H H H X H H L
H H H H X H H L
H H H H X H H L
H H H H X H H L
H H H H X H H L
H H H H X H H L

COMMENTS

initialize to IDLE
IDLE: DT%R tracking W%R
IDLE: DT%R tracking W%R
IDLE: DT%R tracking W%R
begin read: assert all CAS's
continue read:
continue read: RDY active
last read cycle
CAS's and DEN ri se
DT%R and RDY ri ses
begin write: assert DEN and WE
continue write: assert valid CAS's
cont i nue write: RDY act i ve
continue write:
CAS's and DEN ri se
RDY ri ses
begin read: assert all CAS's
continue read:
continue read: RDY active
last read cycle
CAS's and DEN ri se
RDY ri ses
begi n refresh
continue refresh
continue refresh
last refresh cycle
IDLE
IDLE

This PAL implements most of the control signals of the DRAM controller.

Figure C-4. 3-CLK DRAM Control PAL Equations (Cont'd.)

C-16

DRAM PAL DESCRIPTIONS

PALl6R4 PAL DESIGN SPECIFICATIONS
PART NUMBER: 2-ClK DRAM CONTROL PAL
DRAM CONTROL PAL OF INTERLEAVED DRAM CONTROllER FOR 80386 SYSTEMS
INTEL. SANTA CLARA. CALIFORNIA
ClK2 ClK BEQ BEl BE2 BE3 W%R ROWSEl DISABLE GND
OE CASQ CASI DT%R DEN ROY WE CAS2 CAS3 VCC

/CASO = /ROWSEl * /DT%R * ClK * /DISABlE ;drop CAS on read
+ /ROWSEL * /OT%R * /OEN ;maintain CAS on read
+ /ROWSEL * /OEN * /BEO * /OISABlE ;activate CAS on write

;BEx must be maintained throughout
;OISABlE must be maintained through last /ROWSEl * ClK

/CASI = /ROWSEl * /DT%R * ClK * /OISABlE
+ /ROWSEl * /OT%R * /OEN
+ /ROWSEl * /DEN * /BEI * /DISABlE

/CAS2 = /ROWSEl * /DT%R * ClK * /DISABlE
+ /ROWSEl * /DT%R * /OEN
+ /ROWSEl * /OEN * /BE2 * /OISABlE

/CAS3 = /ROWSEl * /DT%R * ClK * /DISABlE
+ /ROWSEl * /OT%R * /OEN
+ /ROWSEl * /OEN * /8E3 * /OISABlE

;drop CAS on read
;maintain CAS on read
;activate CAS on write

;drop CAS on read
;maintain CAS on read
;activate CAS on write

;drop CAS on read
;maintain CAS on read
;activate CAS on write

/OT%R:= ROWSEl * DEN * /~~R
+ IROWSEl * IOT%R

;sample W%R when /ROWSEl * DEN
;otherwise: maintain state

+ IOEN * /OT%R

IOEN.- ClK * IROWSEl * IOISABlE
+ /ClK * IOEN

;when ClK: sample ROWSEl
;otherwise: maintain state

/WE:= IROWSEl * OT%R * ROY * /OISABlE ;only drops for writes

IROY := IROWSEl * /OT%R * IDISABlE * ClK ;drop ROY immediately for read
+ IWE * ClK ;drop ROY later for write
+ IROY * IOEN ;maintain ROY

Figure C-S_ 2-CLK DRAM Control PAL Equations

C-17

DRAM PAL DESCRIPTIONS

FUNCTION TABLE

OE CLK2 CLK BEO BE! BE2 BE3 W%R ROWSEL DISABLE ; inputs
CASa CAS] CAS2 CAS3 DT%R DEN RDY WE ;outputs

OE
I CLK2
I I CLK CASO
I I I BEO I CASI
I I I I BEl I I CAS2
I I I I I BE2 I I I CAS3
I I I I I I BE3 I I I I DT%R
I I I I I I I W%R I I I I I DEN
I I I I I I I I ROWSEL I I I I I I ROY
I I I I I I I I I DISABLE I I I I I I I WE
I I I I I I I I I I I I I I I I I I

L C H X X X X X H L
L C L X X X X L H L
L C H X X X X H H L
LCLXXXXLHL
L C H X X X X X L L
L C L X X X X X L L
L C H X X X X X H L
L C L X X X X H H L
L C H H L L H X L L
L C L H L L H X L L
L C H H L L H X L L
L C L H L L H X L L
L C H X X X X X H L
L C L X X X X L H L
L C H X X X X X L L
L C L X X X X X L L
~ C H X X X X X H l
l C l X X X X X H l
L C H X X X X X l H
L C L X X X X X L H
L C H X X X X X l H
L C L X X X X X L L
L C H X X X X X H l
L C L X X X X X H L

DESCRIPTION

x X X X X H X H
H H H H L H H H
H H H H H H H H
H H H H L H H H
LLLLLLLH
L L L L L L L H
H H H H L H L H
H H H H H H H H
H L L H H L H L
H L L H H L H L
H L L H H L L L
H L L H H L L H
H H H H H H L H
H H H H L H H H
L L L L L L L H
LLLLLLLH
H H H H L H L H
H H H H X H H H
H H H H X H H H
H H H H X H H H
H H H H X H H H
H H H H X H H H
H H H H X H H H
HHHHXHHH

COMMENTS

initialize to IDLE
IDLE: DT%R tracking ~!.R
IDLE: DT%R tracking W%R
IDLE: DT%R tracking W%R
begin read: assert all CAS's
last read cycle
CAS's and DEN rise
DT%R and RDY ri ses
begin write: assert DEN and WE
continue write: assert valid CAS's
continue write: RDY active
continue write:
CAS's and DEN rise
ROY rises
begin read: assert all CAS's
last read cycle
CAS's and DEN rise
ROY rises
begin refresh
continue refresh
continue refresh

; last refresh cycle
; IDLE
; IDLE

This PAL implements most of the control signals of the DRAM controller.

Figure C-5. 2-CLK DRAM Control PAL Equations (Cont'd.)

C-18

DRAM PAL DESCRIPTIONS

Table C-3. Refresh Interval Counter PAL Pin Description

PAL CONTROLS

Name Connects From PAL Usage

ClK Systems ClK PAL register clock

OE Tied low Outputs always
enabled

PAL INPUTS

Name Connects From PAL Usage Sampled

REFACKO# DRAM RASO# Indicates when refresh Every ClK that
REFACK1# DRAM RAS1# starts: turns off RFRO RFRQ is active

NCO
NC1
NC2
NC3 Not connected Not used Never
NC4
NC5
NC6
NC7

PAL OUTPUTS

Name Connects To PAL Usage Changes State

RFRO DRAM STATE RFRO latch refresh request Any ClK
~-

00
01
02
03 Implements up to 9-bit
04 Not connected Any elK
05

modulo counter

06
07
08

C-19

DRAM PAL DESCRIPTIONS

PAl20XlO PAL DESIGN SPECIFICATIONS
PART NUMBER: 16 MHz REFRESH INTERVAL COUNTER PAL
REFRESH INTERVAL PAL OF INTERLEAVED DRAM CONTROLLER FOR B0386 SYSTEMS
INTEL, SANTA CLARA, CALIFORNIA
ClK REFACKO REFACKI NC NC NC NC NC NC NC NC GND
OE RFRQ NC QO Ql Q2 Q3 Q4 Q5 Q6 Q7 VCC

IRFRQ := IRFRQ * Q7 * Q6 * Q5 * Q4 * Q3 * Q2 * Ql * QO ;raise at 255
+ RFRQ * IREFACKO * IREFACKI ;clear when both ACKs low

:+: IRFRQ ;else: don't change state

IQO·= IQO ;least-significant bit of counter
+ IQ7 * IQ6 * IQ5 * IQ4 * IQ3 ;set at 7 or less

:+: vce ;else decrement

IQl:= IQl
+ IQ7 * IQ6 * IQ5 * IQ4 * IQ3

:+: IQ7 * IQ6 * IQ5 * IQ4 * IQ3
+ IQO

IQ2:= IQ2
+ IQ7 * IQ6 * IQ5 * IQ4 * IQ3

:+: IQ7 * IQ6 * IQ5 * IQ4 * IQ3
+ IQl * IQO

IQ3:= IQ3
+ IQ7 * IQ6 * IQ5 * IQ4 * IQ3

:+: IQ7 * IQ6 * IQ5 * IQ4 * IQ3
+ IQ2 * IQl * IQO

IQ4:= IQ4
+ IQ7 * IQ6 * IQ5 * IQ4 * IQ3

:+: IQ7 * IQ6 * IQ5 * IQ4 * IQ3
+ IQ3 * IQ2 * IQl * IQO

IQ5.- IQ5
+ IQ7 * IQ6 * IQ5 * IQ4 * IQ3

:+: IQ7 * IQ6 * IQ5 * IQ4 * IQ3
+ IQ4 * IQ3 * IQ2 * IQl * IQO

IQ6:= IQ6
+ IQ7 * IQ6 * IQ5 * IQ4 * IQ3

:+: IQ7 * IQ6 * IQ5 * IQ4 * IQ3
+ IQ5 * IQ4 * IQ3 * IQ2 * IQI * IQO

;set at 7 or less
;set at 7 or less
;else decrement

;set at 7 or less
;set at 7 or less
;el se decrement

;set at 7 or less
;set at 7 or less
;else decrement

;set at 7 or less
;set at 7 or less
;else decrement

;set at 7 or less
;set at 7 or less
;else decrement

;set at 7 or less
;set at 7 or less
;else decrement

IQ7:= IQ7 ;most-significant bit of counter
+ IQ7 * IQ6 * IQ5 * IQ4'* IQ3 ;set at 7 or less

:+: IQ7 * IQ6 * IQ5 * IQ4 * IQ3 ;set at 7 or less
+ IQ6 * IQ5 * IQ4 * IQ3 * IQ2 * IQl * IQO ;else decrement

Figure C-6. Refresh Interval Counter PAL Equations

C-20

DRAM PAL DESCRIPTIONS

FUNCTION TABLE

OE CLK REFACKO REFACKI
RFRQ Q7 Q6 Q5 Q4 Q3 Q2 QI QO

;inputs
;outputs

,
;OE
; 1 CLK
;1 1

L C
L C
L C
L C
L C
L C
L C
L C
L C
L C
L C

REFACKO
1 REFACKI
1 1 RFRQ
1 1 1

H X
X H
L L
X X
X X
X X
X X
H X
X H
L L
X X

H
H
L
L
L
L
H
H
H
L
L

DESCRIPTION

Q7
1 Q6
1 1 Q5
1 1 1 Q4
1 1 1 1 Q3
1 1 1 1 1 Q2
1 1 1 1 1 1 QI
1 1 1 1 1 1 1 QO
1 1 1 1 1 1 1 1 COMMENTS

L L L H L H H; initialize(ignore errors on vector)
L L L L H L H L; decrement
L L L L H L L H; decrement
L L L L H L L L; decrement
L L L L L H H H; decrement to 7
H H H H H H H H; reset to 255
H H H H H H H L; decrement, activate RFRQ
H H H H H H L H; decrement, sample REFACKs
H H H H H H L L; decrement, sample REFACKs
H H H H H L H H; decrement, both REFACKs: clear RFRQ
H H H H H L H L; decrement

This PAL implements the counter to determine when distributed
refresh cycles should be run. This counter counts intervals of 249
clocks which is just under 15 uS at 16 MHz.

The counter counts backwards from 255 to 7. The clock after the
counter reaches 7, the counter is set to 255 and wi 11 then cont i nues
to decrement. Also when 7 is hit, RFRQ is activated until both
REFACKO and REFACKI are simultaneously sampled low.

Figure C-6. Refresh Interval Counter PAL Equations (Cont'd.)

C-21

DRAM PAL DESCRIPTIONS

Table C-4. Refresh Address Counter PAL Pin Description

PAL CONTROLS

Name Connects From PAL Usage

CLOCK RFRO & MUXOE# PAL register clock

OE RFRO & MUXOE# outputs enable on refresh

PAL INPUTS

Name Connects From PAL Usage Sampled

NCO
NC1
NC2
NC3 Not connected Not used Never
NC4
NC5
NC6
NC7

PAL OUTPUTS

Name Connects To PAL Usage Changes State

00 Muxed Addr 0
01 Muxed Addr 1
02 Muxed Addr 2
03 Muxed Addr 3 Implements a-bit counter Any Clock
04 Muxed Addr 4
05 Muxed Addr 5
06 Muxed Addr 6
07 Muxed Addr 7

C-22

DRAM PAL DESCRIPTIONS

PAL!6R8 PAL DESIGN SPECIFICATIONS
PART NUMBER: REFRESH ADDRESS CDUNTER PAL

• REFRESH ADDRESS PAL OF INTERLEAVED DRAM CONTROLLER FOR 80386 SYSTEMS
INTEL, SANTA CLARA, CALIFORNIA
CLOCK NC Ne NC NC NC NC NC NC GND
OE AO Al A2 A3 A4 AS A6 A7 VCC

/AO := AO ;least significant bit of a-bit counter

/AI := Al * AO
+/AI */AO

/A2 := A2 * Al * AO
+/A2 */AI
+/A2 */AO

/A3 : = A3 * A2 * Al * AO
+/A3 */A2
+/A3 */AI
+/A3 */AO

/A4 ' . A4 * A3 * A2 * Al * AO
+/A4 */A3
+/A4 */A2
+/A4 */AI
+/A4 */AO

/AS ,- AS * A4 * A3 * A2 * Al * AO
+/AS */A4
+/AS */A3
+/AS */A2
+/AS */AI
+/AS */AO

/A6 := A6 * AS * A4 * A3 * A2 * Al * AO
+/A6 */AS
+/A6 */A4
+/A6 */A3
+/A6 */A2
+/A6 */AI
+/A6 */AO

/A7 := A7 * A6 * AS * A4 * A3 * A2 * Al * AO;most-significant bit of counter
+/A7 */A6
+/A7 */AS
+/A7 */A4
+/A7 */A3
+/A7 */A2
+/A7 */AI
+/A7 */AO

Figure C-7. Refresh Address Counter PAL Equations

C-23

DRAM PAL DESCRIPTIONS

FUNCTION TABLE

OE CLOCK
A7 A6 AS A4 A3 A2 Al AO

,
;OE
; 1 CLOCK
;1 I

A7
1 A6
liAS
1 1 1 A4
1 1 I I A3
I 1 I I 1 A2
1 I 1 I 1 I Al
1 1 1 1 1 1 1 AO
1 1 1 1 I I 1 I COMMENTS

;inputs
;outputs

L C H H H H H H H H; initialize (ignore any errors on this vector)
L C L L L L L L L L; increment
L C l L L L L L L H; increment
L C L L L L L L H L; increment
L eLL L L L L H H; increment
L C L L L L L H L L; increment
H H Z Z Z Z Z Z Z Z; high-impedence state

DESCRIPTION

This PAL implements a simple 8-bit counter which is used to
generate the refresh row address by the DRAM controller.

Figure C-7_ Refresh Address Counter PAL Equations (Cont'd_)

C-24

DRAM PAL DESCRIPTIONS

TIMING PARAMETERS

Figure C-8 shows the timing of signals for DRAM read and write cycles. Table C-5 displays
the worst-case timing parameters for six DRAM circuits, each of which uses a different type
of DRAM.

C-25

()
I

I\)
C1l

"6
STATE

ClK

elK:?

ROWSEL

RAg.

READ·1 REAO·2 READ-S WRITE·! WRITE·2 WRITE·3

I I, I I, I I I, I r--I,,,,,,, --I I, I I,
!--IROWAIT---j

I I, I I I, I I I, I
f---tWATWAIT~ IBAK2B/l.II--l

1'1 I' I 1'1 1'1 1'1
\ / \ / \

101: I", I" 101 I" lai: I", '00 101 '''y-j
\ r---\ / L-

I ICAP f---IACO

?R.'1 I----- I;\:
ICSI'!

IRSH(R)
ICAs{R)

I'

leAP ~IRCD I IRSH(W) tCAI'------j
-lcp--- . ICAS(W)

1---____ --'1--'" '''" I"

CAS' --F -_ .. _\ ! . -\ !

1wI-'o"'., I tRAH
: tACH r-1RWH

$'°,,_1 "",~',"
-IRWl

Iw I., j----w

IWRP----j

~---------~\ ! w,,~

I--t8+IMUX+IASII~IRAH I leAR .1 r--tASR~RAH---1-.tASC+---tCAH~
IASI----tcAH=t==:j-1 r-1MUX--j 'MUX

'Ml.! IMUX 111.11 ___ _
I---~---I,,_---~--I

f--- 18+ IMUX---J

~~~~ ~ ROW X COLUMN 0 ROW X COLUMN X'-______ _ 

DRAM 
DATA 

~ ~~- --~ f--'"l--," '" _." 

-- , 

r---'RAC- tON 

----,.DDDD'A"TAA 

!----tOFF ! los I IOH-----oI 

i-'''''-+--'''----.j 1-----+"",. f..-I'-i 
r-t2:l!~ 1'2--t--! 

r-112+IXCVA-! 

DA~: }----------(r-------J.-__ 

Figure C-S. DRAM Circuit Timing Diagram 

G30107 

l 

o 
:D » 
3: 
"'0 » r-
o 
m 
en o 
:!! 
"'0 
-I 
(5 
Z 
en 



--
386 DRAM Control ter It T I H I N G PARAMETERS 

Chip Synbol 10 Description frOfll To Min Max Hin Hax Min Max Min Max Min Max Min Max 
51C64·8 5IC64·10 51C25~·12 51C256·15 2164·15 51C256·20 

8238l. tI o CLJ(Z period ClK2 I ClK1 I 31 32 31 32 40 42 31 32 31 32 40 42 
ClK2 I ClK1 I 
CLK2 I ClK1 I 
CLK2 I ClK2 I 
CLK2 I ClK2 I 
ClK2 I ClK2 I 
ClK1 I ClK2 I 
ClK2 I ClK1 I 
ClK2 I ClK1 I 
ClK2 I ClK2 I 
ClK2 I ClK1 I 
ClK2 I ClK1 I C ClK2 I ClK2 I 
Cll{Z I cu::.2 I ::0 » ClK< I ClK2 I 31: 6238l. tr<f,./A.n o CLKperiod(s) rd WaitState ClK2 I ClK2 I 0 0 0 0 0 0 62 64 61 64 80 84 

6238l. twrtWAlT 0 CLKperiod(s) wt WaitState ClK1 I ClK1 I 62 64 62 64 60 84 61 64 62 64 60 84 ~ 
8238l. tBAK28AK 0 CLKpedodes) bock·lo·bock CLK2 f CLK2 I 62 64 62 64 160 168 124 128 124 128 160 168 » 

CLK2 I ClK1 I r 
() 366 .11 o write data out-delay CLKl I 386 DlIIta< 50 50 50 50 50 50 C 
I CLK2 I 366 Data> m 

J\) 366 • 121 o read data set· up 386 Detlc CLK1 I 10 10 10 10 10 0 10 U) 
-...J 366 .22 o read data hold CLK2 f 366 OoU> 999 999 999 999 999 2 999 0 

386+MUX t6HMUX o addr f r 366 thru lalchMux CLK2 I row< 46 46 46 46 46 3 46 ::0 
CLK2 I row< ;; 

PAl o clock to PAL outputs CLK2 I Row Set \ 12 12 12 12 12 12 
ClK2 I Row Sell .... 
CLK2 I Row Sol\ (5 
CLK2 I Row Sel' Z 
ClK2 I Row Set \ VI 

PAlorREG Q o clock to PAL or REG outpt ClK2 I RAS# \ 12 12 12 12 10 12 
ClK2 I RAS# I 
ClK2 I RAS' \ 
CLK2 I RAS# ( 

CLK2 I RAS# \ 
Register R o clock. to regi ster output CLK2 ( CASfil ( 12 12 12 12 10 12 

CLK1 I CAS# \ 
CLK2 ( CAS# ( 

CLK2 ( CAS# \ 
CLK2 I CAS# I 
ClKl I CAS# \ 

PAL +NAND .., a pal and wri te logic delay ClK2 ( ~E# ( 16 18 16 18 18 18 
CLK2 I ~E# \ 
ClK2 I ~E# I 

Tran<;cvr tXCVR o transcvr prop in· to-out rd data< 386 Oata< 
DrarrOata> 386 Data> 
386 Oata< wrt data< 
386 Data;,. DraniJata> 

Table CoS. DRAM Circuit Timing Parameters 



--
366 DRAM Controller ~ I H I N G PARAMETERS 

Chip Sytrbol 10 Description frem To Min Max Min Max ftin Max Min Max Min Max Min Max 
5IC64-8 51C64-10 51C256-12 51C256-15 2164-15 51C256-20 

DRAM tRAS RAS' pulse width RAS' RAS' I 80 9999 100 9999 120 9999 1509999 150 9999 200 9999 
RAS' RAS' I 

DRAM tRC random read/wd te cycle RAS' RAS' \ 140 9999 160 9999 200 9999 245 9999 260 9999 315 9999 
RAS' RAS' \ 

DRAM tRP RAS' precharge time RAS' RAS' \ 50 9999 50 9999 10 9999 85 9999 100 9999 105 9999 
RAS' RAS' \ 

ORA" tCSH I CAS' hold tille RAS' CAS' I 80 9999 100 9999 120 9999 1509999 150 9999 200 9999 
RAS' CAS' I 

DRAM tCAS(R) I CAS' pulse width(rd eyel) CAS' CAS' I 15 9999 20 9999 25 9999 30 9999 85 9999 35 9999 
DRAM tCAS(W) I CAS' pulse width{wrt eye) CAS' CAS' I 25 9999 30 9999 25 9999 30 9999 85 9999 35 9999 
ORA. tWRP I wri te to lAS' prechargt WEI RAS' \ -30 9999 -30 9999 10 9999 10 9999 -30 9999 10 9999 

WE' RAS' \ 0 DRAM tRWH RAS' to write hold ti. RAS' WE' \ 09999 09999 15 9999 20 9999 09999 25 9999 ::D ORA. tASR row address aet-ltJ time row< RAS' \ 09999 09999 09999 09999 09999 09999 :I> row< RAS' \ 3: DRAM tRAM row address hold t i_ AAS' \ colUln< 15 9999 15 9999 15 9999 20 9999 20 9999 25 9999 
RAS' \ coltltll< 'tI 

DRAM tCP CAS. precharge CAS' I CAS' \ 10 9999 10 9999 10 9999 10 9999 25 9999 10 9999 :I> 
CAst I CAS' \ r-

() DRAM rCRP J CAS' to RAS' precharge CAS' I RAS' \ -20 9999 -20 9999 -20 9999 -209999 -20 9999 -209999 0 I CAS' I AAS' \ m I\) 
CAS' I RAS' \ fJ) !Xl 

DRAM • tACO I RAS' to CAS' delay RAS' \ CAS' \ 30 9999 30 9999 30 9999 35 9999 30 9999 40 9999 0 
RAS' \ CAS' \ ::D DRAM USC 1 colllJll address set"t.4> coll8l< CAS' \ 09999 09999 59999 59999 09999 59999 =ij col ..... < CAS' \ -4 ORA'" tCAM I col lim address hold CAS. \ Dr.-Mddr< 10 9999 10 9999 15 9999 20 9999 25 9999 25 9999 

0 CAS' \ Dr8iM.ddr< 
DRAM tAR I collllll addr hold fr RAS' RAS' \ DrlilMddr< 40 9999 40 9999 60 Q999 10 9999 90 9999 80 9999 Z 

AAS' \ Dramttddr< fJ) 
DRAM • tON output buffer turn on CAS' \ rd data< 20 9999 20 9999 25 9999 30 9999 85 9999 35 9999 
ORAM III tOFF output buffer turn off CAS' I wrt data< 20 9999 209999 20 9999 25 9999 30 9999 30 9999 
DRAM • tRAC access time -from RAS' RAS' \ rd data< 80 9999 100 9999 120 9999 150 9999 150 9999 200 9999 
DRAM .. tCAC access time frOID CAS' CAS' \ rd data< 20 9999 20 9999 25 9999 30 9999 85 9999 35 9999 
DRAM .. tCAA access time fr collllll adr cotum< rd data< 45 9999 55 9999 55 9999 70 9999 85 9999 90 9999 
DRAM IRS'(R) RAS' hold time (rd cycle) CAS' \ RAS' I 10 9999 10 9999 10 9999 10 9999 85 9999 10 9999 
DRAM tRCS read coomand set-up time RAS' \ rd data< 09999 09999 09999 09999 09999 09999 
DRAM tCAR I collllIl address to RII.S' cotUJr1< RAS' I 45 9999 55 9999 55 9999 70 9999 85 9999 911 9999 
DRAM tRCH I read COOl hold ref to CAS' CAS' I WE' \ 09999 09999 09999 o 9999 59999 09999 
DRAM tRRH I read com hal d ref to RAS' RAS' I WE' \ 10 9999 10 9999 10 9999 10 9999 20 9999 10 9999 
DRAM IRSH(W) I RAS# hold time Cwrt cyel) CAS' \ RAS' I 35 9999 35 9999 25 9999 30 9999 85 9999 35 9999 
DRAM tRWl I write eonmand to RASIII WE' \ RAS' I 25 9999 3D 9999 25 9999 30 9999 40 9999 35 9999 
DRAM tCl.4l I write conmand to CAU' ~E' \ CAS' I 25 9999 30 9999 25 9999 30 9999 40 9999 35 9999 
DRAM tWP I wr i te coomand put se width WE' \ WE' I 20 9999 20 9999 20 9999 25 9999 30 9999 309999 
DRAM tlJCS 1 write conmand set·..., time WE' \ CAS' \ 09999 09999 09999 09999 -10 9999 09999 
DRAM tWCH J wri te comnand hold time CAS' \ WE' I 25 9999 30 9999 25 9999 30 9999 3D 9999 35 9999 
DRAM IDS I data-in set-up time wrt data< CASII \ 09999 09999 09999 09999 09999 09999 
DRAM 10' I data-in hold time CAS' \ DrarrOata> 20 9999 20 9999 20 9999 25 9999 30 9999 3D 9999 

Table C-5. DRAM Circuit Timing Parameters (Cont'd.) 



_. 
386 DRAM Controller 

I Ii TIM I H G CALCULATIONS 

Chip Synbol 10 Description From To Min Kax "in Max Min Max Min Max Min Me)! Min Max 
51C64-8 51C64-10 51C256-12 51C256-15 2164-15 51C256-20 

D'AM tRAS us. put se width 80 9999 100 9999 120 9999 150 9999 150 9999 200 9999 
'0 +trtNA(l -ttl HI +'1 HI -0 

lAS' \ lAS. 112 140 112 140 148 180 174 204 180 196 U6 264 
.Q +twrt\lAIT*tl HI +'1 +.1 -0 

RAS' \ RAS' 174 204 174 204 228 264 174 204 180 196 226 264 

DRAM tRC random read/write cycle 140 9999 160 9999 200 9999 245 9999 260 9999 315 9999 
.Q +tBAKZBAK+trcAlAIT +tl +.1 +.1 +tI -Q 

RAS' \ RAS' \ 174 204 174 204 308 346 296 332 304 ]26 168 4]2 
.Q .tBAK2BAK+twrtIJA I T +tl .,1 +.1 +.1 -Q 

RAS' \ lAS' \ 236 268 236 268 168 432 298 ]]2 ]04 ]26 188 H2 

DRAM tRP RASM precharge tilne 50 9999 50 9999 70 9999 85 9999 100 9999 105 9999 I I~ .Q +t9AKZ8AK-g RAS' RAS' 50 76 50 76 148 180 112 140 118 134 148 160 
.Q +t8AKZBAK-g RAS' RAS' 50 76 50 76 146 180 112 140 118 134 148 180 

3: 

" DRAM ,CSH CAS' hold t lIRe 80 9999 100 9999 120 9999 1509999 150 9999 200 9999 :to .R +trcA.4AIT H1 .,1 +.1 +tI -Q r 
0 RAS' \ CAS. 112 140 112 140 148 180 174 204 180 198 228 264 C I .R +twrUIAI1+tl +.1 +t1 +.1 -Q m I\) RAS' \ CAS' 174 204 174 204 228 264 174 204 180 198 228 264 CIl <0 

0 
CAS' pulse wtdth(rd eyeD ]5 9999 :u DR"" 'CAS(R) 15 9999 20 9999 25 9999 309999 85 9999 =ti 'R +trcIJAIl +t1 +.1 -R CAS' \ CAS' 50 76 50 76 68 96 112 140 118 1]4 148 160 

~ 

DRAM tCAS(\J) CAS' pulse wldth(wrt eye) 25 9999 ]0 9999 25 9999 ]0 9999 85 9999 ]5 9999 I I~ .. .twrtWAIT+t1 -R CAS' \ CAS' 61 108 81 106 108 _138 81 108 87 102 108 138 

ORA" UJRP wr i te to HAS' precharge -]0 9999 -]0 9999 10 9999 10 9999 -]0 9999 10 9999 
.0 ." -" lIE' RAS' 13 42 13 42 22 52 13 42 17 40 22 52 
.0 ... tBAK2BAK+twrtW"J ,. t 1 -" lIE' RAS' 74 107 74 107 160 222 136 171 140 169 180 222 

DRAM tRUH RAS' to wri te hold time 09999 09999 15 9999 20 9999 09999 25 9999 

." ·,1 .,1 -0 RAS' lIE' 52 82 52 62 70 102 52 82 54 78 70 102 

DRAM tASR row address set-"", ti_ 09999 09999 09999 09999 09999 09999 
'0 .,1 .,1 -t6+tMU)c row< RASf 16 73 16 73 34 93 16 73 20 71 ]4 93 
'0 +tBAK2BAK+trtAlAI T - t6+tHUX row< RAS' 16 73 16 73 114 177 140 201 144 199 194 261 

DRAM tRAH row address hold time 15 9999 15 99'1'1 15 9999 20 9999 20 9999 25 9999 
t tl1UX .p . ., -0 RAS# colum< 2] 55 23 55 32 65 23 55 25 51 32 65 
ttMUX .p ,,1 -0 RAS# colum< 23 55 23 55 32 65 2] 55 25 51 32 65 

Table C-5. DRAM Circuit Timing Parameters (Cont'd.) 



_. 
386 DRAM Controller I I~ T I H I N G CALCULATIONS 

Chip Synbol 10 Description From To Min Hax Min Ha. Min Max Min Mal( Min Hax Hin Hall. 
51C64·8 51C64·10 51C256-12 51C256-15 2164-15 51C256-20 

DRAH ,ep CAS" precharg& 10 9999 10 9999 10 9999 10 9999 25 9999 10 9999 
'R +,1 +,1 HI +tBAK.2BAIC-a 

CASI!! CAS' 141 In 141 In 268 306 205 236 211 230 268 306 
'R +,1 +'1 +tBAK2BAK -R CAS' CAS' 112 140 112 140 228 264 174 204 180 198 228 264 

DRAH teAP CAS' to lAS' precharge -209999 -209999 -20 9999 -20 9999 ·209999 -209999 
'0 'R CAS. US, \ -12 12 -12 12 -12 12 -12 12 -6 6 -12 12 
'0 +'BAK2BAK-R CAS' AAS' \ SO 76 SO 76 148 180 112 140 118 134 148 180 
+0 +tBAIC28AK-a CAS. US, \ SO 76 SO 76 148 180 112 140 118 134 148 180 

DRAH • 'RCD RAS' '0 CAS' deloV 30 9999 309999 30 9999 35 9999 30 9999 40 9999 
'R +,1 +,1 -Q RAS' CAS' SO 76 so 76 68 96 50 76 56 70 68 96 
,R +,1 +,1 +,1 -Q RAS' CAS. 81 108 81 108 108 138 81 108 87 102 108 138 

C 
DRAM usc coltml acttress aet-up 59999 09999 59999 

::D 
09999 09999 59999 l> 

'R +,1 -p • tHUX col~'I'< CAS' a 40 8 40 17 50 8 40 12 38 17 50 3: +A +,1 +'1 -p -'HUX COlUM< CAS' 39 n 39 n 57 92 19 n 43 70 57 92 
~ 
l> 

DRAM teAH colurn address hold 10 9999 10 9999 15 9999 20 9999 25 9999 25 9999 

I Ii () +tHUX +p +'1 +tl .,1 -R 
I CAS. \ OrBIMddr< 85 119 85 119 112 149 85 119 87 115 112 149 Co) 

0 ..-tHUX +p +,1 +tl -R CAS. \ DrUll\cktr< 54 87 54 87 n 107 54 87 56 83 n 107 
() 
::D 

DRAM tAR collMlll addr hold fr .AS' 40 9999 40 9999 60 9999 70 9999 90 9999 80 9999 =ti 
+tHUX +p +tl +tl +t1 +,1 +t1 -Q .... 

NAS' \ orllll1o\ddr< 147 183 147 183 192 233 147 183 149 179 192 213 0 .tMUX +p +tl +tl .,1 .,1 .,1 -Q 
RAS' \ Dr8llll\ddr< 147 183 147 183 192 213 147 183 149 179 192 211 Z en 

DRAH • ION output buffer turn on 20 9999 209999 2S 9999 lD 9999 85 9999 15 9999 
. 'XCVR -t21 HrdJAIT +tl HI -R 

CAS. \ rd data< 33 62 40 64 51 82 95 126 97 122 III 166 

DRAH .,. tOFF output wffer turn off 20 9999 209999 20 9999 25 9999 30 9999 30 9999 
..-tXCVR +t12 +,1 ... tBAK2BAK' R CAS' I wrt data< 84 153 82 146 191 267 146 217 148 213 191 267 

DRAM .,. tRAC access time from AAS' 80 9999 1009999 120 9999 150 9999 1509999 200 9999 
-tXCVR ·121 +[reNA-IT Hl +11 +'1 +11 -0 

us# \ rd data< 95 126 102 128 131 166 157 190 159 186 211 250 

DRAM * tCAC access time from CAS. 20 9999 20 9999 25 9999 30 9999 85 9999 35 9999 
- t)(CVR -t21 +tnAiAJ T .t 1 +,1 ·R 

CAsli \ rd data< 33 62 40 64 51 82 95 126 97 122 131 166 

Table C-S. DRAM Circuit Timing Parameters (Cont'd.) 



_. 
366 DRAM Controller It TIM I N G CALCULATIONS 

Chip Synbol 10 Description FrOIO To Min Max Min Max Min Max Min Max Hin Max Min Max 
51C64-8 51C64-10 51C256-12 51C256-15 2164-15 51C256-20 

DRAM • tCAA. access time tl" collml adr 45 9999 55 9999 55 9999 70 9999 85 9999 90 9999 
• tXCVR -,21 .trdolAIT +1;1 HI +'1 -p -'NUX 

col~< rd data< 53 90 60 92 80 -120 115 154 115 154 160 204 

DRAM tASH(R) RAU hold time (rd cycle) 10 9999 10 9999 10 9999 109999 85 9999 109999 
+0 +[rdolAIT +t1 +,1 -R CAS' \ RAS' 50 76 50 76 68 96 112 140 118 134 148 180 

DRAM 'RCS read conmand set-up ti_ 09999 09999 09999 09999 09999 09999 
-[leVR -121 +trdJAIl ... t1 +,1 +,1 +,1 -Q 

RAS' \ rd data< 95 126 102 128 131 166 157 190 159 186 211 250 

DRAM 'CAR coltJll1 address to RAS' 45 9999 55 9999 55 9999 70 9999 85 9999 90 9999 I I~ +0 +tr~A1T +t1 +11 +11 -p -,1tJX 
col~< HAst 70 104 70 104 91 134 132 168 136 166 In 218 

'tI 
DRAM tReH read CCIII hold ref to CAS' 09999 09999 09999 09999 59999 09999 » 
-w +11 +,1 +tBAK2BA«.-R CAS' lie' 114 146 114 146 230 270 176 210 178 206 230 210 r-

() 0 
I m 
~ DRAM tRRH read CORt hold ref to RAS' 109999 10 9999 10 9999 10 9999 20 9999 10 9999 (h 

+W +11 HI +tBAK28AK-Q RAS' lie' 114 146 114 146 230 270 176 210 178 206 230 270 0 
::0 

DRAM IRSH(W) HAS' hold time (wrt eyeD 35 9999 35 9999 25 9999 309999 85 9999 35 9999 
:;; 
..... 

+0 • twr U/A IT +t 1 -R CAS' \ RAS' 81 108 81 108 108 138 81 108 87 102 108 138 (5 
Z 

DRAM tRWL wri te conmard to RAS' 25 9999 30 9999 25 9099 30 9999 40 9999 35 9999 (h 

'0 +twrt\.lAIT+t1 +'1 -W 11ft \ RAS' 106 138 106 138 142 178 106 138 110 136 142 178 

DRAM tCUl wd te cocrmand to CAS' 25 9999 30 9999 25 9999 30 9999 40 9999 35 9999 
+R +twrt"'AIT.t1 +'1 -w 1If' \ CAS' 106 138 106 138 142 178 106 138 110 136 142 178 

DRAM IIIP write coomand pulse- width 20 9999 20 9999 20 9999 25 9999 30 9999 30 9999 
'w +,1 +'1 +'1 -w lIE' wU n 112 77 112 104 142 n 112 77 112 104 142 

DRAM tUeS write coomand set-up time 09999 09999 09999 09999 -10 9999 09999 
'R +11 -~ lIE' \ CAS' 13 42 13 42 22 52 13 42 17 4D 22 52 

DRAM t\.lCH write coomand hold time 25 9999 30 9999 25 9999 ]0 9999 30 9999 35 9999 
," +,1 'II -R CAS' UE' 52 82 52 82 70 102 52 82 54 78 70 lD2 

Table CoS. DRAM Circuit Timing Parameters (Cont'd.) 




