
Application Note 103
6x86MX BIOS
WRITER’S GUIDE

2 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Table of Contents

1.0 Introduction

1.1 Scope . 4
1.2 Cyrix Configuration Registers . 5
1.3 Summary of 6x86MX and 6x86 Differences . 6

2.0 Cache Unit

3.0 Cyrix 6x86MX CPU Detection

3.1 Detecting the Cyrix 6x86MX - Method 1 . 8
3.2 Detecting the Cyrix 6x86MX - Method 2 . 10
3.3 EDX Value Following Reset . 12
3.4 Determining 6x86MX Operating Frequency . 13
3.5 Device Name . 14

4.0 6x86MX Configuration Register Index Assignments

4.1 Accessing a Configuration Register . 15
4.2 6x86MX Configuration Register Index Assignments 15
4.3 Configuration Control Registers (CCR0-6) . 17
4.4 Address Region Registers (ARR0-7) . 25
4.5 Region Control Registers (RCR0-7) . 27

5.0 Recommended 6x86MX Configuration Register Settings

5.1 PC Memory Model . 32
5.2 General Recommendations . 34
5.3 Recommended Bit Settings . 36

6.0 Model Specific Registers

6.1 Time Stamp Counter . 43
6.2 Performance Monitoring . 43
6.3 Performance Monitoring Counters 1 and 2 . 44
6.4 Counter Event Counter Register . 44
6.5 PM Pin Control . 44

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 3

7.0 Programming Model Differences

7.1 Instruction Set . 50
7.2 Configuring Internal 6x86MX Features . 50
7.3 INVD and WBINVD Instructions . 50
7.4 Control Register 0 (CR0) CD and NW Bits . 51

Appendixes

Appendix A-Sample Code: Detecting a Cyrix CPU 52
Appendix B -Sample Code: Determining CPU MHz 54
Appendix C -Example CPU Type and Frequency Detection Program 57
Appendix D-Sample Code: Programming 6x86MX Configuration Registers 59
Appendix E -Sample Code: Controlling the L1 Cache. 60
Appendix F -Example Configuration Register Settings 61
Appendix G-Sample Code: Detecting L2 Cache Burst Mode 62

 4 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

APPLICATION NOTE 103 BIOS Writer’s Guide

1 Introduction

1.1 Scope

This document is intended for 6x86MX system BIOS writers. It is not a stand-alone
document, but a supplement to other Cyrix documentation including the 6x86MX
Data Book, and Cyrix SMM Programmer’s Guide. This document highlights the
programming differences between the 6x86 and the 6x86MX. Recommendations
for 6x86MX detection and configuration register settings are included.

The recommended settings are optimized for performance and compatibility in
Windows95 or Windows NT, Plug and Play (Pnp), PCI-based system. Performance
optimization, CPU detection, chipset initialization, memory discovery, I/O recovery
time, and other functions are described in detail.

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 5

Cyrix Configuration Registers

1.2 Cyrix Configuration Registers

The 6x86MX uses on-chip configuration registers to control the on-chip cache, sys-
tem management mode (SMM), device identification, and other 6x86MX specific
features. The on-chip registers are used to activate advanced performance fea-
tures. These performance features may be enabled “globally” in some cases, or by
a user-defined address region. The flexible configuration of the 6x86MX is
intended to fit a wide variety of systems.

The Importance of Non-Cacheable Regions

The 6x86MX has eight internal user-defined Address Region Registers. Among
other attributes, the regions define cacheability of the address regions. Using this
cacheability information, the 6x86MX is able to implement high performance fea-
tures, that would otherwise not be possible. A non-cacheable region implies that
read sourcing from the write buffers, data forwarding, data bypassing, speculative
reads, and fill buffer streaming are disabled for memory accesses within that region.
Additionally, strong cycle ordering is also enforced. Although negating KEN# dur-
ing a memory access on the bus prevents a cache line fill, it does not fully disable
these performance features. In other words, negating KEN# is NOT equivalent to
establishing a non-cacheable region in the 6x86MX.

6 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Summary of 6x86MX and 6x86 Differences

1.3 Summary of 6x86MX and 6x86 Differences

The differences between the 6x86MX CPU and the 6x86 CPU are listed in the table
below.

6X86MX 6X86 NOTES

L1 Cache Size 64 KBytes 16 KBytes Section 2

CPUID
(Bit 7 of CCR4)

Reset Value = 1 Reset Value = 0 Section 3
Section 4

Family Code 06h 05h Figure 3-1

EDX Reset Value = 06 +
DIR0

Reset Value = 05 + DIR0 Section 3

Time Stamp Counter Yes No BIOS Writer’s
Guide Revision 1.2

DIR0
(Register Index = FEh)

5xh 3xh Section 3

DTE_EN
(Bit 4 of CCR4)

Reserved If = 1, the DTE cache is enabled. Section 4

SLOP
(Bit 1 of CCR5

Reserved If =1, the LOOP instruction is
slowed down.

Section 4

LBR1
(Bit 4 of CCR5)

Reserved If =1, LBA# pin is asserted for
all accesses to the 640KBytes -
1MByte address region.

Section 4

WWO
(Bit 1 of RCRx)

Reserved If = 1, weak write ordering is
enabled for the corresponding
region.

Section 4

Summary of 6x86MX and 6x86 Differences

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 7

Summary of 6x86MX and 6x86 Differences

2. Cache Unit

The cache size of the 6x86MX has been increased to 64 KByte. This is four times
larger than the 16 KByte cache of the 6x86. The cache is configured the same way
as the 6x86: 4-way set associative, and 32 Byte lines.

3. Cyrix 6x86MX CPU Detection

Two methods for detecting the Cyrix 6x86MX CPU are described in Sections 3.1
and 3.2.

Cyrix does not recommend other detection algorithms using the value of EDX fol-
lowing reset, and other signature methods of determining if the CPU is an 8086,
80286, 80386, or 80486.

8 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Detecting the Cyrix 6x86MX - Method 1

3.1 Detecting the Cyrix 6x86MX - Method 1

This method for detecting the presence of an 6x86MX microprocessor during BIOS
POST is a two step process. First, a Cyrix brand CPU must be detected. Second, the
CPU’s Device Identification Registers (DIRs) provide the CPU model and stepping
information.

3.1.1 Cyrix CPU Detection

Detection of a Cyrix brand CPU is implemented by checking the state of the unde-
fined flags following execution of the divide instruction which divides 5 by 2 (5÷2).
The undefined flags in a Cyrix microprocessor remain unchanged following the
divide. Alternate CPUs modify some of the undefined flags. Using operands other
than 5 and 2 may prevent the algorithm from working correctly. Appendix A con-
tains sample code for detecting a Cyrix CPU using this method.

3.1.2 Detecting CPU Type and Stepping

Once a Cyrix brand CPU is detected, the model and stepping of the CPU can be
determined. All Cyrix CPUs contain Device Identification Registers (DIRs) that
exist as part of the configuration registers. The DIRs for all Cyrix CPUs exist at
configuration register indexes 0FEh and 0FFh. The table below specifies the con-
tents of the 6x86MX DIRs.

DIR0 bits [7:4] = 5h indicate an 6x86MX CPU is present, DIR0 bits [3:0] indicate
the core-to-bus clock ratio, and DIR1 contains stepping information. Clock ratio
information is provided to assist calculations in determining bus frequency once the
CPU’s core frequency has been calculated. Proper bus speed settings are critical to
overall system performance.

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 9

Detecting the Cyrix 6x86MX - Method 1

DEVICE
CORE/BUS

CLOCK RATIO

DIR0

(DEVICE ID)

DIR1

(REV ID)

6x86MX 2/1 (default)

2.5/1

3/1

3.5/1

51h or 59h

52h or 5Ah

53h or 5Bh

54h or 5Ch

TBD

Cyrix Device Identification Registers

10 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Detecting the Cyrix 6x86MX - Method 2

3.2 Detecting the Cyrix 6x86MX - Method 2

Unlike the 6x86, the CPUID instruction is enabled following reset. It can be dis-
abled by clearing the CPUID bit in configuration register CCR4. It is recommended
that all BIOS vendors include a CPUID enable/disable field in the CMOS setup to
allow the end-user to disable the CPUID instruction.

The CPUID instruction, opcode 0FA2h, provides information indicating Cyrix as
the vendor and the family, model, stepping, and CPU features. The EAX register
provides the input value for the CPUID instruction. The EAX register is loaded
with a value to indicate what information should be returned by the instruction.

Following execution of the CPUID instruction with an input value of “0” in EAX,
the EAX, EBX, ECX and EDX registers contain the information shown in Figure 3-
1. EAX contains the highest input value understood by the CPUID instruction,
which for the 6x86MX is “1”. EBX, ECX and EDX contain the vendor identifica-
tion string “CyrixInstead”.

Following execution of the CPUID instruction with an input value of “1” loaded in
EAX, EAX[15:0] will contain the value of 06xxh. EDX [31-0] will contain the
value 0080A135h.

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 11

Detecting the Cyrix 6x86MX - Method 2

switch (EAX)
{
case (0):

EAX := 1
EBX := 69 72 79 43/* 'i' 'r' 'y' 'C' */
EDX := 73 6e 49 78/* 's' 'n' 'I' 'x' */
ECX := 64 61 65 74/* 'd' 'a' 'e' 't' */
break

case (1):
EAX[7:0] := 00h
EAX[15:8] := 06h
EDX[0] := 1 /* 1=FPU Built In */
EDX[1] := 0 /* 0=No V86 enhancements */
EDX[2] := 1 /* 1=I/O breakpoints */
EDX[3] := 0 /* 0=No page size extensions */
EDX[4] := 1 /* 1=Time Stamp Counter */
EDX[5] := 1 /* 1=RDMSR and WRMSR */
EDX[6] := 0 /* 0=No physical address extensions */
EDX[7] := 0 /* 0=No machine check exception */
EDX[8] := 1 /* 1=CMPXCHG8B instruction */
EDX[9] := 0 /* 0=No APIC*/
EDX[11-10]:= 0 /* Undefined */
EDX[12] := 0 /* 0=No memory type range registers */
EDX[13] := 1 /* 1=PTE global bit */
EDX[14] := 0 /* 0=No machine check architecture */
EDX[15] := 1 /* 1=CMOV, FCMOV, FCOMI instructions */
EDX[22-16]:= 0 /* Undefined */
EDX[23] := 1 /* 1=MMX instructions */
EDX[31-24]:= 00h /* “documentation error was: 0080h” */

break

default:
EAX, EBX, ECX, EDX : Undefined

}

Information Returned by CPUID Instruction

12 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

EDX Value Following Reset

3.3 EDX Value Following Reset

Some CPU detection algorithms may use the value of the CPU’s EDX register fol-
lowing reset. The 6x86MX’s EDX register contains the data shown below follow-
ing a reset initiated using the RESET pin:

EDX[31:16] = undefined
EDX[15:8] = 06h
EDX[7:0] = DIR0

Refer to the table on the previous page for DIR0 values. The value in EDX does not
identify the vendor of the CPU. Therefore, EDX alone cannot be used to determine
if a Cyrix CPU is present. However, BIOS should preserve the contents of EDX so
that applications can use the EDX value when performing a user-defined shutdown,
e.g. a reset performed with data 0Ah in the Shutdown Status byte (Index 0Fh) of the
CMOS RAM map.

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 13

Determining 6x86MX Operating Frequency

3.4 Determining 6x86MX Operating Frequency

Determining the operating frequency of the CPU is normally required for correct
initialization of the system logic. Typically, a software timing loop with known
instruction clock counts is timed using legacy hardware (the 8254 timer/counter cir-
cuits) within the PC. Once the operating frequency of the 6x86MX’s core is known,
DIR0 bits (2:0) can be examined to calculate the bus operating frequency.

3.4.1 Instruction Count Method

Careful selection of instructions and operands must be used to replicate the exact
clock counts detailed in the Instruction Set Summary found in the 6x86MX Data
Book. An example code sequence for determining the 6x86MX’s operating fre-
quency is detailed in Appendix B and Appendix C. This code sequence is identical
to the recommended sequence for the 6x86. The core loop uses a series of five IDIV
instructions within a LOOP instruction. IDIV was chosen because it is an exclusive
instruction meaning that it executes in the 6x86MX x-pipeline with no other
instruction in the y-pipeline. This allows for more predictable execution times as
compared to using non-exclusive instructions.

The 6x86MX instruction clock count for IDIV varies from 17 to 45 clocks for a
doubleword divide depending on the value of the operands. The code example in
the appendices uses “0” divided by “1” which takes only 17 clocks to complete.
The LOOP instruction clock count is 1. Therefore, the overall clock count for the
inner loop in this example is 86 clocks.

3.4.2 Time Stamp Counter Method

On the 6x86MX, the Time Stamp Counter (TSC) can be used as an alternative
method for obtaining an exact core clock count during the software timing loop.

The Time Stamp Counter is a 64-bit counter that counts internal CPU clock cycles
since the last reset. The value can be read any time via the RDTSC instruction,
opcode OF31h. The RDTSC instruction loads the contents of the TSC into
EDX:EAX. The use of the RDTSC instruction is restricted by the Time Stamp Dis-
able, (TSD) flag in CR4. When the TSD flag is 0, the RDTSC instruction can be
executed at any privilege level. When the TSD flag is 1, the RDTSC instruction can
only be executed at privilege level 0.

14 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Device Name

The exact core count during the software timing loop can be determined by com-
puting the difference of the Time Stamp Counter at start of the loop and the end of
the loop.

3.5 Device Name

The correspondence between core frequency, bus frequency and performance rating

is shown in the table below. The device name in table below should be used by the

BIOS for display during boot-up and in BIOS setup screens or utilities.

DEVICE NAME AND
PART NUMBER

CLOCK
MULTIPLIER

FREQUENCY
(MHZ)

BUS INTERNAL
6x86MX - PR166GP 2.5 60 150

6x86MX - PR200GP 2.5 66 166

6x86MX - PR233GP 2.5 75 188

6x86MX - PR233GP 3.0 66 200

6x86MX - PR266GP 3.0 75 225

6x86MX - PR266GP 3.5 66 233

Cyrix 6x86MX™ Part Numbers

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 15

Accessing a Configuration Register

4. 6x86MX Configuration Register Index
Assignments

On-chip configuration registers are used to control the on-chip cache, system man-
agement mode and other 6x86MX unique features.

4.1 Accessing a Configuration Register

Access to the configuration registers is achieved by writing the index of the register
to I/O port 22h. I/O port 23h is then used for data transfer. Each I/O port 23h data
transfer must be preceded by an I/O port 22h register index selection, otherwise the
second and later I/O port 23h operations are directed off-chip and produce external
I/O cycles. Reads of I/O port 22h are always directed off-chip. Appendix D con-
tains example code for accessing the 6x86MX configuration registers.

4.2 6x86MX Configuration Register Index
Assignments

The table on the following page lists the 6x86MX configuration register index
assignments. After reset, configuration registers with indexes C0-CFh and FC-FFh
are accessible. In order to prevent potential conflicts with other devices which may
use ports 22 and 23h to access their registers, the remaining registers (indexes 00-
BFh, D0-FBh) are accessible only if the MAPEN(3-0) bits in CCR3 are set to 1h.
With MAPEN(3-0) set to 1h, any access to an index in the 00-FFh range does not
create external I/O bus cycles. Registers with indexes C0-CFh, FC-FFh are accessi-
ble regardless of the state of the MAPEN bits. If the register index number is out-
side the C0-CFh or FE-FFh ranges, and MAPEN is set to 0h, external I/O bus
cycles occur. The table on the next page lists the MAPEN values required to
access each 6x86MX configuration register. The configuration registers are
described in more detail in the following sections.

16 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

6x86MX Configuration Register Index Assignments

REGISTER
INDEX

REGISTER NAME ACRONYM
WIDTH

(BITS)
MAPEN(3-0)

00h-BFh Reserved — — —

C0h Configuration Control 0 CCR0 8 Don’t care

C1h Configuration Control 1 CCR1 8 Don’t care

C2h Configuration Control 2 CCR2 8 Don’t care

C3h Configuration Control 3 CCR3 8 Don’t care

C4h-C6h Address Region 0 ARR0 24 Don’t care

C7h-C9h Address Region 1 ARR1 24 Don’t care

CAh-CCh Address Region 2 ARR2 24 Don’t care

CDh-CFh Address Region 3 ARR3 24 Don’t care

D0h-D2h Address Region 4 ARR4 24 1h

D3h-D5h Address Region 5 ARR5 24 1h

D6h-D8h Address Region 6 ARR6 24 1h

D9h-DBh Address Region 7 ARR7 24 1h

DCh Region Configuration 0 RCR0 8 1h

DDh Region Configuration 1 RCR1 8 1h

DEh Region Configuration 2 RCR2 8 1h

DFh Region Configuration 3 RCR3 8 1h

E0h Region Configuration 4 RCR4 8 1h

E1h Region Configuration 5 RCR5 8 1h

E2h Region Configuration 6 RCR6 8 1h

E3h Region Configuration 7 RCR7 8 1h

E4h-E7h Reserved — — —

E8h Configuration Control 4 CCR4 8 1h

E9h Configuration Control 5 CCR5 8 1h

EAh Configuration Control 6 CCR6 8 1h

EBh-FAh Reserved — — —

FBh Device Identification 2 DIR2 8 1h

FCh Device Identification 3 DIR3 8 1h

FDh Device Identification 4 DIR4 8 1h

FEh Device Identification 0 DIR0 8 Don’t care

FFh Device Identification 1 DIR1 8 Don’t care

Configuration Register Index Assignments

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 17

Configuration Control Registers (CCR0-6)

The 6x86MX configuration registers can be grouped into four areas:

• Configuration Control Registers (CCRs)

• Address Region Registers (ARRs)

• Region Control Registers (RCRs)

• Device Identification Registers (DIRs)

CCR bits independently control 6x86MX features. ARRs and RCRs define regions
of memory with specific attributes. DIRs are used for CPU detection as discussed
earlier in Chapter 3. All bits in the configuration registers are initialized to zero fol-
lowing reset unless specified otherwise. The appropriate configuration register bit
settings vary depending on system design. Optimal settings recommended for a
typical PC environment are discussed in Chapter 5.

4.3 Configuration Control Registers (CCR0-6)

There are seven CCRs in the 6x86MX which control the cache, power management
and other unique features. The following paragraphs describe the CCRs and associ-
ated bit definitions in detail.

18 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Configuration Control Registers (CCR0-6)

4.3.1 Configuration Control Register 0 (CCR0)

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Reserved Reserved Reserved Reserved Reserved Reserved NC1 Reserved

Configuration Control Register 0 (CCR0)

BIT NAME BIT NO. DESCRIPTION

NC1 1 If = 1, designates 640KBytes -1MByte address region as non-cacheable.

If = 0, designates 640KBytes -1MByte address region as cacheable.

CCR0 Bit Definitions

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 19

Configuration Control Registers (CCR0-6)

4.3.2 Configuration Control Register 1 (CCR1)

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

SM3 Reserved Reserved NO_LOCK Reserved SMAC USE_SMI Reserved

Configuration Control Register 1 (CCR1)

BIT NAME BIT NO. DESCRIPTION

SM3 7 If = 1, designates Address Region Register 3 as SMM address space.

NO_LOCK 4 If = 1, all bus cycles are issued with the LOCK# pin negated except page table accesses and
interrupt acknowledge cycles. Interrupt acknowledge cycles are executed as locked cycles even
though LOCK# is negated. With NO_LOCK set, previously non-cacheable locked cycles are
executed as unlocked cycles and therefore, may be cached. This results in higher CPU perfor-
mance. See the section on Region Configuration Registers (RCR) for more information on
eliminating locked CPU bus cycles only in specific address regions.

SMAC 2 If = 1, any access to addresses within the SMM address space access system management mem-
ory instead of main memory. SMI# input is ignored while SMAC is set. Setting SMAC=1
allows access to SMM memory without entering SMM. This is useful for initializing or testing
SMM memory.

USE_SMI 1 If = 1, SMI# and SMIACT# pins are enabled.

If = 0, SMI# pin is ignored and SMIACT# pin is driven inactive.

CCR1 Bit Definitions

20 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Configuration Control Registers (CCR0-6)

4.3.3 Configuration Control Register 2 (CCR2)

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

USE_SUSP Reserved Reserved WPR1 SUSP_HLT LOCK_NW SADS Reserved

Configuration Control Register 2 (CCR2)

BIT NAME BIT NO. DESCRIPTION

USE_SUSP 7 If = 1, SUSP# and SUSPA# pins are enabled.

If = 0, SUSP# pin is ignored and SUSPA# pin floats.

These pins should only be enabled if the external system logic (chipset) supports them.

WPR1 4 If = 1, designates that any cacheable accesses in the 640 KBytes-1MByte address region are write-
protected. With WPR1=1, any attempted write to this range will not update the internal cache.

SUSP_HLT 3 If = 1, execution of the HLT instruction causes the CPU to enter low power suspend mode. This bit
should be used with caution since the CPU must recognize and service an INTR, NMI or SMI to exit
the “HLT initiated” suspend mode.

LOCK_NW 2 If = 1, the NW bit in CR0 becomes read only and the CPU ignores any writes to this bit.

SADS 1 If = 1, the CPU inserts an idle cycle following sampling of BRDY# and prior to asserting ADS#.

CCR2 Bit Definitions

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 21

Configuration Control Registers (CCR0-6)

4.3.4 Configuration Control Register 3 (CCR3)

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

MAPEN Reserved LINBRST NMI_EN SMI_LOCK

Configuration Control Register 3 (CCR3)

BIT NAME BIT NO. DESCRIPTION

MAPEN 7-4 If set to 0001 binary (1h), all configuration registers are accessible.

If set to 0000, only configuration registers with indices C0-CFh, FEh and FFh are accessible.

LINBRST 2 If = 1, the 6x86MX will use a linear address sequence when performing burst cycles.

If = 0, the 6x86MX will use a “1+4” address sequence when performing burst cycles. The
“1+4” address sequence is compatible with the Pentium’s burst address sequence.

NMI_EN 1 If = 1, NMI interrupt is recognized while in SMM. This bit should only be set while in
SMM, after the appropriate NMI interrupt service routine has been setup.

SMI_LOCK 0 If = 1, the CPU prevents modification of the following SMM configuration bits, except when
operating in an SMM service routine:

CCR1 USE_SMI, SMAC, SM3

CCR3 NMI_EN

ARR3 Starting address and block size.

Once set, the SMI_LOCK bit can only be cleared by asserting the RESET pin.

CCR3 Bit Definitions

22 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Configuration Control Registers (CCR0-6)

4.3.5 Configuration Control Register 4 (CCR4)

The 6x86 DTE cache has been eliminated on the 6x86MX. Therefore, bit 4 of CCR4 is a reserved bit.

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

CPUID Reserved Reserved Reserved Reserved IORT

Configuration Control Register 4 (CCR4)

BIT NAME BIT NO. DESCRIPTION

CPUID 7 If = 1, bit 21 of the EFLAG register is write/readable and the CPUID instruction will execute nor-
mally.

If = 0, bit 21 of the EFLAG register is not write/readable and the CPUID instruction is an invalid
opcode.

IORT 2-0 Specifies the minimum number of bus clocks between I/O accesses (I/O recovery time). The delay
time is the minimum time from the end of one I/O cycle to the beginning of the next (i.e. BRDY#
to ADS# time).

0h = 1 clock

1h = 2 clocks

2h = 4 clocks

3h = 8 clocks

4h = 16 clocks

5h = 32 clocks (default value after RESET)

6h = 64 clocks

7h = no delay

CCR4 Bit Definitions

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 23

Configuration Control Registers (CCR0-6)

4.3.6 Configuration Control Register 5 (CCR5)

The 6x86 Slow Loop Instruction and Local Bus Access features have been eliminated in the 6x86MX. Therefore,
bits 4 and 1 of CCR5 are reserved bits on the 6x86MX.

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Reserved Reserved ARREN Reserved Reserved Reserved Reserved WT_ALLOC

Configuration Control Register 5 (CCR5)

BIT NAME BIT NO. DESCRIPTION

ARREN 5 If = 1, enables all Address Region Registers (ARRs). If clear, disables the ARR registers. If SM3 is
set, ARR3 is enabled regardless of the ARREN setting.

WT_ALLOC 0 If = 1, new cache lines are allocated for both read misses and write misses. If = 0, new cache lines
are only allocated on read misses.

CCR5 Bit Definitions

24 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Configuration Control Registers (CCR0-6)

4.3.7 Configuration Control Register 6 (CCR6)

Configuration Control Register 6 has been added to the 6x86MX.

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Reserved N Reserve Reserved Reserved Reserved WP_ARR3 SMM_MODE

Configuration Control Register 6 (CCR6)

BIT NAME BIT NO. DESCRIPTION

N 6 Nested SMI Enable bit: If operating in Cyrix enhanced SMM mode and:
If = 1: Enables nesting of SMI's
If = 0: Disable nesting of SMI's.

This bit is automatically CLEARED upon entry to every SMM routine and is SET upon every
SMM routine and is SET upon every RSM. Therefore enabling/disabling of nested SMI can only
be done while operating in SMM mode.

WP_ARR3 1 If = 1: Memory region defined by ARR3 is write protected when operating outside of SMM mode.

If = 0: Disable write protection for memory region defined by ARR3.

Reset State = 0.

SMM_MODE 0 If = 1: Enables Cyrix Enhanced SMM mode.

If = 0: Disables Cyrix Enhanced SMM mode.

CCR6 Bit Definitions

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 25

Address Region Registers (ARR0-7)

4.4 Address Region Registers (ARR0-7)

The Address Region Registers (ARRs) are used to define up to eight memory
address regions. Each ARR has three 8-bit registers associated with it which define
the region starting address and block size. The Table “ARRx Index Assignments”
below shows the general format for each ARR and lists the index assignments for
the ARR’s starting address and block size.

The region starting address is defined by the upper 12 bits of the physical address.
The region size is defined by the BSIZE(3-0) bits as shown in the Table “BSIZE (3-
0) Bit Definitions” on the next page. The BIOS and/or its utilities should allow def-
inition of all ARRs. There is one restriction when defining the address regions
using the ARRs. The region starting address must be on a block size boundary. For
example, a 128KByte block is allowed to have a starting address of 0KBytes,
128KBytes, 256KBytes, and so on.

ADDRESS

REGION
REGISTER

STARTING ADDRESS
REGION

BLOCK SIZE

A31-A24 A23-A16 A15-A12 BSIZE(3-0)

BITS (7-0) BITS (7-0) BITS (7-4) BITS (3-0)

ARR0 C4h C5h C6h

ARR1 C7h C8h C9h

ARR2 CAh CBh CCh

ARR3 CDh CEh CFh

ARR4 D0h D1h D2h

ARR5 D3h D4h D5h

ARR6 D6h D7h D8h

ARR7 D9h DAh DBh

ARRx Index Assignments

26 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Address Region Registers (ARR0-7)

BSIZE(3-0)
ARR(0-6)

REGION SIZE

ARR7
REGION SIZE

0h

1h

2h

3h

4h

5h

6h

7h

8h

9h

Ah

Bh

Ch

Dh

Eh

Fh

Disabled

4 KBytes

8 KBytes

16 KBytes

32 KBytes

64 KBytes

128 KBytes

256 KBytes

512 KBytes

1 MByte

2 MBytes

4 MBytes

8 MBytes

16 MBytes

32 MBytes

4 GBytes

Disabled

256 KBytes

512 KBytes

1 MByte

2 MBytes

4 MBytes

8 MBytes

16 MBytes

32 MBytes

64 MBytes

128 MBytes

256 MBytes

512 MBytes

1 GBytes

2 GBytes

4 GBytes

BSIZE (3-0) Bit Definitions

27 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Region Control Registers (RCR0-7)

4.5 Region Control Registers (RCR0-7)

The RCRs are used to define attributes, or characteristics, for each of the regions defined by the ARRs. Each
ARR has a corresponding RCR with the general format shown below.

New to the 6x86MX is the Invert Region feature. This feature is controlled by the INV_RGN bit of the Region
Control Registers.

If the INV_RGN bit is set, the controls specified in the RCR (RCD, WT, WG, WL) will be applied to all memory
addresses outside the region specified in the corresponding ARR.

If the INV_RGN bit is cleared, the 6x86MX functions identically to the 6x86 (the controls specified in the RCR
will be applied to all memory addresses inside the region specified by the corresponding ARR).

The INV_RGN bit is defined for RCR(0-6) only. 6x86 Weak Write Ordering and Local Bus Access features have
been eliminated on the 6x86MX. Therefore, bit 5 and bit 1 are reserved bits for the 6x86MX.

Note: RCD is defined for RCR0-RCR6. RCE is defined for RCR7 only.

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Reserved INV_RGN Reserved WT WG WL Reserved RCD/RCE

RCR Bit Definitions

BIT NAME BIT NO. DESCRIPTION

RCD 0 Applicable to RCR(0-6) only. If set, the address region specified by the corresponding ARR is
non-cacheable.

RCE 0 Applicable to RCR7 only. If set, the address region specified by ARR7 is cacheable and implies
that address space outside of the region specified by ARR7 is non-cacheable.

WL 2 If set, weak locking is enabled for the corresponding region.

WG 3 If set, write gathering is enabled for the corresponding region.

WT 4 If set, write through caching is enabled for the corresponding region.

INV_RGN 6 Applicable to RCR(0-6) only. If set, apply controls specified in RCR to all memory addresses out-
side the region specified in the corresponding ARR.

 RCR Bit Definitions

28 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Region Control Registers (RCR0-7)

4.5.1 Detailed Description of RCR Attributes

Region Cache Disable (RCD)

Setting RCD=1 defines the corresponding address region as non-cacheable. RCD
prevents caching of any access within the specified region. Additionally, RCD
implies that high performance features are disabled for accesses within the speci-
fied address region. Bus cycles issued to memory addresses within the specified
region are single cycles with the CACHE# pin negated. If KEN# is asserted for a
memory access within a region defined non-cacheable by RCD, the access is not
cached.

Region Cache Enable (RCE)

Setting RCE=1 defines the corresponding address region as cacheable. RCE is
applicable to ARR7 only. RCE in combination with ARR7, is intended to define the
Main Memory Region. All memory outside ARR7 is non-cacheable when RCE is
set. This is intended to define all unused memory space as non-cacheable. If KEN#
is negated for an access within a region defined cacheable by RCE, the access is not
cached.

Weak Locking (WL)

Setting WL=1 enables weak locking for the corresponding address region. With
WL enabled, all bus cycles are issued with the LOCK# pin negated except for page
table accesses and interrupt acknowledge cycles. WL negates bus locking so that
previously non-cacheable cycles can be cached. Typically, XCHG instructions,
instructions preceded by the LOCK prefix, and descriptor table accesses are locked
cycles. Setting WL allows the data for these cycles to be cached.

Weak Locking (WL) implements the same function as NO_LOCK except that
NO_LOCK is a global enable. The NO_LOCK bit of CCR1 enables weak locking
for the entire address space, whereas the WL bit enables weak locking only for spe-
cific address regions.

Write Gathering (WG)

Setting WG=1 enables write gathering for the corresponding address region. With
WG enabled, multiple byte, word or dword writes to sequential addresses that
would normally occur as individual write cycles are combined and issued as a sin-

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 29

Region Control Registers (RCR0-7)

gle write cycle. WG improves bus utilization and should be used for memory
regions that are not sensitive to the “gathering.” WG can be enabled for both cache-
able and non-cacheable regions.

Write Through (WT)

Setting WT=1 defines the corresponding address region as write-through instead of
write-back. Any system ROM that is allowed to be cached by the processor should
be defined as write-through.

4.5.2 Attributes for Accesses Outside Defined Regions

If an address is accessed that is not in a region defined by the ARRs and ARR7 is
defined with RCE=1, the following conditions apply:

• The memory access is not cached regardless of the state of KEN#.

• Writes are not gathered.

• Strong locking occurs.

• Strong write ordering occurs.

4.5.3 Attributes for Accesses in Overlapped Regions

If two defined address regions overlap (including NC1 and LBR1) and conflicting
attributes are specified, the following attributes take precedence:

• Write-back is disabled.

• Writes are not gathered.

• Strong locking occurs.

• Strong write ordering occurs.

• The overlapping regions are non-cacheable.

30 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Region Control Registers (RCR0-7)

Since the CCR0 bit NC1 affects cacheability, a potential exists for conflict with the
ARR7 main memory region which also affects cacheability. This overlap in address
regions causes a conflict in cacheability. In this case, NC1 takes precedence over
the ARR7/RCE setting because non-cacheability always takes precedence. For
example, for the following settings:

• NC1=1

• ARR7 = 0-16 MBytes

• RCR7 bit RCE = 1

The 6x86MX caches accesses as shown in the table below.

ADDRESS REGION CACHEABLE COMMENTS

0 to 640 KBytes Yes ARR7/RCE setting.

640 KBytes- 1 MByte No NC1 takes precedence over
ARR7/RCE setting.

1 MByte - 16 MBytes Yes ARR7/RCE setting.

16 MBytes - 4 GBytes No Default setting.

Cacheability for Example 1

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 31

Region Control Registers (RCR0-7)

4.5.4 Attributes for Accesses with Conflicting
Signal Pin Inputs

The characteristics of the regions defined by the ARRs and the RCRs may also con-
flict with indications by hardware signals (i.e., KEN#, WB/WT#). The following
paragraphs describe how conflicts between register settings and hardware indica-
tors are resolved.

Non-cacheable Regions and KEN#

Regions which have been defined as non-cacheable (RCD=1) by the ARRs and
RCRs may conflict with the assertion of the KEN# input. If KEN# is asserted for an
access to a region defined as non-cacheable, the access is not cached. Regions
defined as non-cacheable by the ARRs and RCRs take precedence over KEN#. The
NC1 bit also takes precedence over the KEN# pin. If NC1 is set, any access to the
640 KByte-1 MByte address region with KEN# asserted is not cached.

Write-Through Regions and WB/WT#

Regions which have been defined as write-through (WT=1) may conflict with the
state of the WB/WT# input to the 6x86MX. Regions defined as write-through by
the ARRs and RCRs remain write-through even if WB/WT# is asserted during
accesses to these regions. The WT bit in the RCRs takes precedence over the state
of the WB/WT# pin in cases of conflict.

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 32

PC Memory Model

5. Recommended 6x86MX Configuration Register Settings

5.1 PC Memory Model

The table below defines the allowable attributes for a typical PC memory model. Actual recommended configu-
ration register settings for a typical PC system are listed in Appendix F.

Notes 1: Video Buffer Area

A non-cacheable region must be used to enforce strong cycle ordering in this area and to prevent caching of Video RAM. The Video
RAM area is sensitive to bus cycle ordering. The VGA controller can perform logical operations which depend on strong cycle ordering
(found in Windows 3.1 code). To guarantee that the 6x86MX performs strong cycle ordering, a non-cacheable area must be established
to cover the Video RAM area.

Video performance is greatly enhanced by gathering writes to Video RAM. For example, video performance benchmarks have been
found to use REP STOSW instructions that would normally execute as a series of sequential 16-bit write cycles. With WG enabled,
groups of four 16-bit write cycles are reduced to a single 64-bit write cycle.

ADDRESS
SPACE

ADDRESS RANGE CACHEABLE
WEAK
LOCKS

WRITE
GATHERED

WRITE-
THROUGH

NOTES

DOS Area 0-9 FFFFh Yes No Yes No

Video Buffer A 0000-B FFFFh No No Yes No Note 1

Video ROM C 0000-C 7FFFh Yes No No Yes Note 2

Expansion
Card/ROM
Area

C 8000h-D FFFFh No No No No

System ROM E 0000h-F FFFFh Yes No No Yes Note 2

Extended Mem-
ory

10 0000h-

Top of Main Memory

Yes No Yes No

Unused/PCI
MMIO

Top of Main Memory-
FFFF FFFFh

No No No No Note 3

PC Memory Model

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 33

PC Memory Model

Note 2: Video ROM and System ROM

Caching of the Video and System ROM areas is permitted, but is normally non-cacheable because
NC1 is set. If these areas are cached, they must be cached as write-through regions. 6x86MX sys-
tem benchmarking in a Windows environment has shown no benefit to caching these ROM areas.
Therefore, it is recommended that these areas be set as non-cacheable using the NC1 bit in CCR0.

Note 3: Top of Main Memory-FFFF FFFFh (Unused/PCI Memory Space)

Unused/PCI Memory Space immediately above physical main memory must be defined as non-
cacheable to ensure proper operation of memory sizing software routines and to guarantee strong
cycle ordering. Memory discovery routines must occur with cache disabled to prevent read sourcing
from the write buffers. Also, PCI memory mapped I/O cards that may exist in this address region
may contain control registers or FIFOs that depend on strong cycle ordering.

The appropriate non-cacheable region must be established using ARR7. For example, if 32 MBytes
(000 0000h-1FF FFFFh) are installed in the system, a non-cacheable region must begin at the 32
MByte boundary (200 0000h) and extend through the top of the address space (FFFF FFFFh). This
is accomplished by using ARR7 (Base = 0000 0000h, BSize = 32 MBytes) in combination with
RCE=1.

34 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

PC Memory Model

5.2 General Recommendations

5.2.1 Main Memory

Memory discovery routines should always be executed with the L1 cache disabled.
By default, L1 caching is globally disabled following reset because the CD bit in
Control Register 0 (CR0) is set. Always ensure the L1 cache is disabled by setting
the CD bit in CR0 or by programming an ARR to “4 GByte cache disabled” before
executing the memory discovery routine. Once BIOS completes memory discovery,
ARR7 should be programmed with a base address of 000 0000h and with a “Size”
equal to the amount of main memory that was detected.

The intent of ARR7 is to define a cacheable region for main memory and simulta-
neously define unused/PCI space as non-cacheable. More restrictive regions are
intended to overlay the 640k to 1MByte area. Failure to program ARR7 with the
correct amount of main memory can result in:

• Incorrect memory sizing by the operating system eventually resulting in
failure,

• PCI devices not working correctly or causing the system to hang,

• Low performance if ARR7 is programmed with a smaller size than the
actual amount of memory.

If the granularity selection in ARR7 does not accommodate the exact size of main
memory, unused ARRs can be used to fill-in as non-cacheable regions. All unused/
PCI memory space must always be set as non-cacheable.

5.2.2 I/O Recovery Time (IORT)

Back-to-back I/O writes followed by I/O reads may occur too quickly for a periph-
eral to respond correctly. Historically, programmers have inserted several “JMP
$+2” instructions in the hope that code fetches on the bus would create sufficient
recovery time. The 6x86MX’s Branch Target Buffer (BTB) typically eliminates
these external code fetches, thus the previous method of guaranteeing I/O recovery
no longer applies. For the 6x86MX, one approach to dealing with this issue is to
insert I/O write cycles to a dummy port. I/O write cycles in the form of “out
imm,reg” are easily implemented as shown below:

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 35

PC Memory Model

OLD IORT NEW IORT
out 21h,al out 21h,al
jmp $+2 out 80h,al
jmp $+2 out 80h,al
jmp $+2 out 80h,al
in al,21h in al,21h

The 6x86MX incorporates an alternative method for implementing I/O recovery
time using user selectable delay settings. See the section on 6x86MX IORT settings
below.

5.2.3 BIOS Creation Utilities

BIOS creation utilities or setup screens must have the capability to easily define and
modify the contents of the 6x86MX configuration registers. This allows OEMs and
integrators to easily configure these register settings with the values appropriate for
their system design.

36 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Recommended Bit Settings

5.3 Recommended Bit Settings

5.3.1 NC1

The NC1 bit in CCR0 controls the predefined non-cacheable region from 640K to
1 MByte. The 640K to 1MByte region should be non-cacheable to prevent L1 cach-
ing of expansion cards using memory mapped I/O (MMIO). Setting NC1 also
implies that the video BIOS and system BIOS are non-cacheable. Experiments with
both the 6x86MX and Pentium CPUs have shown that performance is largely
unchanged whether the video BIOS and system BIOS was cached or not. This
assumes that a modern operating system was used and that the measurements are
taken with a recent benchmark applications, such as WinStone95.

Recommended setting: NC1 = 1

5.3.2 NO_LOCK

NO_LOCK enables weak locking for the entire address space. NO_LOCK may
cause failures for software that requires locked cycles in order to operate correctly.

Recommended setting: NO_LOCK = 0

5.3.3 LOCK_NW

Once set, LOCK_NW prohibits software from changing the NW bit in CR0. Since
the definition of the NW bit is the same for both the 6x86MX and the Pentium, it is
not necessary to set this bit.

Recommended setting: LOCK_NW = 0

5.3.4 WPR1

WPR1 forces cacheable accesses in the 640k to 1MByte address region to be write-
protected. If NC1 is set (recommended setting), all caching is disabled from 640k to
1MByte and WPR1 is not required. However, if ROM areas within the 640k-
1MByte address region are cached, WPR1 should be set to protect against errant
self-modifying code.

Recommended setting: WPR1 = 0 unless ROM areas are cached

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 37

Recommended Bit Settings

5.3.5 LINBRST

Linear Burst (LINBRST) allows for an alternate address sequence for burst cycles.
The system logic, L2 cache and motherboard design must also support this feature
in order for the 6x86MX to function properly with this bit enabled. Linear Burst
provides higher performance than the default “1+4” burst sequence, but should only
be enabled if the system is designed to support it.

If the system does support linear burst, BIOS should enable this feature in both the
system logic and the 6x86MX prior to enabling the L1 cache. Appendix G includes
sample code that can be used to detect if the L2 cache supports linear burst mode.

Recommended setting: LINBRST = 0 unless linear burst supported by the system

5.3.6 MAPEN

When set to 1h, the MAPEN bits allow access to all 6x86MX configuration regis-
ters including indices outside the C0h-CFh and FCh-FFh ranges. MAPEN should
be set to 1h only to access specific configuration registers and then should be
cleared immediately after the access is complete.

Recommended setting: MAPEN(3-0) = 0 except for specific configuration register
accesses

5.3.7 IORT

I/O recovery time specifies the minimum number of bus clocks between I/O
accesses for the CPU's bus controller. The system logic typically has a built-in
method to select the amount of I/O recovery time. It is preferred to configure the
system logic with the I/O recovery time setting and set the CPU for a minimum I/O
recovery time delay.

Recommended setting: IORT(2-0) = 7

38 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Recommended Bit Settings

5.3.8 CPUID

When set, the CPUID bit enables the CPUID instruction. By default, the CPUID
instruction is enabled (CPUID = 1).

When enabled, the CPUID opcode is enabled and the CPUID bit in the EFLAGS
can be modified. The CPUID instruction can then be called to inspect the type of
CPU present.

When the CPUID instruction is disabled (CPUID = 0), the CPUID opcode 0FA2
causes an invalid opcode exception. Additionally, the CPUID bit in the EFLAGS
register cannot be modified by software.

Recommended setting: CPUID = 1

5.3.9 WT_ALLOC

Write Allocate (WT_ALLOC) allows L1 cache write misses to cause a cache line
allocation. This feature improves the L1 cache hit rate resulting in higher perfor-
mance. Especially useful for Windows applications.

Recommended setting: WT_ALLOC = 1

5.3.10 ARREN

The ARREN bit enables or disables all eight ARRs. When ARREN is cleared
(default), the ARRs can be safely programmed. Most systems will need to use at
least one address region register (ARR). Therefore, ARREN should always be set
after the ARRs and RCRs have been initialized.

Recommended setting: ARREN = 1 after initializing ARR0-ARR7, RCR0-RCR7

39 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Recommended Bit Settings

5.3.11 ARR7 and RCR7

Address Region 7 (ARR7) defines the Main Memory Region (MMR). This region specifies the amount of
cacheable main memory and it’s attributes. Once BIOS completes memory discovery, ARR7 should be pro-
grammed with a base address of 000 0000h and with a “Size” equal to the amount of main memory installed in
the system. Memory accesses outside of this region are defined as non-cacheable to ensure compatibility with
PCI devices.

Recommended settings:
ARR7 Base Addr= 0000 0000h
ARR7 Block Size= amount of main memory
RCR7 RCE = 1
RCR7 WL = 0
RCR7 WG = 1
RCR7 WT = 0

If the granularity selection in ARR7 does not accommodate the exact size of main memory, unused ARRs can be
used to fill-in as non-cacheable regions (RCD = 1) as shown in the table below. All unused/PCI memory space
must always be set as non-cacheable.

MEM ARR7 ARR6 ARR5 ARR4

SIZE
(MB)

BASE
(HEX)

SIZE
(MB)

BASE
(HEX)

SIZE (MB) BASE (HEX) SIZE (MB) BASE (HEX) SIZE (MB)

8 0 8

16 0 16

24 0 32 0180 0000 8

32 0 32

40 0 64 0300 0000 16 0280 0000 8

48 0 64 0300 0000 16

64 0 64

72 0 128 0600 0000 32 0500 0000 16 0480 0000 8

80 0 128 0600 0000 32 0500 0000 16

96 0 128 0600 0000 32

128 0 128

160 0 256 0E00 0000 32 0C00 0000 32 0A00 0000 32

192 0 256 0E00 0000 32 0C00 0000 32

256 0 256

 ARR Settings for Various Main Memory Sizes

40 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Recommended Bit Settings

5.3.12 SMM Features

The 6x86MX supports SMM mode through the use of the SMI# and SMIACT# pins,
and a dedicated memory region for the SMM address space. SMM features must be
enabled prior to servicing any SMI interrupts. The following paragraphs describe each
of the SMM features and recommended settings.

USE_SMI

Prior to servicing SMI interrupts, SMM-capable systems must enable the SMM pins by
setting USE_SMI=1. The SMM hardware pins (SMI# and SMIACT#) are disabled by
default.

SMAC

If set, any access to addresses within the SMM address space are directed to SMM
memory instead of main memory. Setting SMAC allows access to the SMM memory
without servicing an SMI. Additionally, SMAC allows use of the SMINT instruction
(software SMI). This bit may be enabled to initialize or test SMM memory but should
be cleared for normal operation.

SM3 and ARR3

Address Region Register 3 (ARR3) can be used to define the System Management
Address Region (SMAR). Systems that use SMM features must use ARR3 to establish
a base and limit for the SMM address space.

Only ARR3 can be used to establish the SMM region.

Typically, SMAR overlaps normal address space. RCR3 defines the attributes for both
the SMM address region and the normal address space. If SMAR overlaps main mem-
ory, write gathering should be enabled for ARR3. If SMAR overlaps video memory,
ARR3 should be set as non-cacheable and write gathering should be enabled.

NMI_EN

The NMI_EN bit allows NMI interrupts to occur within an SMI service routine. If this
feature is enabled, the SMI service routine must guarantee that the IDT is initialized
properly to allow the NMI to be serviced. Most systems do not require this feature.

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 41

Recommended Bit Settings

SMI_LOCK

Once the SMM features are initialized in the configuration registers, they can be
permanently locked using the SMI_LOCK bit. Locking the SMM related bits and
registers prevents applications from tampering with these settings. Even if SMM is
not implemented, setting SMI_LOCK in combination with SMAC=0 prevents soft-
ware SMIs from occurring.

Once SMI_LOCK is set, it can only be cleared by a processor RESET. Conse-
quently, setting SMI_LOCK makes system/BIOS/SMM debugging difficult. To
alleviate this problem, SMI_LOCK must be implemented as a user selectable
“Secure SMI (enable/disable)” feature in CMOS setup. If SMI_LOCK is not user
selectable, it is recommended that SMI_LOCK = 0 to allow for system debug.

Suggested settings for systems not using SMM:

USE_SMI = 0
SMAC = 0
SM3 = 0
ARR3 = may be used as normal address region register
SMI_LOCK = 0
NMI_EN = 0

Suggested settings for systems using SMM:
USE_SMI = 1
SMAC = 0
SM3 = 1
ARR3 Base Addr = as required
ARR3 Block Size = as required
SMI_LOCK = 0
NMI_EN = 0

5.3.13 Power Management Features

SUSP_HALT

Suspend on Halt (SUSP_HLT) permits the CPU to enter a low power suspend mode
when a HLT instruction is executed. Although this provides some power manage-
ment capability, it is not optimal.

42 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Recommended Bit Settings

Suggested setting:
SUSP_HALT = 0

USE_SUSP

In addition to the HLT instruction, low power suspend mode may be activated using
the SUSP# input pin. In response to the SUSP# input, the SUSPA# output indicates
when the 6x86MX has entered low power suspend mode. Systems that support the
6x86MX's low power suspend feature via the hardware pins must set USE_SUSP to
enable these pins.

Suggested setting:
USE_SUSP = 0 unless hardware suspend pins supported

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 43

Time Stamp Counter

6. Model Specific Registers

The 6x86MX contains four model specific registers (MSR0 - MSR3). These 64-bit
registers are listed in the table below.

The MSR registers can be read using the RDMSR instruction, opcode 0F32h. Dur-
ing an MSR register read, the contents of the particular MSR register, specified by
the ECX register, is loaded into the EDX:EAX registers.
The MSR registers can be written using the WRMSR instruction, opcode 0F30h.
During a MSR register write the contents of EDX:EAX are loaded into the MSR
register specified in the ECX register.

The RDMSR and WRMSR instructions are privileged instructions.

6.1 Time Stamp Counter

The Time Stamp Counter (TSC) Register (MSR10) is a 64-bit counter that counts
the internal CPU clock cycles since the last reset. The TSC uses a continuous CPU
core clock and will continue to count clock cycles even when the 6x86MX is sus-
pend mode or shutdown.
The TSC can be accessed using the RDMSR and WRMSR instructions. In addition,
the TSC can be read using the RDTSC instruction, opcode 0F31h. The RDTSC
instruction loads the contents of the TSC into EDX:EAX. The use of the RDTSC

MACHINE SPECIFIC REGISTER

REGISTER
 DESCRIPTION

MSR
ADDRESS

REGISTER

Time Stamp Counter (TSC) 10h MSR10

Counter Event Selection and
Control Register

11h MSR11

Performance Counter #0 12h MSR12

Performance Counter #1 13h MSR13

44 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Performance Monitoring

instruction is restricted by the Time Stamp Disable, (TSD) flag in CR4. When the
TSD flag is 0, the RDTSC instruction can be executed at any privilege level. When
the TSD flag is 1, the RDTSC instruction can only be executed at privilege level 0.

6.2 Performance Monitoring

Performance monitoring allows counting of over a hundred different event occur-
rences and durations. Two 48-bit counters are used: Performance Monitor Counter
0 and Performance Monitor Counter 1. These two performance monitor counters
are controlled by the Counter Event Control Register (MSR11). The performance
monitor counters use a continuous CPU core clock and will continue to count clock
cycles even when the 6x86MX is in suspend mode or shutdown.

6.3 Performance Monitoring Counters 1 and 2

The 48-bit Performance Monitoring Counters (PMC) Registers (MSR12, MSR13)
count events as specified by the counter event control register.
The PMCs can be accessed by the RDMSR and WRMSR instructions. In addition,
the PMCs can be read by the RDPMC instruction, opcode 0F33h. The RDPMC
instruction loads the contents of the PMC register specified in the ECX register into
EDX:EAX. The use of RDPMC instructions is restricted by the Performance Mon-
itoring Counter Enable, (PCE) flag in C4.
When the PCE flag is set to 1, the RDPMC instruction can be executed at any priv-
ilege level. When the PCE flag is 0, the RDPMC instruction can only be executed at
privilege level 0.

6.4 Counter Event Control Register

Register MSR 11h controls the two internal counters, #0 and #1. The events to be
counted have been chosen based on the micro-architecture of the 6x86MX proces-
sor. The control register for the two event counters is described on page 46.

6.5 PM Pin Control

The Counter Event Control register (MSR11) contains PM control fields that define
the PM0 and PM1 pins as counter overflow indicators or counter event indicators.
When defined as event counters, the PM pins indicate that one or more events

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 45

PM Pin Control

occurred during a particular clock cycle and do not count the actual events.
When defined as overflow indicators, the event counters can be preset with a value

less the 248-1 and allowed to increment as events occur. When the counter over-
flows the PM pin becomes asserted.

6.5.1 Counter Type Control

The Counter Type bit determines whether the counter will count clocks or events.
When counting clocks the counter operates as a timer.

6.5.2 CPL Control

The Current Privilege Level (CPL) can be used to determine if the counters are
enabled. The CP02 bit in the MSR 11 register enables counting when the CPL is
less than three, and the CP03 bit enables counting when CPL is equal to three. If
both bits are set, counting is not dependent on the CPL level; if neither bit is set,
counting is disabled.

46 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

PM Pin Control

2
6

2
5

2
4

2
3

2
2

21 16 15 10 9 8 7 6 5 0

T
C
1
*

P
M
1

C
T
1

C
P
1
3

C
P
1
2

TC1* RESERVED T
C
0
*

P
M
0

C
T
0

C
P
0
3

C
P
0
2

TC0*

*Note: Split Fields

Counter Event Control Register

Counter Event Control Register Bit Definitions

BIT
POSITION NAME DESCRIPTION

25 PM1 Define External PM1 Pin
If = 1: PM1 pin indicates counter overflows
If = 0: PM1 pin indicates counter events

24 CT1 Counter #1 Counter Type
If = 1: Count clock cycles
If = 0: Count events (reset state).

23 CP13 Counter #1 CPL 3 Enable
If = 1: Enable counting when CPL=3.
If = 0: Disable counting when CPL=3. (reset state)

22 CP12 Counter #1 CPL Less Than 3 Enable
If = 1: Enable counting when CPL < 3.
If = 0: Disable counting when CPL < 3. (reset state)

26, 21 - 16 TC1(5-0) Counter #1 Event Type
Reset state = 0

9 PM0 Define External PM0 Pin
If = 1: PM0 pin indicates counter overflows
If = 0: PM0 pin indicates counter events

8 CT0 Counter #0 Counter Type
If = 1: Count clock cycles
If = 0: Count events (reset state).

7 CP03 Counter #0 CPL 3 Enable
If = 1: Enable counting when CPL=3.
If = 0: Disable counting when CPL=3. (reset state)

6 CP02 Counter #0 CPL Less Than 3 Enable
If = 1: Enable counting when CPL < 3.
If = 0: Disable counting when CPL < 3. (reset state)

10, 5 - 0 TC0(5-0) Counter #0 Event Type
Reset state = 0

Note: Bits 10 - 15 are reserved.

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 47

PM Pin Control

6.5.3 Event Type and Description

The events that can be counted by the performance monitoring counters are listed in Figure 1-. Each of the 127
event types is assigned an event number. A particular event number to be counted is placed in one of the MSR 11
Event Type fields. There is a separate field for counter #0 and #1.

The events are divided into two groups. The occurrence type events and duration type events. The occurrence type
events, such as hardware interrupts, are counted as single events. The duration type events such as “clock while bus
cycles are in progress” count the number of clock cycles that occur during the event.

During occurrence type events, the PM pins are configured to indicate the counter has incremented The PM pins
will then assert every time the counter increments in regards to an occurrence event. Under the same PM control,
for a duration event the PM pin will stay asserted for the duration of the event.

EVENT TYPE REGISTER

NUMBER
COUNTER

0
COUNTER

1 DESCRIPTION TYPE

00h yes yes Data Reads Occurrence

01h yes yes Data Writes Occurrence

02h yes yes Data TLB Misses Occurrence

03h yes yes Cache Misses: Data Reads Occurrence

04h yes yes Cache Misses: Data Writes Occurrence

05h yes yes Data Writes that hit on Modified or Exclusive Liens Occurence

06h yes yes Data Cache Lines Written Back Occurrence

07h yes yes External Inquiries Occurrence

08h yes yes External Inquires that hit Occurrence

09h yes yes Memory Accesses in both pipes Occurrence

0Ah yes yes Cache Bank conflicts Occurrence

0Bh yes yes Misaligned data references Occurrence

0Ch yes yes Instruction Fetch Requests Occurrence

0Dh yes yes L2 TLB Code Misses Occurrence

0Eh yes yes Cache Misses: Instruction Fetch Occurrence

0Fh yes yes Any Segment Register Load Occurrence

10h yes yes Reserved Occurrence

11h yes yes Reserved Occurrence

12h yes yes Any Branch Occurrence

13h yes yes BTB hits Occurrence

14h yes yes Taken Branches or BTB hits Occurrence

15h yes yes Pipeline Flushes Occurrence

16h yes yes Instructions executed in both pipes Occurrence

17h yes yes Instructions executed in Y pipe Occurrence

18h yes yes Clocks while bus cycles are in progress Duration

19h yes yes Pipe Stalled by full write buffers Duration

1Ah yes yes Pipe Stalled by waiting on data memory reads Duration

48 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

PM Pin Control

1Bh yes yes Pipe Stalled by writes to not-Modified or not-Exclusive cache
lines.

Duration

1Ch yes yes Locked Bus Cycles Occurrence

1Dh yes yes I/O Cycles Occurrence

1Eh yes yes Non-cacheable Memory Requests Occurrence

1Fh yes yes Pipe Stalled by Address Generation Interlock Duration

20h yes yes Reserved

21h yes yes Reserved

22h yes yes Floating Point Operations Occurrence

23h yes yes Breakpoint Matches on DR0 register Occurrence

24h yes yes Breakpoint Matches on DR1 register Occurrence

25h yes yes Breakpoint Matches on DR2 register Occurrence

26h yes yes Breakpoint Matches on DR3 register Occurrence

27h yes yes Hardware Interrupts Occurrence

28h yes yes Data Reads or Data Writes Occurrence

29h yes yes Data Read Misses or Data Write Misses Occurrence

2Bh yes no MMX Instruction Executed in X pipe Occurrence

2Bh no yes MMX Instruction Executed in Y pipe Occurrence

2Dh yes no EMMS Instruction Executed Occurrence

2Dh no yes Transition Between MMX Instruction and FP Instructions Occurrence

2Eh no yes Reserved

2Fh yes no Saturating MMX Instructions Executed Occurrence

2Fh no yes Saturations Performed Occurrence

30h yes no Reserved

31h yes no MMX Instruction Data Reads Occurrence

32h yes no Reserved

32h no yes Taken Branches Occurrence

33h no yes Reserved

34h yes no Reserved

34h no yes Reserved

35h yes no Reserved

35h no yes Reserved

36 yes no Reserved

36 no yes Reserved

37 yes no Returns Predicted Incorrectly Occurrence

37 no yes Return Predicted (Correctly and Incorrectly) Occurrence

38 yes no MMX Instruction Multiply Unit Interlock Duration

38 no yes MODV/MOVQ Store Stall Due to Previous Operation Duration

39 yes no Returns Occurrence

39 no yes RSB Overflows Occurrence

3A yes no BTB False Entries Occurrence

EVENT TYPE REGISTER (CONTINUED)

NUMBER COUNTER
0

COUNTER
1

DESCRIPTION TYPE

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 49

PM Pin Control

3A no yes BTB Miss Prediction on a Not-Taken Back Occurrence

3B yes no Number of Clock Stalled Due to Full Write Buffers While Execut-
ing

Duration

3B no yes Stall on MMX Instruction Write to E or M Line Duration

3C - 3Fh yes yes Reserved Duration

40h yes yes L2 TLB Misses (Code or Data) Occurrence

41h yes yes L1 TLB Data Miss Occurrence

42h yes yes L1 TLB Code Miss Occurrence

43h yes yes L1 TLB Miss (Code or Data) Occurrence

44h yes yes TLB Flushes Occurrence

45h yes yes TLB Page Invalidates Occurrence

46h yes yes TLB Page Invalidates that hit Occurrence

47h yes yes Reserved

48h yes yes Instructions Decoded Occurrence

49h yes yes Reserved

EVENT TYPE REGISTER (CONTINUED)

NUMBER COUNTER
0

COUNTER
1

DESCRIPTION TYPE

50 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Instruction Set

7. Programming Model Differences

7.1 Instruction Set

The 6x86MX supports the Pentium Pro instruction set plus MMX instructions. Pen-
tium extensions for virtual mode are not supported.

7.2 Configuring Internal 6x86MX Features

The 6x86MX supports configuring internal features through I/O ports.

7.3 INVD and WBINVD Instructions

The INVD and WBINVD instructions are used to invalidate the contents of the
internal and external caches. The WBINVD instruction first writes back any modi-
fied lines in the cache and then invalidates the contents. It ensures that cache coher-
ency with system memory is maintained regardless of the cache operating mode.
Following invalidation of the internal cache, the CPU generates special bus cycles
to indicate that external caches should also write back modified data and invalidate
their contents.

On the 6x86MX, the INVD functions identically to the WBINVD instruction. The
6x86MX always writes all modified internal cache data to external memory prior to
invalidating the internal cache contents. In contrast, the Pentium invalidates the
contents of its internal caches without writing back the “dirty” data to system mem-
ory.

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 51

Control Register 0 (CR0) CD and NW Bits

7.4 Control Register 0 (CR0) CD and NW Bits

The CPU’s CR0 register contains, among other things, the CD and NW bits which
are used to control the on-chip cache. CR0, like the other system level registers, is
only accessible to programs running at the highest privilege level. The table on the
following page lists the cache operating modes for all possible states of the CD and
NW bits.

The CD and NW bits are set to one (cache disabled) after reset. For highest perfor-
mance the cache should be enabled in write-back mode by clearing the CD and NW
bits to 0. Sample code for enabling the cache is listed in Appendix E. To completely
disable the cache, it is recommended that CD and NW be set to 1 followed by exe-
cution of the WBINVD instruction. The 6x86MX cache always accepts invalidation
cycles even when the cache is disabled. Setting CD=0 and NW=1 causes a General
Protection fault on the Pentium, but is allowed on the 6x86MX to globally enable
write-through caching.

52 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Control Register 0 (CR0) CD and NW Bits

CD NW OPERATING MODES

1 1 Cache disabled.
Read hits access the cache.
Read misses do not cause line fills.
Write hits update the cache and system memory.
Write hits change exclusive lines to modified.
Shared lines remain shared after write hit.
Write misses access memory.
Inquiry and invalidation cycles are allowed.
System memory coherency maintained.

1 0 Cache disabled.
Read hits access the cache.
Read misses do not cause line fills.
Write hits update the cache.
Only write hits to shared lines and write misses update system memory.
Write misses access memory.
Inquiry and invalidation cycles are allowed.
System memory coherency maintained.

0 1 Cache enabled in Write-through mode.
Read hits access the cache.
Read misses may cause line fills.
Write hits update the cache and system memory.
Write misses access memory.
Inquiry and invalidation cycles are allowed.
System memory coherency maintained.

0 0 Cache enabled in Write-back mode.
Read hits access the cache.
Read misses may cause line fills.
Write hits update the cache.
Write misses access memory and may cause line fills if write allocation is
enabled.
Inquiry and invalidation cycles are allowed.
System memory coherency maintained.

Cache Operating Modes

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 53

- Sample Code: Detecting a Cyrix CPU

Appendixes

Appendix A.- Sample Code: Detecting a Cyrix CPU

assume cs:_TEXT
public _iscyrix
_TEXT segment byte public ‘CODE’
;***
; Function: int iscyrix ()
;
; Purpose: Determine if Cyrix CPU is present
; Technique: Cyrix CPUs do not change flags where flags
; change in an undefined manner on other CPUs
; Inputs: none
; Output: ax == 1 Cyrix present, 0 if not
;***
_iscyrixproc near

.386
xor ax, ax ; clear ax
sahf ; clear flags, bit 1 always=1 in flags
mov ax, 5
mov bx, 2
div bl ; operation that doesn’t change flags
lahf ; get flags
cmp ah, 2 ; check for change in flags
jne not_cyrix ; flags changed, therefore NOT CYRIX
mov ax, 1 ; TRUE Cyrix CPU
jmp done

not_cyrix:
mov ax, 0 ; FALSE NON-Cyrix CPU

done:
ret

_iscyrix endp
_TEXT ends
end

54 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Sample Code: Determining CPU MHz

Appendix B. Sample Code: Determining CPU MHz

assume cs:_TEXT
public _cpu_speed
_TEXT segment para public 'CODE'

comment~
**
 Function: unsigned long _cpu_speed(unsigned int)
 "C" style caller
 Purpose: calculate elapsed time req'd to complete a loop of IDIVs

 Technique: Use the PC's high resolution timer/counter chip (8254)
 to measure elapsed time of a software loop consisting
 of the IDIV and LOOP instruction.
 Definitions: The 8254 receives a 1.19318MHz clock (0.8380966 usec).
 One "tick" is equal to one rising clock edge applied

 to the 8254 clock input.

 Inputs: ax = no. of loops for cpu_speed_loop
 Returns: ax = no. of 1.19318MHz clk ticks req'd to complete a loop
 dx = state of 8254 out pin
***~
PortB EQU 061h
Timer_Ctrl_Reg EQU 043h
Timer_2_Data EQU 042h
stk$dx EQU 10 ;dx register offset
stk$ax EQU 14 ;dx register offset
stack$ax EQU [bp]+stk$ax
stack$dx EQU [bp]+stk$dx
Loop_Count EQU [bp+16]+4

.386p

_cpu_speed proc near
 pushf ;save interrupt flag
 pusha ;pushes 16 bytes on stack
 mov bp,sp ;init base ptr

 cli ;disable interrupts

;-------disable clock to timer/counter 2
 in al, PortB
 and al, 0feh
 out 80h,al ;I/O recovery time
 out PortB, al
 mov di, ax

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 55

Sample Code: Determining CPU MHz

;-------initialize the 8254 counter to "0", known value
 mov al,0b0h
 out Timer_Ctrl_Reg, al ;control word to set channel 2 count
 out 80h,al ;I/O recovery time
 mov al,0ffh
 out Timer_2_Data, al ;init count to 0, lsb
 out 80h,al ;I/O recovery time
 out Timer_2_Data, al ;init count to 0, msb

;-------get the number of loops from the caller's stack
 mov cx,Loop_Count ;loop count

;-------load dividend & divisor, clk count for IDIV depend on operands!
 xor edx,edx ;dividend EDX:EAX
 xor eax,eax
 mov ebx,1 ;divisor

;-------enable the timer/counter's clock. Begin timed portion of test!
 xchg ax, di ;save ax for moment
 or al, 1
 out PortB, al ;enable timer/counter 2 clk
 xchg ax, di ;restore ax

;-------this is the core loop.
 ALIGN 16
cpu_speed_loop:
 idiv ebx
 idiv ebx
 idiv ebx
 idiv ebx
 idiv ebx
 loop cpu_speed_loop

;-------disable the timer/counter's clk. End timed portion of test!
 mov ax, di
 and al, 0FEH
 out PortB, al

;-------send latch status command to the timer/counter
 mov al, 0c8h ;latch status and count
 out Timer_Ctrl_Reg, al
 out 80h,al ;I/O recovery time

;-------read status byte, and count value "ticks" from the timer/cntr
 in al, Timer_2_Data ;read status
 out 80h,al ;I/O recovery time
 mov dl, al
 and dx, 080h
 shr dx, 7

56 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Sample Code: Determining CPU MHz

 in al, Timer_2_Data ;read LSB
 out 80h,al ;I/O recovery time
 mov bl, al
 in al, Timer_2_Data ;read MSB
 out 80h,al ;I/O recovery time
 mov bh, al

 not bx ;invert count

;-------send command to clear the timer/counter
 mov al, 0b6h
 out Timer_Ctrl_Reg, al ;clear channel 2 count
 out 80h,al ;I/O recovery time
 xor al, al
 out Timer_2_Data, al ;set count to 0, lsb
 out 80h,al ;I/O recovery time
 out Timer_2_Data, al ;set count to 0, msb

;-------put return values on the stack for the caller
 mov [bp+stk$ax], bx
 mov [bp+stk$dx], dx

 popa
 popf ;restores interrupt flag
 ret
_cpu_speed endp

.8086
_TEXT ENDS
END

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 57

Example CPU Type and Frequency Detection Program

Appendix C. Example CPU Type and Frequency Detection Program

/* **
 function: main() WCP 8/22/95
 Purpose: a driver program to demonstrate:
 CPU detection
 CPU core frequency in Mhz.
 Returns: 0 if successful

 Required source code modules
 m1_stat.c main() module (this file)
 id.asm cpu identification code
 clock.asm cpu timing loop

 Compile and Link instructions for Borland C++ or equivalent:
 bcc m1_stat.c id.asm clock.asm
*** */
/* include directives */
 #include <stdio.h>

/* constants */
 #define TTPS 1193182 //high speed Timer Ticks per second in Mhz
 #define MHZ 1000000 //number of clocks in 1 Mhz
 #define LOOP_COUNT 0x2000 //core loop iterations
 #define RUNS 10 //number of runs to average
 #define DIVS 5 //# of IDIV instructions in the core loop
 #define 6x86MX_IDIV_CLKS 17 //known clock counts for 6x86MX
 #define 6x86MX_LOOP_CLKS 1
 #define P54_IDIV_CLKS 46 //known clock counts for P54
 #define P54_LOOP_CLKS 7

/* prototypes */
 unsigned int iscyrix(void); //detects cyrix cpu
 unsigned long cpu_speed(unsigned int); //core timing loop

 main(){

 /* declarations */
 unsigned char uc_cyrix_cpu = 0; //Cyrix cpu? 0=no, 1=yes
 unsigned int i_runs = 0; //number of runs to avg
 unsigned int ui_idiv, ui_loop = 0; //instruction clk counts
 unsigned long ul_tt_cnt, ul_tt_sum = 0; //timer tick counts, sum
 unsigned int ui_core_loop_cntr = LOOP_COUNT; //core loop iterations
 float f_mtt = 0; //measured timer ticks
 float f_total_core_clks = 0; //calculated core clocks
 float f_total_time = 0; //measured time
 float f_mhz = 0; //mhz

58 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

Example CPU Type and Frequency Detection Program

/* ********** determine if Cyrix CPU is present ************** */

 //detect if Cyrix CPU is present
 uc_cyrix_cpu = iscyrix(); //1=cyrix, 0=non-cyrix

 //display a msg
 if(uc_cyrix_cpu) printf("\nCyrix CPU present! ");
 else printf("\nCyrix CPU not present! ");

/* ******************** determine CPU Mhz ******************** */

 //count # of hi speed "timer ticks" to complete several runs of core loop
 for (i_runs = 0 ; i_runs < RUNS ; i_runs++) {
 ul_tt_cnt = cpu_speed(ui_core_loop_cntr);
 ul_tt_sum += ul_tt_cnt; //sum them all together
 }//end for

 //compute the avg number of high speed "timer ticks" for the several runs
 f_mtt = ul_tt_sum / RUNS; //compute the average

 //initialize variables with the "known" clock counts for a 6x86MX or P54
 if(uc_cyrix_cpu)ui_idiv=6x86MX_IDIV_CLKS; else ui_idiv=P54_IDIV_CLKS;
 if(uc_cyrix_cpu)ui_loop=6x86MX_LOOP_CLKS; else ui_loop=P54_LOOP_CLKS;

 //determine the total number of core clocks. (5 idivs are in the core
loop)
 f_total_core_clks = (float)ui_core_loop_cntr * (ui_idiv * DIVS + ui_loop);

 //the time it took to complete the core loop can be determined by the
 //ratio of measured timer ticks(mtt) to timer ticks per second(TTPS).
 f_total_time = f_mtt / TTPS;

 //frequency can be found by the ratio of core clks to the total time.
 f_mhz = f_total_core_clks / f_total_time;
 f_mhz = f_mhz / MHZ; //convert to Mhz

 //display a msg
 printf("The core clock frequency is: %3.1f MHz\n\n",f_mhz);

 return(0);

 } //end main

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 59

- Sample Code: Programming 6x86MX Configuration Registers

Appendix D.- Sample Code: Programming 6x86MX Configuration
Registers

Reading/Writing Configuration Registers

Sample code for setting NC1=1 in CCR0.

pushf ;save the if flag
cli ;disable interrupts
mov al, 0c0h ;set index for CCR0
out 22h, al ;select CCR0 register
in al, 23h ;READ current CCR0 valueREAD

mov ah, al
or ah, 2h ;MODIFY, set NC1 bitMODIFY

mov al, 0c0h ;set index for CCR0
out 22h, al ;select CCR0 register
mov al, ah
out 23h,al ;WRITE new value to CCR0WRITE
popf ;restore if flag

Setting MAPEN

Sample code for setting MAPEN=1 in CCR3 to allow access to all the configu-
ration registers.

pushf ;save the if flag
cli ;disable interrupts
mov al, 0c3h ;set index for CCR3
out 22h, al ;select CCR3 register
in al, 23h ;current CCR3 valueREAD

mov ah, al
and ah,0Fh ;clear upper nibble of ah
or ah, 10h ;MODIFY, set MAPEN(3-0)MODIFY

mov al, 0c3h ;set index for CCR3
out 22h, al ;select CCR3 register
mov al, ah
out 23h,al ;WRITE new value to CCR3WRITE
popf ;restore if flag

60 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

- Sample Code: Controlling the L1 Cache

Appendix E. - Sample Code: Controlling the L1 Cache

Enabling the L1 Cache

;reading/writing CR0 is a privileged operation.

mov eax, cr0
and eax, 09fffffffh;clear the CD=0, NW=1 bits to enable write-back
mov cr0, eax;control register 0 write
wbinvd ;optional, by flushing the L1 cache here it

;ensures the L1 cache is completely clean

Disabling the L1 Cache

mov eax, cr0
or eax, 060000000h ;set the CD=1, NW=1 bits to disable caching
mov cr0, eax ;control register 0 write
wbinvd

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 61

- Example Configuration Register Settings

Appendix F. - Example Configuration Register Settings

Below is an example of optimized 6x86MX settings for a 16 MByte system with PCI. Since SMI address space
overlaps Video RAM at A0000h, WG is set to maintain the settings of the underlying region ARR0. If SMI
address space overlapped system memory at 30000h, only WWO and WG would be set. If SMI address space
overlapped FLASH ROM at E0000h, only RCD would be set. Power management features are disabled in this
example system.

CONFIGURATION REGISTER SETTINGS EXAMPLE

REGISTER BIT(S) SETTING DESCRIPTION

CCR0 NC1 1 Disables caching from 640k-1MByte.

CCR1 USE_SMI

SMAC

NO_LOCK

SM3

1

0

0

1

Enables SMI# and SMIACT# pins.

Always clear SMAC for normal operation.

Enforces strong locking for compatibility.

Sets ARR3 as SMM address region.

CCR2 LOCK_NW

SUSP_HLT

WPR1

USE_SUSP

0

0

0

0

Locking NW bit not required.

Power management not required for this system.

ROM areas not cached, so WPR1 not required.

Power management not required for this system.

CCR3 SMI_LOCK

NMI_EN

LINBRST

MAPEN(3-0)

0

0

0

0

Locks SMI feature as initialized.

Servicing NMIs during SMI not required.

Linear burst not supported in this system.

Always clear MAPEN for normal operation.

CCR4 IORT(2-0)

CPUIDEN

7

1

Sets IORT to minimum setting.

Enables CPUID instruction.

CCR5 WT_ALLOC

ARREN

1

1

Enables write allocation for performance.

Enables all ARRs.

ARR0 BASE ADDR

BLOCK SIZE

A0000h

6h

Video buffer base address = A0000h.

Video buffer block size = 128KBytes.

RCR0 RCD

WL

WG

WT

INV_RGN

1

0

1

0

0

Caching disabled for compatibility. Caching also disabled via
NC1.

Write gathering enabled for performance.

62 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

- Example Configuration Register Settings

ARR1 BASE ADDR

BLOCK SIZE

C 0000h

7h

Expansion Card/ ROM base address = C 0000h.

Expansion Card/ROM block size = 256KBytes.

RCR1 RCD

WL

WG

WT

INV_RGN

1

0

0

0

0

Caching disabled for compatibility. Caching also disabled via
NC1.

ARR3 BASE ADDR

BLOCK SIZE

A0000h

4h

SMM address region base address

SMM address space = 32 KBytes

RCR3 RCD

WL

WG

WT

INV_RGN

1

0

1

0

0

Caching disabled due to overlap with video buffer.

Write gathering enabled due to overlap with video buffer.

ARR7 BASE ADDR

BLOCK SIZE

0h

7h

Main memory base address = 0h.

Main memory size = 16 MBytes.

RCR7 RCE

WL

WG

WT

1

0

1

0

Caching, write gathering enabled for main memory.

ARR(2,4-6) BASE ADDR

BLOCK SIZE

0

0

ARR(2,4-6) disabled (default state).

RCR(2,4-6) RCD

WL

WG

WT

INV_RGN

0

0

0

0

0

RCR(2,4-6) not required due to corresponding ARRs disabled
(default state).

CONFIGURATION REGISTER SETTINGS EXAMPLE (CONTINUED)

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 63

- Sample Code: Detecting L2 Cache Burst Mode

Appendix G. - Sample Code: Detecting L2 Cache Burst Mode

comment~***

Purpose: This example program detects if Linear Burst mode is supported.

Method: There are 3 components (CPU, chipset, SPBSRAM) that must agree on
the burst order. The CPU and chipset burst order can be determined by
inspecting each devices internal configuration registers. The SPBSRAM
devices must be interrogated by a software algorithm (below) to determine if
"linear burst mode" is enabled/supported correctly.

Algorithm: If the CPU and chipset are programmed for linear burst mode and a
known data pattern exists in memory, then the burst mode of the SPBSRAMs can
be determined by performing a cache line burst and then inspect the data
pattern.

Application: In this example, the SIS5511 chipset is used with a Cyrix
6x86MX CPU.

Environment: This program is a REAL mode DOS program to serve as an example.
This example algorithm should be ported to BIOS.

Warnings: For simplicity, this program does not check to see which CPU or
chipset is present. Nor, does this program check to see if the CPU is in
REAL mode before executing protected instructions. Also, this program
blindly overwrites data in the 8000h segment of memory.
**~
;version m510 ;remove comment for TASM

DOSSEG
.MODEL SMALL
.DATA
Msg_1 db 0dh,0ah

db 'ISLINBUR.EXE checks if L2 SRAMs are in Linear Burst Mode
or'

db 0dh,0ah
db 'Toggle Burst mode for the SIS5511 chipset and the 6x86MX

CPU.'
db 0dh,0ah
db '$'

64 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

- Sample Code: Detecting L2 Cache Burst Mode

Msg_2 db 0dh,0ah
db 'Test complete!'
db 0dh,0ah
db '$'

Msg_yes db 0dh,0ah
db 'The L2 SRAMs correctly operate in linear burst mode.'
db 0dh,0ah
db '$'

Msg_no db 0dh,0ah
db 'ERROR: The L2 SRAMs incorrectly operate in linear burst

mode.'
db 0dh,0ah
db '$'

index_port dw 0CF8h
data_port dw 0CFCh
pci_index dd 80000000h

.STACK 100h

.CODE

.STARTUP

.486P

pushf
cli

;-------display a msg using a DOS call
mov ax,seg Msg_1
mov ds,ax
mov dx,offset Msg_1 ;set msg_1 start
mov ah,9h ;print string function
int 21h ;DOS int

;-------disable the L1 internal cache
call cache_off
out 80h,al ;write to PC diagnostic port

;-------setup a work space in main memory to perform burst
;mode tests and initialize the memory work space with a
;known pattern

push ds

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 65

- Sample Code: Detecting L2 Cache Burst Mode

mov ax,8000h ;choose segment 8000h
mov ds,ax
mov al,0001h
mov byte ptr ds:[0],al ;init memory locations
inc al
mov byte ptr ds:[8h],al
inc al
mov byte ptr ds:[10h],al
inc al
mov byte ptr ds:[18h],al
pop ds

;-------enable the SiS5511 chipset's linear burst mode
mov al,51h ;al=reg to read
call r_pci_reg ;READ al=reg contents
mov ah,al
or ah,8 ;MODIFY set linbrst bit
mov al,51h
call w_pci_reg ;WRITE

;-------enable the CPU's linear burst mode
call en_linbrst

;-------enable L1 caching
call cache_on

;-------burst several cache lines so that address 80000h is
;in the L2 cache, but NOT in the L1 cache.
push ds
mov ax,8000h ;choose segment 8000h
mov ds,ax
mov al,byte ptr ds:[0h] ;line fill to L2 and L1
mov al,byte ptr ds:[1000h] ;fill L1 line 1
mov al,byte ptr ds:[2000h] ;fill L1 line 1
mov al,byte ptr ds:[3000h] ;fill L1 line 1
mov al,byte ptr ds:[4000h] ;fill L1 line 1,

;now 80000h exists only in the
;L2 cache (not in L1 anymore!)

;-------burst a cache line so that address 80000h will hit
; the L2 cache SRAMs

66 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

- Sample Code: Detecting L2 Cache Burst Mode

mov al,byte ptr ds:[8h]
;***** Burst Pattern Table *****
;if SRAMs in linear burst mode, then
;L1 will be filled with:

 ; byte data
 ; 0 01h
 ; 8 02h
 ; 10 03h
 ; 18 04h

;if SRAMs in toggle burst mode, then
 ;L1 will be filled with:
 ; byte data
 ; 0 03h
 ; 8 02h
 ; 10 01h
 ; 18 04h

;-------Compare the cache line to the Burst Pattern Table
;above. The signature of the pattern will determine
;if the burst was linear or toggle.

;check byte ds:[10] in the L1
mov al, byte ptr ds:[10h]

;it will be a 1 if toggle mode
cmp al,3h

;it will be a 3 if linear mode
pop ds
jnz not_linear

is_linear:
mov dx,offset Msg_yes ;SRAMs in linear burst mode
jmp over_not

not_linear:
mov dx,offset Msg_no ;SRAMs in toggle burst mode

over_not:
wbinvd

;------disable L1 internal cache
call cache_off

;-------restore chipset to toggle mode burst order

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 67

- Sample Code: Detecting L2 Cache Burst Mode

mov al,51h ;al=reg to read
call r_pci_reg ;READ al=reg contents
mov ah,al
and ah,0f7h ;MODIFY clr linbrst bit
mov al,51h
call w_pci_reg ;WRITE

call dis_linbrst

;-------restore L1 caching
call cache_on

done:
popf

;-------display a msg using a DOS call
mov ax,seg Msg_2
mov ds,ax
mov ah,9h ;print string function
int 21h ;DOS int

;--------return to the operating system
.EXIT

comment~***
 function r_pci_reg
 purpose read the pci register at the index in al
 inputs al= the index of the pci register
 returns al= the data read from the pci reg
**~
r_pci_reg PROC

 pushf
 push eax
 push dx
 cli

 mov dx,index_port
 and eax,0FFh
 or eax,pci_index

68 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

- Sample Code: Detecting L2 Cache Burst Mode

 out dx,eax

 and al,3
 mov dx,data_port
 add dl,al
 in al,dx
 xchg al,bl ;preserve rtn value

 mov eax,pci_index
 mov dx,index_port
 out dx,eax

 pop dx
 pop eax
 popf

 xchg al,bl
 ret

r_pci_reg ENDP

comment~***
 function w_pci_reg
 inputs al= the index of the pci register

 ah= the data to write
 outputs modifies chipset registers directly
 returns none
**~
w_pci_reg proc

 pushf
 push eax
 push bx
 push dx
 cli

 mov bx,ax ;preserve input value(s)

 mov dx,index_port
 and eax,0FFh

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 69

- Sample Code: Detecting L2 Cache Burst Mode

 or eax,pci_index
 out dx,eax

 and al,3
 mov dx,data_port
 add dl,al
 mov al,bh ;recall data to write
 out dx,al

 mov eax,pci_index
 mov dx,index_port
 out dx,eax

 pop dx
 pop bx
 pop eax
 popf
 ret
w_pci_reg ENDP

comment~***
 function en_linbrst
 purpose enable the 6x86MX linbrst bit
 inputs none
 outputs modifies the 6x86MX CPU registers directly
 returns none
**~
en_linbrst PROC

mov ax,0C3C3h ;set LINBRST
out 22h,al
in al,23h
xchg ah,al
or ah,4
out 22h,al
xchg ah,al
out 23h,al

ret
en_linbrst ENDP

70 Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE

- Sample Code: Detecting L2 Cache Burst Mode

comment~***
 function dis_linbrst
 purpose disable the 6x86MX linbrst bit
 inputs none
 outputs modifies the 6x86MX CPU registers directly
 returns none
**~
dis_linbrst PROC

mov ax,0C3C3h
out 22h,al
in al,23h
xchg ah,al
and ah,0fbh ;clear the linbrst bit
out 22h,al
xchg ah,al
out 23h,al

ret
dis_linbrst ENDP

comment~***
 function cache_off
 purpose disables the L1 cache
 inputs none
 returns none
**~
cache_off PROC

pushf
push eax
cli
mov eax,cr0
or eax,60000000h
mov cr0,eax
wbinvd
jmp $+2pop eax
popf
ret

Cyrix 6x86MX Application Note 103 - BIOS WRITER’S GUIDE 71

- Sample Code: Detecting L2 Cache Burst Mode

cache_off ENDP

comment~***
 function cache_on
 purpose enables the L1 cache
 inputs none
 returns none
**~
cache_on PROC

pushf
push eax
cli
mov eax,cr0
and eax,9FFFFFFFh
mov cr0,eax
pop eax
popf
ret

cache_on ENDP

END

72 Cyrix 6x86MX Application Note 102 - Signal and Bus Differences

©1997 Copyright Cyrix Corporation. All rights reserved.

Printed in the United States of America

Trademark Acknowledgments:

Cyrix is a registered trademark of Cyrix Corporation.

Cx486DX, Cx486DX2, Cx486DX4, 5x86, 6x86 and 6x86MX are trademarks of Cyrix Corporation.

Product names used in this publication are for identification purposes only and may be trademarks of
their respective companies.

Order Number: 94xxx-xx

Cyrix Corporation

2703 North Central Expressway

Richardson, Texas 75080-2010

United States of America

Cyrix Corporation (Cyrix) reserves the right to make changes in the devices or specifications described
herein without notice. Before design-in or order placement, customers are advised to verify that the
information is current on which orders or design activities are based. Cyrix warrants its products to con-
form to current specifications in accordance with Cyrix’ standard warranty. Testing is performed to the
extent necessary as determined by Cyrix to support this warranty. Unless explicitly specified by cus-
tomer order requirements, and agreed to in writing by Cyrix, not all device characteristics are necessarily
tested. Cyrix assumes no liability, unless specifically agreed to in writing, for customers’ product design
or infringement of patents or copyrights of third parties arising from use of Cyrix devices. No license,
either express or implied, to Cyrix patents, copyrights, or other intellectual property rights pertaining to
any machine or combination of Cyrix devices is hereby granted. Cyrix products are not intended for use
in any medical, life saving, or life sustaining system. Information in this document is subject to change
without notice.

May 22, 1997 9:39 am
C:\DATAOEM\!M2MXAP\103ap.fm5

Rev 1.6 New name, minor corrections
Rev 1.5 Corrected Page 11 0000h -> 00h
Rev 1.4 Corrected formatting and typos
Rev 1.3 Corrected Page 11, Changed page 9
Rev 1.2 Modified format
Rev 1.1 Table 1-1 was added, summarizing 6x86MX and 6x86 differences
Rev 1.0 First Release

